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Layout of the Lecture

 Analog interfacing to sensors:

 Signal conditioning
 Sampling and quantization
 Bridge circuits and instrumentation amplifiers

 Linearization

 Design for low power

 Digital interfacing to sensors



  

Desirable Sensor Characteristics

 Sensor reading equal to the measured quantity

 Suitable 

 accuracy, precision, 
 range, sensitivity → gain
 resolution, etc.

 Low noise

 Linearity



  

Characteristics of Instrumentation

 Accuracy: How close is the measurement to measured.

 Precision: What is the uncertainty in the measurement.

 Range: Which value interval is measurable?

 Sensitivity: For a given change in input, the
   amount of the change in output.

 Resolution: Smallest amount of measurable change 

 Repeatability: Under the same conditions, 
   can we get the same measurement?



  

Accuracy - Precision

 How accuracy and precision are related?

 Inaccurate but precise?

 Metal ruler on a hot day: Same precision bad accuracy

Accurate,
Precise

(In)accurate,
Imprecise

Inaccurate,
Precise



  

Sensitivity - Range

 Generally high sensitivity sounds good.

 However, high sensitivity restricts range.

 Deliberately→nonlinear sensor can be used.

 1mV precision;

 8bit: 0.256V range
 12bit: 4.096V

High sensitivity
Low sensitivity
Nonlinear



  

Analog Interfacing to Sensors

There are 3 main stages in sensing:

 Physics

 Electronics

 Information

 →Pysics will not be treated.



  

Signal Conditioning Electronics



  

Signal Conditioning System

1. Sensor Output

2. Preamplifier stage

3. Removal of offset

4. Antialiasing filter

5. Amplifier



  

Signal Conditioning: Sensor

1. Sensor 

 Low power electrical signal →

 Wide frequency bandwidth

 Aliasing during sampling

 Offset voltage

 Prevents use of full quantizer range

Low voltage
Low current



  

Signal Conditioning: Sensor

1. Sensor 

 Voltage source with impedance

                        OR



(Calculate like a voltage divider)
ri=V s /ii

Po max→r o=ri

ri→∞ :V s=X s



  

Signal Conditioning: Preamplifier

2. Preamplifier stage

 Extract largest amount of power from signal or,

 Draw the least amount of current.

 Matched impedance circuit

 Low noise

 High gain



  

Signal Conditioning: Preamplifier

 Draw the least amount of current:

Voltage follower configuration

 Susceptibility to ESD increases.
ri=2×1017Ω



  

Signal Conditioning: Offset Removal

3. Offset remove

 The information content is confined to
a small part of the signal range.

 Amplification will not allow
max precision of the quantizer:
2 MSB always set: 11xxxxxx
12 bit ADC → 10bit ADC

Information content

No information

Xp

t

Xo

t



  

Signal Conditioning: Offset Removal

3. Offset remove

 Difference amplifier.

 Voff : Constant offset voltage for removal.

V o=
Rf

R1

(V p−V off )



  

Signal Conditioning: Filter

4. Antialiasing Filter

 “A bandlimited function is completely determined by its 
samples taken at more than twice the maximum frequency 
component”

 It is necessary to limit the bandwidth of the signal for:

 Sampling
 Noise suppression



  

Signal Conditioning: Filter

 Filter characteristic:

 Passband ripple must be
less than ADC resolution.

 Bandwidth limit frequency
at 2-N gain.

 What order filter?

Passband

Stopband
2−N

f max



  

Signal Conditioning: Amplifier

5. Amplification

 Signal is amplified to the 
reference voltage of the ADC.

t

Xa

xa(t )<xmax=V ref



  

Signal Conditioning: Amplifier

 Simple non-inverting amplifier circuit.

 Ideal gain  (A≈∞):

 Actual gain:

 Error for A=50,000, R
1
=1kΩ, R

2
=9kΩ, V

i
=0.500V: 

 For 5V, 12bit: 

V o

V i

=(1+
R f

R1

)

V o

V i

=
A (R1+R f )

AR 1+ R1+R f

V o ∞=5.000 V

V o 50 k=4.998 V

Δ=1221μV

e=2000μV
2 counts on the quantizer 



  

Data Converter

6. Sample and Hold

7. Quantizer



  

Sample and Hold

 Ideal sampling requires

 zero duration and
 infinite currents.

 Actual sampling uses a transistor…

 The body resistance of the transistor
turns the S&H into a low pass filter.

Ideal sample and hold 

Actual sample and hold 

Sample and hold 
equivalent circuit 



  

Sample and Hold

 Time constant of a 1st order RC filter:



 It is necessary to keep sampling for 
at least       to allow the capacitor to be charged to V

a

 Microcontrollers allow the adjustment of the charging 
period.

 Higher precision ADC requires longer charge times:
“Acquisition Time”

 It is not possible to exceed               for sampling.

τ=RC s

5 τ

f =
1
5

τ



  

Sample and Hold

 Sampling several signals at the same instant.

 Several ADC can be used.

 More commonly, synchronous
sampling, sequential conversion:

 In specialized applications
several ADC are used:
Motor current sampling, 
lab measurement etc.



  

Sampling of Continuous Time Signals

 The Fourier transform of a continuous time signal is given 
by:

 When a signal is sampled by f
s
, its frequency spectrum 

becomes periodic by f
s
. 

X (f )=∫
−∞

∞

x (t )e−2π f t dt

X s( f )= ∑
k =−∞

∞

X ( f +kf s)

xs( t): x (nT s) ;  T s=1/ f s



  

Sampling of Continuous Time Signals

X ( ƒ)

 ƒB−B

Continuous time signal 
frequency spectrum

Sampled. Note spacing

With correct filtering, original signal 
can be exactly recovered.

Source of figures: Wikipedia.org



  

Sampling of Continuous Time Signals

 However, if low sampling frequency is used:

 There are overlaps:

Which are added up.

 Original signal is lost.
Source of figures: Wikipedia.org

[ (k+1) f s−B , kf s+B ] , k∈−∞ ,∞

X s( f )= ∑
k =−∞

∞

X ( f +kf s)



  

The Data Converter AKA Quantizer

 Analog to digital conversion (ADC) is a search operation.

 Precision is limited to finite value,

 Information about input is lost.

 Time consuming OR complex operation.

xq=⌊2N V in

V ref

+Δ
2 ⌋

Δ=V ref /2
N



  

The Data Converter AKA Quantizer

 Ideal, normalized, 3 bit quantizer.

Source of figures: D.H. Sheingold, Analog 
Digital Conversion Handbook, 1986



  

Quantization Error as Linear Noise

 V
in
 is ambiguous→

 Quantization can be modeled as additive noise.

xq=V in+nq



  

Quantization Error as Linear Noise

 Vin is not known→

 Quantization can be modeled as additive noise.

xq=V in+nq

SNR dB=6.02 N+1.76

(V in=Asin(ω t) , N bit quantizer )



  

Quantizer Performance

 Gain not unity:

 Does not start from zero:

 Step change voltages are not uniform:

 Each can be corrected in software
(not easily) Source of figures: D.H. Sheingold, Analog 

Digital Conversion Handbook, 1986



  

Quantizer Realizations: Flash

 Low latency

 High
complexity
O(2^N)

 Bad linearity



  

Quantizer Realizations: Successive Approx.

 Higher latency. 

 Low complexity. 

 Good linearity.

Source of figures: D.H. Sheingold, Analog 
Digital Conversion Handbook, 1986



  

Digital Signal Processing



  

From Physical Quantity to Physical Value

 The final stage is digital signal processing.



  

Oversampling / Noise Shaping

 Signal is sampled at much higher rate than Shannon.

 After ADC, DSP low pass filter is applied.

 Low order anti-aliasing filter is sufficient.

 Increase in precision is obtained due to averaging.

S&H +
LPF

ωc=π/OSR

ωc
↓OSR

nq

V a

Electronics Information

X q

f s=2 f m×OSR



  

Oversampling / Noise Shaping

 Sampling rate is much higher than required by Shannon 
theorem.

 Quantization noise power is constant, regardless of 
sampling rate.

 Signal spectrum
amplitude is inreased
proportionally.

 Signal occupies less
of the digital bandwith.

V a( f ) '=V a( f )×OSR

f 'max=f max /OSR



  

Oversampling / Noise Shaping

 Downsampling by OSR brings the signal 
back to desired band.

↓OSR X q



  

Oversampling / Noise Shaping

 Oversampling increases the ADC precision.

 OSR=     →w bit increase in quantizer precision.

 For 4 bit increase: OSR=    =256 times oversampling.

 44.1KSPS → 11.3MSPS is too much!

 Oversampling can be augmented with noise shaping to 
improve ratio.

4w

44



  

Oversampling with Noise Shaping

 Quantization noise is injected during ADC.

 The fedback system causes the 
quantization noise spectrum to be 

 low at low frequencies.
 Higher at high frequencies.

Electronics Information

Sampled
data

Integrator
+

LPF

π /OSR

ωc
↓OSR X q

f s=2 f m×OSR

V a ADC

DAC

S/H



  

Oversampling with Noise Shaping

 The feedback loop has different gains for 

 quantization noise and
 Signal.

 Quantization noise is 
concentrated towards higer frequencies.

 OSD=8 is sufficient for 4 bit increase
vs. OSD=256



  

High Precision Applications



  

Reference Voltage

 Changes in V
ref

 have the same effect as changing the 
input voltage.

 Compensation for:

 Temperature
 Manufacturing tolerances

xq=⌊2N V in

V ref

+Δ
2 ⌋ ,  Δ=V ref /2

N



  

Reference Voltage Tolerance

 LM336A-2.5: 2.5V reference diode.

 2.44 ~ 2.54V at 25o.

 8 bit ADC, V
in
=1V:

 How to calibrate? 

V ref =2.44 V → xq=100
V ref=2.54 V → xq=104



  

Reference Voltage Tolerance

Calibration of reference voltage tolerance

1. Multiply by correction coefficient in software

- Firmware in each device must be different.

- In 8 bit processors, correction multiplication is difficult.

2. Electrical adjustment:

- Manual labor

- Long term drift

- Temperature dependence of VR



  

Common Ground Problems

 Microprocessor with daughterboard 
for temperature sensor.

 GND shared between

 Daughterboard electronics
 Sensor voltage 

V s=250mV



  

Common Ground

 Connection cables have 1Ω resistance.

 Daughterboard draws 50mA current.

 ADC reads 20% more: 300mV  

V s=250mV

+50 mV



  

Common Ground

 Connection cables have 1Ω resistance.

 Daughterboard draws 50mA current.

 Ground of the sensor is separated.

 Single ground distribution point.

V s=250mV



  

Secondary Sensors



  

Secondary Sensors

 Electrical component values may change in response to a 
change in a physical variable.

 Change is small;  0.1% or less.

 Straightforward measurement of value:

 May have large offset error.
 May depend on other variables (temperature etc.)
 Require high precision.



  

Sensor Bridges

 Balanced bridge circuits.

 Output voltage derived from 
resistor divider.

 No bias. → Large gain can be used.

V o=V b

R1

R1+R4

−V b

R2

R2+R3

For  
R1

R4

=
R2

R3

 →  V o=0 V



  

Types of Bridge Circuits

 Bridge may consist of 1, 2, 4 elements.

 Larger elements have better sensitivity.

 V
o
 depends on V

b
 → Stable supply.

 Measurement load must be zero.

V o=
V b

4
Δ R

R+Δ R/2
V o=

V b

2
Δ R

R+Δ R/2
V o=

V b

2
Δ R
R

V o=V b
Δ R
R



  

Example Use of Bridge

 Strain gage measures bending strain.

 R
1
 and R

2
 change in opposite directions.

 Stretch measurement eliminated.

V

BRIDGE UNBALANCED

(-)

(+)

R R#1

R#2R

STRAIN GAGE #1

STRAIN GAGE #2

FORCE

+ -

Source of figure: DEWESoft



  

Amplifiers for Sensor Bridges

 Instrumentation amplifier is used.

 High input impedance

 High CMRR

 Gain is set by external resistor Rg.
 Many good chips exist

AD620 etc.

V o=(V i +−V i -)R1(1+R1

Rg
)( R3

R2
)



  

Linearization, Calibration



  

Sensor Commissioning

Sharp GP2Y0A41SK0F
Reflective distance sensor.
Distance vs output voltage

 The sensor output is generally not:

 Linear
 Calibrated

 Determine inverse function to obtain
physical value from the readings.

 Calibrate the sensor to 
increase the accuracy of the readings.



  

Linearization

 Sensor linear offset and gain correction

 Calibration measurements:

 Calculate constants:

 During runtime:

 Periodic calibrations may be needed:
Use electronic switch to connect reference.

a1=mp1+b
a2=mp2+b

pm=
xm−b

m

m=
a2−a1

p2−p1

,

b=a1−mp1



  

Lookup Table – Worst Case

 Extreme nonlinearities.

 Wasteful of memory. 
16bit→ 32bit: 262kB ROM.

STM32F405RGT6: 1MB ROM
STM8s103F: 8kB ROM

 If multiple sensors must be fused,
even larger footprint.

ADC Physical

0 234

1 200

2 192

3 216

... ...

1022 48

1023 132



  

Piecewise Linearization

 In a certain range of readings,
use a specific linearization.

 Smaller memory footprint

 More run-time computation

 Worse error

In Range Slope Offset

a1~a2 m1 b1

a2~a3 m2 b2

a3~a4 m3 b3

a4~a5 m4 b4



  

Curve Fitting

 With several sensors, curve fitting can be performed.

 Coefficients:

 Calculated before shipment
 By operator, using calibrated measurement samples
 Automatic, periodic calibrations

p=c10+c11 a1+c12 a2+...+c21 a1
2
+c22 a2

2
+c23 a1 a2+...



  

Low power Sensing



  

Low Power Sensing

 Power reduction through low duty cycle.

 “Intelligent” sensor with power modes.

 Sensor powered down when not needed.

 Whole system powered down most of the time.

Source of figure: NXP, “Low-Power Sensing” 
White Paper.



  

Low Duty Cycle Operation

 Most processors have sleep timers.

 Processor consumes power during sleep
 I/O pins used to power down sensors may keep 

consuming power.

 Many power management chips are on the market.

TI TPL5110 System timer



  

Low Duty Cycle Operation

 Processor sets sleep time

 Timer turns off power:
Whole system is switched off.

 Processor sleep mode: 1μA

 Timer sleep mode: 35nA



  

Energy Harvesting

 Solar cells, piezo devices, thermoelectric generators etc.

 Maximum power must be derived from the generator.

 Stored in a battery.

P=V×I



  

Solar Cell Basics

 Efficiency.

 8%~45%. General commercial: ~15%
 Solar Flux: 1kW/m2 noontime.
 ~150W/m2.  

 Power output.

 More current draw, less voltage.

 Track the best V~I ratio. (!)

 Power conversion.

 Change voltage as required.
 → buck/boost converter- regulator.

P=V×I



  

Solar Cell Sizing

 Determine

 power consumption (V
cc

, I
c
)

 duty ratio (seconds/hr): V
cc

 x I
c
 x s 

→ Energy requirement

 Size the battery: 3.7V, 0.5Ah etc.

 Size the solar cell:

 Use the peak sun hour of deployment location.
 Budget
 Safety margin 

→Area of the solar cell required.



  

FLOPs per Watt

 Processor clock can be actively throttled.

 Low clock speed:

 Low power consumption
 Long active time

 High clock speed:

 High power consumption
 Short active time

 Most suitable FLOPS/W depends on 
mode, active peripherals etc.

Initialize
Proc.

Calibrate/
Measure

Initialize
Proc.

Transmit

Shutdown &
Wait



  

Koomey’s Law

 “...the power needed to 
perform a task requiring 
a fixed number of computations 
will fall by half every 1.5 years,”

J.Koomey, S.Berard et al, “Implications of 
Historical Trends in the Electrical Efficiency of 
Computing”, IEEE Annals Hist. Comp, V33-3, 
pp. 46~54, 2011



  

Integrated Sensors



  

High Precision Applications

 MP5611 barometric pressure sensor. 
(MEAS Switzerland)

 Accurate to 1ft of absolute altitude.

 24bit ADC  (Δ≈200nV)

 Discrete implementation requires expensive
signal conditioning circuits.



  

Integrated Sensors

 High precision applications require 
great engineering and calibration effort.

 Many sensors are offered in:

 Sensor +
 Signal conditioning +
 Power management +
 Subsystem control packages

 End user connects the sensor over “I2C, “SPI” “CAN” etc.
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Contact Information

Ahmet Onat

 Sabanci University, Istanbul, Turkey

 Mail:          onat@sabanciuniv.edu

 Web:         http://people.sabanciuniv.edu/onat

http://people.sabanciuniv.edu/onat


  

Research projects

 I am carrying out projects in

– Reinforcemet learning for dynamic systems

– Networked real-time systems. Internet of Things IoT

– Haptic interfaces for 3D displays

– Linear motor design

– Underwater autonomous robots

 See:

http://people.sabanciuniv.edu/onat

 Enthusiastic students are welcome to help! 

http://people.sabanciuniv.edu/onat


  

Linear motor elevators

 Vertical linear motor design 

 Project funded by 
Fujitec, Japan

 2007-2013

 450kg payload, 1000m length

 Prototype, patents, publications

 Magnetic, electronic, 
control, safety design

3meter 
prototype



  

 

Dihedral Corner Reflector Array (DCRA)

 A passive optical device

 That can create 
real reflections 
to form floating images
in the air

 Haptic feedback for
projected solid objects



  

SWARMS

 Modeling of underwarter autonomous vehicles (IoT)



  

Networked control systems

 A novel method for control over networks 
with 
unpredictable delay & data loss

 Stability analysis, simulation & prototype
 Tolerant of large amounts of delay
 Also wireless Ethernet application
 Publications & prototype control systems

NETWORK

Plant

Controller Node

Actuator NodeSensor Node

Plant



  

Laboratory work

Will be programming:

 ARM prcessor using
'C' language

 Blink lights,

 Move servos,

 Communication,

 Real-Time OS...
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