From Atoms to Bits

Ahmet Onat 2018

onat@sabanciuniv.edu

Layout of the Lecture

- Analog interfacing to sensors:
 - Signal conditioning
 - Sampling and quantization
 - Bridge circuits and instrumentation amplifiers
- Linearization
- Design for low power
- Digital interfacing to sensors

Desirable Sensor Characteristics

- Sensor reading equal to the measured quantity
- Suitable
 - accuracy, precision,
 - range, sensitivity \rightarrow gain
 - resolution, etc.
- Low noise
- Linearity

Characteristics of Instrumentation

- Accuracy: How close is the measurement to measured.
- Precision: What is the uncertainty in the measurement.
- Range: Which value interval is measurable?
- Sensitivity: For a given change in input, the amount of the change in output.
- Resolution: Smallest amount of measurable change
- Repeatability: Under the same conditions, can we get the same measurement?

Accuracy - Precision

How accuracy and precision are related?

- Inaccurate but precise?
 - Metal ruler on a hot day: Same precision bad accuracy

Sensitivity - Range

- Generally high sensitivity sounds good.
- However, high sensitivity restricts range.
- Deliberately \rightarrow nonlinear sensor can be used.

- 1mV precision;
 - 8bit: 0.256V range
 - 12bit: 4.096V

Analog Interfacing to Sensors

There are 3 main stages in sensing:

- Physics
- Electronics
- Information
- \rightarrow Pysics will not be treated.

Signal Conditioning Electronics

Signal Conditioning System

- 1. Sensor Output
- 2. Preamplifier stage
- 3. Removal of offset
- 4. Antialiasing filter
- 5. Amplifier

Signal Conditioning: Sensor

- 1. Sensor
- Low power electrical signal $\rightarrow \begin{cases} Low voltage \\ Low current \end{cases}$
- Wide frequency bandwidth
 - Aliasing during sampling
- Offset voltage
 - Prevents use of full quantizer range

Signal Conditioning: Sensor

1. Sensor

- Voltage source with impedance
- $P_{o max} \rightarrow r_o = r_i$ OR
- $r_i \rightarrow \infty : V_s = X_s$

(Calculate like a voltage divider)

Signal Conditioning: Preamplifier

2. <u>Preamplifier stage</u>

- Extract largest amount of power from signal or,
- Draw the least amount of current.
- Matched impedance circuit
- Low noise
- High gain

Signal Conditioning: Preamplifier

Draw the least amount of current:

Voltage follower configuration

Susceptibility to ESD increases.

Signal Conditioning: Offset Removal

Offset

remove

Xp

Xo

Antialiasing

Filter

3. Offset remove

Physical

Quantity

Sensor

 The information content is confined to a small part of the signal range.

Pre-

amplifier

 Amplification will not allow max precision of the quantizer: 2 MSB always set: 11xxxxx 12 bit ADC → 10bit ADC Information content
No information

Amplifier

Signal Conditioning: Offset Removal

- 3. Offset remove
- Difference amplifier.

$$V_{o} = \frac{R_{f}}{R_{1}} (V_{p} - V_{off})$$

 ${\ensuremath{\,{\rm \bullet}\,}} V_{\rm off}$: Constant offset voltage for removal.

Signal Conditioning: Filter

4. Antialiasing Filter

- "A bandlimited function is completely determined by its samples taken at more than twice the maximum frequency component"
- It is necessary to limit the bandwidth of the signal for:
 - Sampling
 - Noise suppression

Signal Conditioning: Filter

- Filter characteristic:
 - Passband ripple must be less than ADC resolution.
 - Bandwidth limit frequency at 2^{-N} gain.

Pre-

amplifier

What order filter?

Sensor

Physical

Quantity

Signal Conditioning: Amplifier

5. Amplification

- Signal is amplified to the reference voltage of the ADC. $x_a(t) < x_{max} = V_{ref}$

Signal Conditioning: Amplifier

- Simple non-inverting amplifier circuit.
- Ideal gain (A≈∞): ^V_o/_{V_i} = (1+ ^{R_f}/_{R₁})

 Actual gain: ^V_o/_{V_i} = A(R₁+R_f)/AR₁+R₁+R_f

• Error for $A=50,000, R_1=1k\Omega, R_2=9k\Omega, V_i=0.500V$:

$$V_{o \infty} = 5.000 V$$

 $V_{o 50 k} = 4.998 V$ $e = 2000 \mu V$
For 5V, 12bit: $\Delta = 1221 \mu V$

Data Converter

6. Sample and Hold

7. Quantizer

Sample and Hold

- Ideal sampling requires
 - zero duration and
 - infinite currents.

 The body resistance of the transistor V_a turns the S&H into a low pass filter.

Actual sample and hold

Sample and hold equivalent circuit

Sample and Hold

- Time constant of a 1st order RC filter:
- $\tau = RC s$
- It is necessary to keep sampling for at least 5τ to allow the capacitor to be charged to V_a
- Microcontrollers allow the adjustment of the charging period.
- Higher precision ADC requires longer charge times: "Acquisition Time"
- It is not possible to exceed $f = \frac{1}{5}\tau$ for sampling.

Sample and Hold

- Sampling several signals at the same instant.
- Several ADC can be used.
- More commonly, synchronous sampling, sequential conversion:
- In specialized applications several ADC are used: Motor current sampling, lab measurement etc.

Sampling of Continuous Time Signals

 The Fourier transform of a continuous time signal is given by:

$$X(f) = \int_{-\infty}^{\infty} x(t) e^{-2\pi f t} dt$$

$$X_{s}(f) = \sum_{k=-\infty}^{\infty} X(f + kf_{s})$$

$$X_{s}(f) = \sum_{k=-\infty}^{\infty} X(f + kf_{s})$$

• When a signal is sampled by f_s , its frequency spectrum becomes periodic by f_s .

Sampling of Continuous Time Signals

With correct filtering, original signal can be exactly recovered.

Sampling of Continuous Time Signals

However, if low sampling frequency is used:

Source of figures: Wikipedia.org

The Data Converter AKA Quantizer

Analog to digital conversion (ADC) is a search operation.

$$x_{q} = \left[2^{N} \frac{V_{\text{in}}}{V_{ref}} + \frac{\Delta}{2} \right]$$
$$\Delta = V_{ref} / 2^{N}$$

- Precision is limited to finite value,
- Information about input is lost.
- Time consuming OR complex operation.

The Data Converter AKA Quantizer

Ideal, normalized, 3 bit quantizer.

Source of figures: D.H. Sheingold, Analog Digital Conversion Handbook, 1986

Quantization Error as Linear Noise

- V_{in} is ambiguous →
- Quantization can be modeled as additive noise.

 $x_q = V_{\text{in}} + n_q$

Quantization Error as Linear Noise

- Vin is not known \rightarrow
- Quantization can be modeled as additive noise.

$$x_q = V_{\text{in}} + n_q$$

 $SNR_{dB} = 6.02N + 1.76$

 $(V_{in} = Asin(\omega t), N bit quantizer)$

Quantizer Performance

 Each can be corrected in software (not easily)

Source of figures: D.H. Sheingold, Analog Digital Conversion Handbook, 1986

Quantizer Realizations: Flash

- Low latency
- High complexity O(2^N)
- Bad linearity

Quantizer Realizations: Successive Approx.

- Higher latency.
- Low complexity.
- Good linearity.

Source of figures: D.H. Sheingold, Analog Digital Conversion Handbook, 1986

Digital Signal Processing

From Physical Quantity to Physical Value

The final stage is digital signal processing.

Oversampling / Noise Shaping

- Signal is sampled at much higher rate than Shannon.
- After ADC, DSP low pass filter is applied.
- Low order anti-aliasing filter is sufficient.
- Increase in precision is obtained due to averaging.

Oversampling / Noise Shaping

- Sampling rate is much higher than required by Shannon theorem.
- Quantization noise power is constant, regardless of sampling rate.
- Signal spectrum amplitude is inreased proportionally. $V_a(f)' = V_a(f) \times OSR$
- Signal occupies less of the digital bandwith. $f'_{max} = f_{max}/OSR$

Oversampling / Noise Shaping

 Downsampling by OSR brings the signal back to desired band.

Oversampling / Noise Shaping

- Oversampling increases the ADC precision.
- OSR= $4^{w} \rightarrow w$ bit increase in quantizer precision.
- For 4 bit increase: $OSR=4^4=256$ times oversampling.
- 44.1KSPS \rightarrow 11.3MSPS is too much!
- Oversampling can be augmented with noise shaping to improve ratio.

Oversampling with Noise Shaping

- Quantization noise is injected during ADC.
- The fedback system causes the quantization noise spectrum to be
 - low at low frequencies.
 - Higher at high frequencies.

Oversampling with Noise Shaping

- The feedback loop has different gains for
 - quantization noise and
 - Signal.
- Quantization noise is concentrated towards higer frequencies.
- OSD=8 is sufficient for 4 bit increase
 vs. OSD=256

High Precision Applications

Reference Voltage

- Changes in V_{ref} have the same effect as changing the input voltage.
- Compensation for:
 - Temperature
 - Manufacturing tolerances

$$x_q = \left[2^N \frac{V_{\text{in}}}{V_{ref}} + \frac{\Delta}{2} \right], \quad \Delta = V_{ref}/2^N$$

Reference Voltage Tolerance

- LM336A-2.5: 2.5V reference diode.
- 2.44 ~ 2.54*V* at 25°.

• 8 bit ADC,
$$V_{in} = 1V$$
:
$$\begin{cases} V_{ref} = 2.44 V \rightarrow x_q = 100 \\ V_{ref} = 2.54 V \rightarrow x_q = 104 \end{cases}$$

- How to calibrate? $ADJ \rightarrow K$ $ADJ \rightarrow K$ Vret minLM336A

ADC reading

Reference Voltage Tolerance

Calibration of reference voltage tolerance

- 1. Multiply by correction coefficient in software
 - Firmware in each device must be different.
 - In 8 bit processors, correction multiplication is difficult.
- 2. Electrical adjustment:
 - Manual labor
 - Long term drift
 - Temperature dependence of VR

Common Ground Problems

- Microprocessor with daughterboard for temperature sensor.
- GND shared between
 - Daughterboard electronics
 - Sensor voltage

Common Ground

- Connection cables have 1Ω resistance.
- Daughterboard draws 50mA current.
- ADC reads 20% more: 300mV

Common Ground

- Connection cables have 1Ω resistance.
- Daughterboard draws 50mA current.
- Ground of the sensor is separated.
- Single ground distribution point.

Secondary Sensors

Secondary Sensors

- Electrical component values may change in response to a change in a physical variable.
- Change is small; 0.1% or less.
- Straightforward measurement of value:
 - May have large offset error.
 - May depend on other variables (temperature etc.)
 - Require high precision.

Sensor Bridges

- Balanced bridge circuits.
- Output voltage derived from resistor divider.

$$V_{o} = V_{b} \frac{R_{1}}{R_{1} + R_{4}} - V_{b} \frac{R_{2}}{R_{2} + R_{3}}$$

For $\frac{R_{1}}{R_{4}} = \frac{R_{2}}{R_{3}} \rightarrow V_{o} = 0V$

• No bias. \rightarrow Large gain can be used.

Types of Bridge Circuits

- Bridge may consist of 1, 2, 4 elements.
- Larger elements have better sensitivity.
- V_o depends on $V_b \rightarrow$ Stable supply.
- Measurement load must be zero.

Example Use of Bridge

- Strain gage measures bending strain.
- R_1 and R_2 change in opposite directions.
- Stretch measurement eliminated.

Amplifiers for Sensor Bridges

- Instrumentation amplifier is used.
- High input impedance
- High CMRR
- Gain is set by external resistor Rg.
- Many good chips exist AD620 etc.

$$V_{o} = (V_{i+} - V_{i-})R_{1} \left(\frac{1 + R_{1}}{R_{g}}\right) \left(\frac{R_{3}}{R_{2}}\right)$$

Linearization, Calibration

Sensor Commissioning

- The sensor output is generally not:
 - Linear
 - Calibrated
- Determine inverse function to obtain physical value from the readings.
- Calibrate the sensor to increase the accuracy of the readings.

Sharp GP2Y0A41SK0F Reflective distance sensor. Distance vs output voltage

Linearization

- Sensor linear offset and gain correction
- Calibration measurements: $\begin{cases} a_1 = mp_1 + b \\ a_2 = mp_2 + b \end{cases}$

 Periodic calibrations may be needed: Use electronic switch to connect reference.

Lookup Table - Worst Case

- Extreme nonlinearities.
- Wasteful of memory.
 16bit → 32bit: 262kB ROM.

STM32F405RGT6: 1MB ROM STM8s103F: 8kB ROM

 If multiple sensors must be fused, even larger footprint.

ADC	Physical
0	234
1	200
2	192
3	216
1022	48
1023	132

Piecewise Linearization

- In a certain range of readings, use a specific linearization.
- Smaller memory footprint
- More run-time computation
- Worse error

Physical value

In Range	Slope	Offset
a1~a2	m1	b1
a2~a3	m2	b2
a3~a4	m3	b3
a4~a5	m4	b4

Curve Fitting

- With several sensors, curve fitting can be performed. $p = c_{10} + c_{11}a_1 + c_{12}a_2 + \dots + c_{21}a_1^2 + c_{22}a_2^2 + c_{23}a_1a_2 + \dots$
- Coefficients:
 - Calculated before shipment
 - By operator, using calibrated measurement samples
 - Automatic, periodic calibrations

Low power Sensing

Low Power Sensing

- Power reduction through low duty cycle.
- "Intelligent" sensor with power modes.
- Sensor powered down when not needed.
- Whole system powered down most of the time.

*OFF mode can be entered from any state by removing the power

Source of figure: NXP, "Low-Power Sensing" White Paper.

Low Duty Cycle Operation

- Most processors have sleep timers.
 - Processor consumes power during sleep
 - I/O pins used to power down sensors may keep consuming power.
- Many power management chips are on the market.

TI TPL5110 System timer

Low Duty Cycle Operation

- Processor sets sleep time
- Timer turns off power: Whole system is switched off.
- Processor sleep mode: 1µA
- Timer sleep mode: 35nA

Energy Harvesting

- Solar cells, piezo devices, thermoelectric generators etc.
- Maximum power must be derived from the generator. $P = V \times I$
- Stored in a battery.

Solar Cell Basics

- Efficiency.
 - 8%~45%. General commercial: ~15%
 - Solar Flux: 1kW/m² noontime.
 - ~150W/m².
- Power output.
 - More current draw, less voltage.

 $P = V \times I$

- Track the best V~I ratio. (!)
- Power conversion.
 - Change voltage as required.
 - \rightarrow buck/boost converter- regulator.

Solar Cell Sizing

- Determine
 - power consumption (V_{cc}, I_c)
 - duty ratio (seconds/hr): V_{cc} x I_c x s

→ Energy requirement

- Size the battery: 3.7V, 0.5Ah etc.
- Size the solar cell:
 - Use the peak sun hour of deployment location.
 - Budget
 - Safety margin
 - \rightarrow Area of the solar cell required.

FLOPs per Watt

- Processor clock can be actively throttled.
- Low clock speed:
 - Low power consumption
 - Long active time
- High clock speed:
 - High power consumption
 - Short active time
- Most suitable FLOPS/W depends on mode, active peripherals etc.

Koomey's Law

 "...the power needed to perform a task requiring a fixed number of computations will fall by half every 1.5 years,"

J.Koomey, S.Berard et al, "Implications of Historical Trends in the Electrical Efficiency of Computing", IEEE Annals Hist. Comp, V33-3, pp. 46~54, 2011

Integrated Sensors

High Precision Applications

- MP5611 barometric pressure sensor. (MEAS Switzerland)
- Accurate to 1ft of absolute altitude.
- 24bit ADC (△≈200nV)
- Discrete implementation requires expensive signal conditioning circuits.

FUNCTIONAL BLOCK DIAGRAM

Integrated Sensors

- High precision applications require great engineering and calibration effort.
- Many sensors are offered in:
 - Sensor +
 - Signal conditioning +
 - Power management +
 - Subsystem control packages
- End user connects the sensor over "I²C, "SPI" "CAN" etc.
(Some) References

- A.V. Oppenheim, R.W. Schafer, "Discrete-Time Signal Processing", Prentice-Hall, 2009
- Stuart Ball, "Analog Interfacing to Embedded Microprocessor Systems", Elsevier, 2003
- Tattamangalam R. Padmanabhan "Industrial Instrumentation", Springer, 2000
- Paul Pickering, "Designing Ultra-Low-Power Sensor Nodes for IoT Applications", Texas Instruments, 2006
- J.Koomey, S.Berard et al, "Implications of Historical Trends in the Electrical Efficiency of Computing", IEEE Annals Hist. Comp, V33-3, pp.46~54, 2011
- Jack G. Ganssle "The Art of Programming Embedded Systems, Academic Press, 1992
- D.H. Sheingold, "Analog Digital Conversion Handbook", Analog Devices, 1986

Contact Information

Ahmet Onat

- Sabanci University, Istanbul, Turkey
- Mail: onat@sabanciuniv.edu
- Web: http://people.sabanciuniv.edu/onat

Research projects

- I am carrying out projects in
 - Reinforcemet learning for dynamic systems
 - Networked real-time systems. Internet of Things IoT
 - Haptic interfaces for 3D displays
 - Linear motor design
 - Underwater autonomous robots
- See:

http://people.sabanciuniv.edu/onat

Enthusiastic students are welcome to help!

Linear motor elevators

- Vertical linear motor design
- Project funded by Fujitec, Japan
- 2007-2013
- 450kg payload, 1000m length
- Prototype, patents, publications
- Magnetic, electronic, control, safety design

Dihedral Corner Reflector Array (DCRA)

- A passive optical device
- That can create real reflections to form floating images in the air
- Haptic feedback for projected solid objects

SWARMS

Modeling of underwarter autonomous vehicles (IoT)

Networked control systems

- A novel method for control over networks with unpredictable delay & data loss
- Stability analysis, simulation & prototype
- Tolerant of large amounts of delay
- Also wireless Ethernet application
- Publications & prototype control systems

Laboratory work

Will be programming:

- ARM prcessor using 'C' language
- Blink lights,
- Move servos,
- Communication,
- Real-Time OS...

