Network Monitoring

Sebastian Büttrich, sebastian@less.dk NSRC / IT University of Copenhagen Last edit: February 2012, ICTP Trieste

http://creativecommons.org/licenses/by-nc-sa/3.0/

Agenda

- What is network monitoring?
- The "big three"
- Other useful tools and systems
- Questions and discussion

Remember the layer model

The TCP/IP and OSI Models

Remember the layer model

The TCP/IP and OSI Models

 General Network monitoring

> mostly works on layer 3 and up, and often assumes TCP/IP networks

 Wireless network monitoring typically involves layer 2 - the specifically wireless aspects (spectrum, SSIDs, etc)

What are we monitoring?

- Connections, links, quality
- bandwidth, usage
- performance
- systems & services
- resources
- configurations, changes
- logfiles
- users?
- content of traffic?

Monitoring & Management

Monitoring without response does not make much sense -

what good is seeing a problem if you dont react?

- Monitoring is part of management
- Management is closely related to

expectations, contracts, SLAs

Different types of monitoring

- human operated vs automatic
- active vs passive
- Active human operated monitoring often gives good insight, but is not feasible 24/7
- Automatic monitoring can run 24/7, but needs to trigger notification/alerts and file service tickets in order to be useful
- Often the combination of both is needed.

The "big three"

Nagios

servers, switches, devices, services & anything that can talk IP and/or SNMP (this can include small wireless sensors!)

Smokeping

connections, quality, ping rtt, latency, jitter

Cacti

resources, traffic, interfaces, transactions, .. almost anything that is accessible via SNMP, e.g. temperature, power, ... sensor data

Nagios

Nagios is an open source computer system monitor, network monitoring and infrastructure monitoring software application. Nagios offers monitoring and alerting for servers, switches, applications, and services. It watches hosts and services, alerting users when things go wrong and again when they get better.

(source: wikipedia)

Nagios

Nagios

Current Network Status

Last Updated: Tue Feb 14 22:50:05 CET 2012 Updated every 90 seconds Nagios® Core™ 3.2.0 - <u>www.nagios.org</u> Logged in as nagiosadm/n

View Service Status Detail For All Host Groups View Status Overview For All Host Groups View Status Summary For All Host Groups View Status Grid For All Host Groups

Se Ok Warning 13 0 All I

Host Status Details For All Host Groups

Host 🔨	Status ↑↓	Last Check 🔨	Duration 🔨	Status Information
Alitatar 😽	UP	2012-02-14 22:47:41	355d 10h 34m 29s	PING OK - Packet loss = 0%, RTA = 0.25 ms
Blinky 🐕	UP	2012-02-14 22:49:01	69d 8h 22m 14s	PING OK - Packet loss = 0%, RTA = 0.93 ms
Ceretiro 😽		2012-02-14 22:49:11	69d 8h 22m 4s	PING OK - Packet loss = 0%, RTA = 0.57 ms
DMZ qateway	UP	2012-02-14 22:49:31	69d 8h 22m 4s	PING OK - Packet loss = 0%, RTA = 1.43 ms
Diaspora		2012-02-14 22:48:31	144d 10h 55m 59s	PING OK - Packet loss = 0%, RTA = 0.22 ms
ElenaNazzi 👫	UP	2012-02-14 22:49:51	71d 6h 41m 4s	PING OK - Packet loss = 0%, RTA = 0.29 ms
IPv6 sensor galavay	DOWN	2012-02-14 22:49:11	1d 14h 4m 24s	CRITICAL - Host Unreachable (130.226.142.166)
IPv6 wireless		2012-02-14 22:49:41	1d 14h 3m 54s	CRITICAL - Host Unreachable (130.226.142.169)
ITU man tu		2012-02-14 22:47:41	237d 12h 51m 39s	CRITICAL - Host Unreachable (130.226.142.142)
Kintry 🐕		2012-02-14 22:49:31	78d 12h 37m 54s	PING OK - Packet loss = 0%, RTA = 0.58 ms
LAB2 gateway		2012-02-14 22:49:51	140d 7h 41m Os	PING OK - Packet loss = 0%, RTA = 1.42 ms
LAB3 gateway		2012-02-14 22:49:01	35d 13h 53m 54s	PING OK - Packet loss = 0%, RTA = 1.48 ms
MONARCA public		2012-02-14 22:48:41	35d 13h 53m 54s	PING OK - Packet loss = 0%, RTA = 2.30 ms
<u>MiddleEarlt</u>	DOWN	2012-02-14 22:45:31	35d 13h 53m 44s	PING CRITICAL - Packet loss = 100%
Manaros 🖇	UNREACHABLE	2012-02-14 22:46:41	1d 14h 6m 54s	CRITICAL - Host Unreachable (130.226.142.167)
Perlsanar 🖇	UNREACHABLE	2012-02-14 22:45:51	362d 8h 40m 1s	CRITICAL - Host Unreachable (130.226.142.168)
Pitlab OLD outphasing	UP	2012-02-14 22:46:51	1d 14h 22m 14s	PING OK - Packet loss = 0%, RTA = 0.25 ms
Primus 😽	UP	2012-02-14 22:40:21	355d 10h 32m 21s	PING OK - Packet loss = 0%, RTA = 0.03 ms
taraband 😽	UP	2012-02-14 22:40:31	78d 12h 40m 4s+	PING OK - Packet loss = 0%, RTA = 2.68 ms
iocathost 🖉	UP	2012-02-14 22:40:41	554d 9h 30m 57s	PING OK - Packet loss = 0%, RTA = 0.02 ms
man-dev 😽		2012-02-14 22:48:11	33d 19h 32m 24s	PING OK - Packet loss = 0%, RTA = 0.24 ms
xTiger2	UP	2012-02-14 22:47:11	140d Oh 53m 30s	PING OK - Packet loss = 0%, RTA = 3.11 ms

Nagios – how to get started?

For example by using the NSRC exercises:

https://nsrc.org/workshops/ws-files/2011/sanog17/exercises/exercises-nagios.html

http://nagios.org

 Smokeping is a network latency monitor. It measures network latency – rtt, jitter - to a configurable set of destinations on the network, and displays its findings in easyto-read Web pages.

SmokePing uses RRDtool as its logging and graphing back-end, making the system very efficient. The presentation of the data on the Web is done through a CGI with some AJAX capabilities for interactive graph exploration.

(source: freshmeat)

14

GH_Winneba_Univ_Winneba

RRDTOOL / TOBI OETIKER

IT_Trieste_ICTP

Smokeping – how to get started?

For example by using the NSRC exercises:

https://nsrc.org/workshops/ws-files/2011/sanog17/exercises/exercises-smokeping.html

http://oss.oetiker.ch/smokeping/

Cacti is an open source, web-based graphing tool designed as a frontend to **RRDtool's data storage and graphing** functionality. Cacti allows a user to poll services at predetermined intervals and graph the resulting data. It is generally used to graph time-series data of metrics such as CPU load and network bandwidth utilization. A common usage is to monitor network traffic by polling a network switch or router interface via SNMP. (source: wikipedia)

console graphs					
Console -> Graph Trees					
Create	Graph Trees				
New Graphs	Name				
Management	Databaser				
Graph Management	DHCP Stat				
Graph Trees	Disk Consumption				
Data Sources	Hosts				
Devices	Mail				
Collection Methods	Network				
Data Queries	Performance				
Data Input Methods	Radius - WIFI				
Templates	UPS				
Graph Templates	User Stat				
Host Templates					

22

Graph Trees	
Data Sources	Template Name**
Devices	APC Battery Indicator
Collection Methods	APC Battery Temperature
Data Queries	APC Input Voltage
Data Input Methods	APC Load
Templates	APC Output Voltage
Graph Templates	APC RunTime
Host Templates	
Data Templates	Barracuda CPU - Idle
Import/Export	Barracuda CPU - System
Import Templates	Barracuda CPU - User
Export Templates	Barracuda Disk - Available
Configuration	Barracuda Disk - Total
Settings	Barracuda Disk - Used
Utilities	Barracuda Mail Queues - Bounce
System Utilities	
User Management	Barracuda Mail Queues - Inbound
Logout User	Barracuda Mail Queues - Outbound
-	Barracuda Memory - Buffer
	Barracuda Memory - Cached
	Barracuda Memory - Total Available
	Barracuda Memory - Total Free
	Barracuda Memory - Total Real
	Barracuda Memory - Total Swap
	Cisco Router - 5 Minute CPU
	DHCP Statistics (SNMP)

- Cacti
 is a good tool for
 monitoring power
- e.g. solar installations

as it can monitor electrical and environmental data

Cacti – how to get started?

By now you can guess :)

https://nsrc.org/workshops/2011/afnog-nm/raw-attachment/wiki/Agenda/cacti.pdf

http://cacti.net

SNMP

- Simple Network Management Protocol (SNMP) is an "Internet-standard protocol for managing devices on IP networks. Devices that typically support SNMP include routers, switches, servers, workstations, printers, modem racks, and more."[1] It is used mostly in network management systems to monitor network-attached devices for conditions that warrant administrative attention. SNMP is a component of the Internet Protocol Suite as defined by the Internet Engineering Task Force (IETF). It consists of a set of standards for network management, including an application layer protocol, a database schema, and a set of data objects. [2]
- SNMP exposes management data in the form of variables on the managed systems, which describe the system configuration. These variables can then be queried (and sometimes set) by managing applications.. (source: wikipedia)

Command line tools:

mtr – ping and traceroute nmap – port scanning

 Iperf command line client-server tests

```
# iperf -c 130.226.142.162
```

```
Client connecting to 130.226.142.162, TCP port 5001
TCP window size: 16.0 KByte (default)
[ 3] local 140.105.20.155 port 50523 connected
with 130.226.142.162 port 5001
[ ID] Interval Transfer Bandwidth
[ 3] 0.0-10.0 sec 24.3 MBytes 20.4 Mbits2sec
```

Wireshark: advanced packet dumper

THE EAST		ireshark	- 11-l		
ne Luit	View Go Capture Analy	ze Statistics Telephony Tools	s Help		
.	🎒 🎒 🕍 📄	🖾 🗶 🕑 🔮 । ९ 🤞	Þ 🔶 🏵 🛨 [🔍 🔍 🗠 🔛 📓 🎽 🌠 📀
Filter:		1	Expression Clear Appl	У	
No. .	Time	Source	Destination	Protocol	Info
307	10.872327	213.254.17.23	140.105.20.155	ТСР	[TCP segment of a reassembled PDU]
308	10.872407	140.105.20.155	213.254.17.23	ТСР	52920 > http [ACK] Seq=450 Ack=5925 Win=17856 Len=0 TSV=3468518 TSER=451711661
309	10.875996	213.254.17.23	140.105.20.155	ТСР	[TCP segment of a reassembled PDU]
310	10.876065	140.105.20.155		ТСР	52920 > http [ACK] Seq=450 Ack=7293 Win=20608 Len=0 TSV=3468519 TSER=451711661
311	10.879649	213.254.17.23		ТСР	[TCP segment of a reassembled PDU]
	10.879722	140.105.20.155		тср	52920 > http [ACK] Seq=450 Ack=8661 Win=23360 Len=0 TSV=3468520 TSER=451711662
	10.882863	213.254.17.23		тср	[TCP segment of a reassembled PDU]
	10.882945	140.105.20.155		тср	52920 > http [ACK] Seq=450 Ack=10029 Win=26112 Len=0 TSV=3468521 TSER=451711662
	10.886785	213.254.17.23		тср	[TCP segment of a reassembled PDU]
	10.886856	140.105.20.155		ТСР	52920 > http [ACK] Seq=450 Ack=11397 Win=28800 Len=0 TSV=3468522 TSER=451711663
	10.894122	213.254.17.23		ТСР	[TCP segment of a reassembled PDU]
	10.894202	140.105.20.155		ТСР	52920 > http [ACK] Seq=450 Ack=12765 Win=31552 Len=0 TSV=3468524 TSER=451711663
	10.900093	213.254.17.23	140.105.20.155	ТСР	[TCP segment of a reassembled PDU]
	1 (66 bytes on wire,	66 bytes captured)			
IEEE 8	302.3 Ethernet	66 bytes captured)			
IEEE C	302.3 Ethernet al-Link Control	66 bytes captured)			
- IEEE &	302.3 Ethernet	66 bytes captured)			
- IEEE &	302.3 Ethernet al-Link Control	66 bytes captured)			
- IEEE &	302.3 Ethernet al-Link Control	66 bytes captured)			3
IEEE C	302.3 Ethernet al-Link Control	66 bytes captured)			3
IEEE C	302.3 Ethernet al-Link Control	66 bytes captured)			
IEEE &	302.3 Ethernet al-Link Control	66 bytes captured)			3
IEEE &	302.3 Ethernet al-Link Control	66 bytes captured)			
IEEE Logica Data	302.3 Ethernet al-Link Control (48 bytes)				
IEEE Logica Data	0b 85 00 00 00 00 12	d9 b3 26 60 00 34 00 12			
IEEE 4 Logica Data 000 01 010 d9	0b 85 00 00 00 00 12 b3 26 60 aa aa 03 00	d9 b3 26 60 00 34 00 12 0b 85 cc cd 00 1b 00 23	&`#		
IEEE a Logica Data 000 01 010 d9 020 5e	00 85 00 00 00 00 12 b3 26 60 aa aa 03 00 8a ba 60 00 40 0a 74	d9 b3 26 60 00 34 00 12 0b 85 cc cd 00 1b 00 23 00 05 06 01 01 06 06 0a	&`# ^`.@.t#		
IEEE 4 Logica Data Data 000 01 010 d9 020 5e 030 00	0b 85 00 00 00 00 12 b3 26 60 aa aa 03 00 8a ba 60 00 40 0a 74 00 7f 3b 0f 85 30 40	d9 b3 26 60 00 34 00 12 0b 85 cc cd 00 1b 00 23	&`# ^`.@.t# ;0@ G'y	- 11	Profile: Default

Etherape: visualization toy, but a nice toy :)

Start Paus	e Stop Pref. Prot.	
Protocols		
OMAIN	OCSP.FRA1.VERIS v-clier 196-210-249-192.dynamic.isad3i.co	IGN.COM
		v-client-3a sic.dropbox.com
TTPS	178.123.32.158	sjc-not4_sjc.dropbox.com
	marvin.mostlyharmless.dk	v-client- <u>1b.sjc.dropbox.com</u>
SMP	176.10•237.10	v-client-2b.sjc.dropbox.com
Jim .	mil01s17-in-#18.1e100.net	206.188.153.23
	157.55.130.148	client-212-117-±8-161.inturbo.it
DNS	151.62.61.147	213,199,179,149
	ppp-107-177.29-151.libero.it	all-systems.mcast.net
ww	dns 3.4ctp.it arpl-webeast.ictp.it	224.00.251
	140.109.21.255	239.255.250
	wf0-20-155.ttp.it	255.255.255
DP-UNKI	wf0-20-76.ictp.it	gsdu Lictp.it
	dns.ictp.it	wlc-efb.ictp.it
P-UNKN	138.199.79.210	ec2-23-21-220-94.compute-1.amazonaw
	test1lab3.itu.dk.142.026.130.in-addr.arpa	dsl-240-200-23.telkomadsl.co.za
IAPS	mx2.itu.dk	channel-156-161.01.snc6.tfbnw.net
	128.112.85.116	www-11-01-ash4.facebook.com
	124-11-186-170.dynamic.tfn.net.tw	71-94-9-26.dhcp.reno.nv.charter.com
OP3S	118.168•180.247	76.214.106.9
	111-255-167-163 dynamic:hinet.net	0x4dd74730.adsl.cybercity.dk
TTP-ALT	ec2-107-21-230-214.compute-1.amazonaws.com	85.26+86.53
	cpe-098-121-186•210.ec.res.rr.com	g229046163.adsl.alicedsl.de 94.254184.219
OPIED	95.224.3.20	
FILD	95.189(60.1	95.87.203.112 127

- Huge performance suite: perfSONAR
- Traffic, bandwidth: bandwidthd
- Router config management: Rancid
- Network Documentation: Netdot https://netdot.uoregon.edu/
- Intrusion Detection: tripwire, snort
- Vulnerabilities: Nessus, OpenVAS

And ...

- There are dozens of others ...
 - ... but I really have to go to bed now :)

Questions?

You tell me what you would like to monitor

and we find the right tool for it!

- Huge performance suite: perfSONAR
- Traffic, bandwidth: bandwidthd
- Router config management: Rancid
- Network Documentation: Netdot https://netdot.uoregon.edu/
- Intrusion Detection: tripwire, snort
- Vulnerabilities: Nessus, OpenVAS