
ICTP: Wireless Sensor Networks Workshop

Instructors: Rob Faludi & Jordan Husney

Plan

• Introductions

• Radio

• XBees

• Serial Terminals

• Addressing

• Basic Config

• Chat Project

• I/O Mode

• Doorbell Project

• ZigBee

• Arduino & XBee

• API

• Sensor Networks

• Gateways

• XIG, iDigi, Dia

• Workshop, Q&A

Instructor Introductions

• Who we are

• What we do

• Most important thing we would teach you, (if we could!)

Student Introductions

• Name, where you are from, what you do

• Experience with electronics and programming: new, some, lots

• What you want out of these workshops

• Desired superpower

[Fun with XBees Presentation]

[Industrial Applications of WSN]

802.15.4

• low power

• low bandwidth

• addressing

• affordable

• small

• standardized

• popular for DIY, easy to learn

802.15.4 Topologies

• single peer

• multi-peer

• broadcast

ZigBee

• routing

• self-healing mesh

• ad-hoc network creation

ZigBee Topologies

• peer

• star

• mesh

• routing

Antennas

Breakout for Breadboards

Breakout Boards for breadboarding

2mm 0.1”

Soldering Breakout Boards: finished

XBee Explorer from Sparkfun

Serial Terminal Programs

Serial Terminal Programs

• X-CTU: http://www.digi.com/support/productdetl.jsp?
pid=3352&osvid=57&tp=4&s=316

• CoolTerm: http://freeware.the-meiers.org/

• HyperTerm: Windows Start Menu, Accessories, Communication
http://www.hilgraeve.com/hyperterminal/

• screen: Terminal program on the Mac (or Linux)

• plenty of others!

• settings: 9600 baud, 8 bits, no parity, one stop bit, no flow control

http://www.digi.com/support/productdetl.jsp?pid=3352&osvid=57&tp=4&s=316
http://www.digi.com/support/productdetl.jsp?pid=3352&osvid=57&tp=4&s=316
http://www.digi.com/support/productdetl.jsp?pid=3352&osvid=57&tp=4&s=316
http://www.digi.com/support/productdetl.jsp?pid=3352&osvid=57&tp=4&s=316
http://freeware.the-meiers.org
http://freeware.the-meiers.org
http://www.hilgraeve.com/hyperterminal/
http://www.hilgraeve.com/hyperterminal/

802.15.4 Addressing

Addressing Basics

• channels

• PAN ID

• 64 bit addresses (SN)

• 16 bit addresses

Basic Configuration

Download and Install Software & Drivers

• Download & install the FTDI USB drivers:
http://www.ftdichip.com/Drivers/VCP.htm

• Download the CoolTerm:
http://freeware.the-meiers.org/

• X-CTU: http://www.digi.com/support/productdetl.jsp?pid=3352&osvid=57&tp=4&s=316

• Z-Term: http://homepage.mac.com/dalverson/zterm/

• HyperTerm: Windows Start Menu, Accessories, Communication

• Screen: Terminal program on the Mac (or Linux)

Other Serial Terminal Options:
settings: 9600 baud, 8 bits, no parity, one stop bit, no flow control

http://www.ftdichip.com/Drivers/VCP.htm
http://www.ftdichip.com/Drivers/VCP.htm
http://freeware.the-meiers.org
http://freeware.the-meiers.org
http://www.digi.com/support/productdetl.jsp?pid=3352&osvid=57&tp=4&s=316
http://www.digi.com/support/productdetl.jsp?pid=3352&osvid=57&tp=4&s=316
http://homepage.mac.com/dalverson/zterm/
http://homepage.mac.com/dalverson/zterm/

Open CoolTerm

Set Connection Options

• Configure your radio

Configure your radio with AT commands

Baud, Bits and Parity

• Baud rate: 9600

• Data bits: 8

• Stop bits: 1

• Parity: None

• Flow control: none for now...

Data Mode vs. Command Mode

• Idle Mode, transmit and receive data

• Command Mode, talk to the XBee itself

• +++ "Yo, XBee"

• AT "Attention!" (Hayes command set)

• always press enter after AT commands

• never press enter after +++

AT Commands

Some AT Commands

• AT -> OK

• ATMY -> my address

• ATDH, ATDL -> destination address hi/lo

• ATID -> personal area network ID

• ATCN -> end command mode

• ATWR -> write configuration to flash memory

• ATRE -> reset to factory defaults

Addressing In-Depth

• SL, SH: fixed serial number address

• MY: configured local 16 bit address

• DH, DL: destination address low and high

• ID: Personal Area Network ID

• Broadcast FFFF

• Broadcast PAN FFFF

API Mode

• Powerful, steeper learning curve

• Data wrapped together with commands, addressing and status information

API Mode Format

*ATNJ = node join

Assignment

• Pick a PAN ID now and document it.

• 0 - FFFE

• 0 - 9999 okay

Basic 802.15.4 Chat

Create a Basic 802.15.4 Pair

• Two radios

• Use the 16-bit addresses for destinations

• HANDOUT

• Remember, the radios work reliably, troubleshooting is mostly about figuring out
what they’re doing.

Ding, Dong!

Basic Doorbell

XBee Direct: no external microcontrollers:

1. doorbell switch connected to an XBee radio

2. buzzer connected to another XBee radio sounds the alert

3. someone’s at the door!

Background

• For simple input and/or output

• Eight digital input/outputs

• One additional digital output

• Seven analog inputs

• Two analog outputs

• But not all at once! Pins are shared.

I/O Intro

I/O Why

• Why:

• Save space, save power, save weight and save money

• Reduce complications for simple projects

• Why not:

• Limited inputs/outputs

• No access to logic

• Might make complicated projects even more complicated

Input/Output Wiring 802.15.4: Basic Breakout

Input/Output Wiring 802.15.4: Parallax XBee USB

Ground

Ground

Ground

+3.3V

+V in

Receive
Transmit

Analog In

Voltage Reference

= I/O pin

PWM Out

Indicator Lights: Parallax XBee USB

LED FUNCTIONS:
Yellow – Power
Green – ON (not sleeping)
Blue – RSSI (receive data)
Red – Association Indicator

The USB connector also has two LEDs which indicate TX / RX status:
 Red - transmit to the PC
 Green - receive from the PC

I/O AT Commands

• ATD0...D8 -> configure pins for I/O

• ATIR -> sample rate

• ATIT -> samples before transmit

• ATP0...P1 -> PWM configuration

• ATIA -> I/O input address

Setting I/O Pins

• ATDx 0 Disabled

• ATDx 1 Built-in Function (sometimes)

• ATDx 2 Analog Input (sometimes)

• ATDx 3 Digital Input

• ATDx 4 Digital Output, low to start with

• ATDx 5 Digital Output, high to start with

• ...so ATD32 would do what?

Basic Doorbell Project

Button Schematic

Button Breadboard

Buzzer Schematic

Buzzer Breadboard

Setup Strings

• Button XBee:

• ATRE,ID3001,MY1,DL2,IR64,IT1,D03,IAFFFF,WR

• Buzzer XBee:

• ATRE,ID3001,MY2,DL1,IR64,IT1,D05,IAFFFF,WR

• *** be sure to change 3001 to your own PAN ID!!

Addressing

• ATRE
 resets to factory settings

• ATID
 sets the PAN ID (choose your own)

• ATMY
 sets the local radio’s address

• ATDL
 sets the destination address

Input/Output Settings

• ATIR
 sets the data sample rate (uses hexadecimal notation)

• ATIT
 how many samples transmitted at a time

• ATD0
 mode for digital pin zero (3=digital input, 5=digital output)

• ATIA
 remote address that’s allowed to control local pins

• ATWR
 writes the settings to firmware (like saving to a disk)

CoolTerm

More

• Got it already?

• Try going the other way: a light for “I’ll be right there” feedback.

• remember that input and output pins are paired and mirrored

• Use analog: how loud to ring (use light to simulate if needed)

• ATD02 sets for analog inputs

• analog outputs come from PWM pins ATP0 & ATP1, so paired but not
mirrored with inputs

ZigBee Addressing

ZigBee Coordinator

• Every ZigBee network must have a coordinator

• There can only be one coordinator

• Coordinator selects channel and PAN ID

• End devices and routers can then join the PAN

• Typically mains-powered

• Coordinator’s 16-bit address is always 0

ZigBee Router

• Non-coordinator routers are optional to ZigBee networks

• Typically mains-powered

• Many can be on each PAN

• Issues a beacon request on startup to locate channel and PAN

• Routers can communicate with any device on the network

• Stores packets for sleeping end devices

• 16-bit address assigned by coordinator

ZigBee End Device

• Optional to ZigBee networks

• Typically battery-powered

• Many can be on each PAN

• Issues a beacon request on startup to locate channel, PAN and parent

• End devices can only communicate directly with their parent

• 16-bit address assigned by coordinator

XBee ZB

• Coordinator Firmware

• for AT commands or API

• Router and End Device Firmware

• for AT commands or API

• ...so 6 different firmware combinations (you’ll always use 2 at the same time)

• and two power levels, regular and Pro

• and 4 antennas! whip, chip, U.FL and RPSMA.

Addressing Basics

• channels

• PAN ID

• 64 bit addresses (SN)

• 16 bit addresses

Firmware Updates

Basic Configuration

Download and Install Software & Drivers

• Download & install the FTDI USB drivers:
http://www.ftdichip.com/Drivers/VCP.htm

• Download the CoolTerm:
http://freeware.the-meiers.org/

• X-CTU: http://www.digi.com/support/productdetl.jsp?pid=3352&osvid=57&tp=4&s=316

• Z-Term: http://homepage.mac.com/dalverson/zterm/

• HyperTerm: Windows Start Menu, Accessories, Communication

• Screen: Terminal program on the Mac (or Linux)

Other Serial Terminal Options:
settings: 9600 baud, 8 bits, no parity, one stop bit, no flow control

http://www.ftdichip.com/Drivers/VCP.htm
http://www.ftdichip.com/Drivers/VCP.htm
http://freeware.the-meiers.org
http://freeware.the-meiers.org
http://www.digi.com/support/productdetl.jsp?pid=3352&osvid=57&tp=4&s=316
http://www.digi.com/support/productdetl.jsp?pid=3352&osvid=57&tp=4&s=316
http://homepage.mac.com/dalverson/zterm/
http://homepage.mac.com/dalverson/zterm/

Open CoolTerm

Set Connection Options

• Configure your radio

Configure your radio with AT commands

AT Commands

Some AT Commands

• AT -> OK

• ATDH, ATDL -> destination address hi/lo

• ATID -> personal area network ID

• ATCN -> end command mode

• ATWR -> write current configuration to firmware

• ATMY -> my address NOT SETTABLE FOR ZIGBEE

• ATRE -> reset to factory defaults

Pair Exercise

Create a Basic ZigBee Pair

• One coordinator and one router

• Use the 64-bit addresses for destinations

• ATNR will reset your network layer, useful if you join the wrong ID

• Remember, the radios work reliably, troubleshooting is mostly about figuring out
what they’re doing.

ZigBee and Arduino

Why Arduino

• local logic

• pinouts

• fast prototyping

• one side of I/O

Arduino Serial Library

• Serial.begin(speed)

• Serial.available()

• Serial.read()

• Serial.flush()

• Serial.print(data)

Software Serial

• 115K baud max, all pins are okay to use, all functions available

• buffering!

• good choice for input when you want debug on the HW port for ease-of-use

• in versions prior to Arduino 1.0 use:
 http://arduiniana.org/libraries/NewSoftSerial/

http://arduiniana.org/libraries/NewSoftSerial/
http://arduiniana.org/libraries/NewSoftSerial/

Breadboard Hookups

Wiring

+3.3 V
transmit
receive

ground

XBee Arduino Breadboard Layout

Power, Ground

TX, RX

XBee Connections (pin 1, 2, 3 and 10)

Remember!

• Use only +3.3 Volts. More than +7 Volts will kill your radio

• If you use a voltage regulator, always use decoupling capacitors. The radios often
don’t work without them.

• XBee TX goes to Arduino RX and vice versa.

• Unplug the TX & RX before uploading Arduino code (or use switches)

• You can’t send infinitely fast. Try putting a 10 ms delay into your loop.

I/O Mode

• For simple input and/or output

• Ten digital input/outputs

• Four analog inputs

• No analog outputs on ZigBee

• But not all at once! Pins are shared.

I/O Intro: ZigBee

I/O Why

• Why:

• Save space, save power, save weight and save money

• Reduce complications

• Why not:

• Limited inputs/outputs

• No access to logic

• No analog output on ZigBee radios

Input/Output Wiring: ZigBee

+3.3 V
transmit
receive

Ground

Analog in

No PWM
out!

Voltage
reference

is
optional

I/O pins

Input/Output Wiring ZigBee: Parallax XBee USB

Ground

Ground

Ground

+3.3V

+V in

Receive
Transmit

Analog In

= I/O pin

I/O AT Commands: ZigBee

• ATD0...D7 -> configure pins for I/O (D8 and D9 not supported yet)

• ATP0...P1 -> configure pins 10 - 11 for I/O (P3 not supported yet)

• ATIR -> sample rate

• samples before transmit is always 1

• destination address receives sample info

• ALL PINS READ BETWEEN 0 AND 1.2 VOLTS ONLY

Settting I/O Pins

• ATDx 0 Disabled

• ATDx 1 Built-in Function (sometimes)

• ATDx 2 Analog Input (sometimes)

• ATDx 3 Digital Input

• ATDx 4 Digital Output, low to start with

• ATDx 5 Digital Output, high to start with

• ...so ATD43 would set what?

XBee ZigBees inputs are 1.2V range

Voltage Divider to map 3.3V range to 1.2V range

API Mode Overview

API Mode

• Application Programming Interface

• “An application programming interface (API) is a source code interface that an
operating system or library provides to support requests for services to be made
of it by computer programs.”
 http://www.computerworld.com/action/article.do?command=viewArticleBasic&articleId=43487

• XBees in API mode are ready to talk to computers and microcontrollers

• structured

• predictable

• reliable

http://www.computerworld.com/action/article.do?command=viewArticleBasic&articleId=43487
http://www.computerworld.com/action/article.do?command=viewArticleBasic&articleId=43487

API Structure

• Used in serial communications with the XBee radio

• Frames of data

• envelope structure contains data with metadata inside a constrained format

• Radio must be in API Mode

• AT command ATAP 1 on Series 1 radios

• API firmware on Series 2 radios

Why API

• Rather than:

• With a library you just write:

delay(1100);
 // put the XBee in command mode

Serial.print("+++");
delay(1100);
if (checkFor("OK", 1000)) {
Serial.println("ATID7777,CN");

 if (checkFor("OK", 1000)) {
 // if an OK was received then continue
 debugPrintln("SetupOK");
 success = true;
}

}

sendCommand(ID,0x7777);

• From address, to address, outside, inside, size, contents, error check

Envelope Has:

API Basic Frame Envelope

Start Byte

• 0x7E --> also known as the tilde in ASCII: ~

• First thing to do is look for it:

 // ARDUINO VERSION:
if (Serial.available() > 0) { // if a byte is waiting in the buffer
 inByte = Serial.read(); // read a byte from the buffer
 if (inByte == 0x7E) {

// we’re at the start of an API frame!
// add more code here

}
}

 // PROCESSING VERSION:
if (port.available() > 0 {
int inByte = port.read();

 if (inByte == 0x7E) {
// we’re at the start of an API frame!
// add more code here

}

Length Bytes

• MSB: the Most Significant Byte

• the big part of the number

• LSB: the Least Significant Byte

• the small part of the number

• bit shift MSB to the right and add it to LSB

 // PROCESSING VERSION:
int lengthMSB = port.read(); // high byte for length of packet
int lengthLSB = port.read(); // low byte for length of packet

int lengthTotal = (lengthMSB << 8) + lengthLSB; // bit shift and add for total

API Identifier

• Specifies the remaining structure of the frame
• modem status: 0x8A
• AT command (immediate): 0x08
• AT command (queued): 0x09
• AT command response: 0x88
• TX request: 0x10
• TX status response: 0x8B
• RX packet: 0x90
• RX packet I/O data: 0x92

 // PROCESSING VERSION:
int API_ID = port.read(); // API Identifier indicates type of packet received

Identifier-specific Data

• Structures are different for each API identifier and might include:

• addressing information (333B)

• status information (received OK)

• source information (broadcast packet)

• unstructured data (“Hello World, this is Rob!”)

• structured data (typically for I/O packets)

Checksum

• Simple check to detect errors

• To calculate: Not including frame delimiters and length, add all bytes keeping only
the lowest 8 bits of the result and subtract from 0xFF.

• To verify: Add all bytes (include checksum, but not the delimiter and length). If the
checksum is correct, the sum will equal 0xFF.

 // PROCESSING VERSION:
int localChecksum = (API_ID + addrMSB + addrLSB + RSSI + options + dataSum);

int checksum = port.read();
localChecksum = byte(0xFF -localChecksum);

if ((byte) checksum - localChecksum == 0) {
returnVal = dataADC[0];

}
else {
print("\n\nchecksum error! " + "\n\n");

}

Many Kinds of Envelopes

Modem Status: ZigBee

AT Command

AT Response

• Frame ID for the response is the same as the matching AT Command request

More API

TX (Transmit) Request

• Remember that this is a request. Results can be checked by Frame ID

TX Status (Results)

• See if your message was transmitted or not

• Use your Frame ID to see which message is being described

RX Packet

• Maximum of 72 bytes of data per packet

• RF Data section is basis for I/O packets

I/O RX Packet

I/O Digital Channel Mask and Digital Data

I/O Analog Channel Mask and Analog Samples

I/O Structure Reviewed

• Num Samples (1 byte)

• Digital Channel Mask (2 bytes)

• Analog Channel Mask (1 byte)

• Two bytes of digital data IF ANY DIGITAL CHANNELS ENABLED followed by...

• ...two bytes for EACH analog channel enabled...

• Q: How many bytes ATD02 ATD12 ATD23?

I/O Bytes Example

0x7E (start byte)
0x00
0x17 (length)
0x92 (API id)
0x00 (64-bit address)
0x13
0x20
0x00
0x43
0x23
0x12
0xEF
0x03 (16-bit address)
0xA4
0x01 (num samples)
0x00 (digital channel masks)
0x00
0x01 (analog channel mask)
0x02 (first analog sample)
0xF8
0x30 (the checksum)

I/O Code: Basic

• Fixed parameters make for easier programming

• Assume we are just reading a single ADC channel:

 Arduino Version:
// make sure everything we need is in the buffer
 if (Serial.available() >= 21) {
 // look for the start byte
 if (Serial.read() == 0x7E) {
 // read the variables that we're not using out of the buffer
 for (int i = 0; i<18; i++) {
 byte discard = Serial.read();
 }
 int analogHigh = Serial.read();
 int analogLow = Serial.read();
 analogValue = analogLow + (analogHigh * 256);
 }
 }

Simple Sensor Network

API and a Sensor Network

Simple Sensor Network

