
Introduction to
Information Centric

Networking
Andrés Arcia-Moret

N4D Lab, Computer Laboratory
University of Cambridge

Agenda
• Motivation

• Information Centric Networking

• Implementations: NDN, DONA, NetInf, Juno,
PURSUIT

• PURSUIT nitty-gritties

• Conclusions

Motivation
• Shift from resource sharing to information sharing

• host centric: TCP/IP

• information based: identification, retrieval
(communication functions)

• Establishing comm relationship on information
interest rather than end-hosts

Information Centric
Networking

• Problem mostly addressed from high-level routing or
information management perspective

• Lately, it has been also exploited more efficiently (based
on BF)

• in the hardware and processing complexity at FW node

• resource allocation

• TE at intra-domain

• Dissemination of inter-domain

Information Centric
Networking

• rather than seeing where is in a name (like IP does) we see
what is in a name.

• then we can change physical and topological location
transparently.

• exposes the request style abstraction unlike the socket API

• differences with host centric: naming, uniquely naming
every (replicated) object. routing, ICN uses bindings
between points, and optimal content src. security, ICN
secure integrity of objects rather than channels. API,
exposed to produce and consume.

Other salient characteristics

• No connection oriented sessions: as
communication becomes receiver driven, thus no
need for sender cooperation for in-order reliability.
Better congestion/flow control due to convenient
distribution.

• Content and location scoping: explicit separation
between what (objects) and where (location).

• Resilience through replication.

ICN Implementations

DONA: Data Oriented
Network Architecture

• ICN as an alternative to DNS

• Content names are: P:L, P being the cryptographic hash, and L
the label that identifies content.

• Resolution Handlers (RH) store <P:L, content location> per
domain.

• Resembles BGP tree topology, thus consumer asks local RH. If no
reference is found then it propagates in the tree till found. Then
shortcut the way back to the consumer (possibly through TCP/IP).

• DONA routes every request embedded within regular data
packets.

made me remember the paper saying
that with some configuration tricks one
can get ICN networks.

[Koponen et al., 2007] Koponen, et al (2007). A data-oriented (and beyond) network
architecture. In Proceedings of the 2007 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications, SIGCOMM ’07, pages 181–192,
New York, NY, USA. ACM.

DONA
FIND(P:L) packet to locate the object named P:L, and RHs route
this request towards a nearby copy. REGISTER messages set up the
state necessary for the RHs to route FINDs effectively.

Each domain or administrative entity will have one logical RH
(but perhaps many physical incarnations); we will denote the RH
associated with an administrative entity X by RHX . RHX is
the provider/customer/peer (or, alternatively, parent/child/peer) of
RHY if X is the provider/customer/peer of Y in terms of AS-level
relationships. This RH structure can extend to finer granularity
than ASes to reflect other organizational and social structures; for
instance, there could be departmental RHs at universities and firms
and, going even further, users could have their own local RHs
which peer with those of their neighbors and friends. RHs use
local policy (consistent with their domain’s peering agreements)
when processing REGISTERs and FINDs.

Each client knows the location of its local RH through some local
configuration (much like they know about their local DNS server).
Any machine authorized to serve a datum or service with name P:L
sends a REGISTER(P:L) command to its local RH. Registrations
can also take the form REGISTER(P:*) if the host is serving all
data associated with the principal (or will forward incoming FIND
packets to a local copy).

Each RH maintains a registration table that maps a name to both
a next-hop RH and the distance to the copy (in terms of the number
of RH hops, or some other metric). There is a separate entry for
P:*, in addition to individual entries for the various P:L. RHs use
longest-prefix matching; if a FIND for P:L arrives and there is an
entry for P:* but not P:L, the RH uses the entry for P:*; when entries
for both P:* and P:L exist, the RH uses the one for P:L. Only when
the RH has neither P:* or P:L entries do we say that P:L does not
have an entry in the registration table.

When a FIND(P:L) arrives, the forwarding rule is straightforward:
if there is an entry in the registration table, the FIND is sent to the
next-hop RH (and if there is more than one, the choice is based
on the local policy and which entry is closest); otherwise, the RH
forwards the FIND towards its parent (i.e., its provider) using its
local policy to choose among them if the RH is multi-homed. Thus,
registration table misses are forwarded up the AS hierarchy in the
hope of finding an entry (see Figure 1). In the case of immutable
data, a FIND command can take the normal form FIND(P:L), or the
special form FIND(*:L) which indicates that the client is willing to
receive the (self-certified) data from any purveyor.

If RHX receives a REGISTER from a child (i.e., customer), it
does not forward it onward unless no such record exists or the new
REGISTER comes from a copy closer than the previous copy. If
so, RHX forwards the REGISTER to its parents and peers (after
updating its registration table). If the REGISTER comes from a peer,
the entry can be forwarded or not based on local policy (depending,
for example, on whether the AS is willing to serve as a transit AS for
content). By letting the forwarding of FINDs and REGISTERs be
driven by the local policies, DONA can faithfully respect the basic
interdomain policies as reflected in BGP. In addition, the forwarding
of a REGISTER can be terminated at any point if dictated by some
administrative policy (such as a corporate firewall).

REGISTER commands must be authenticated. The local RH
issues a challenge with a nonce, which the client must sign with P’s
private key, or sign with some other key and provide a certificate
from P empowering this other key to register this piece of data.
When forwarding REGISTERs, the RH signs it so that the receiving
RHs know that the data came from a trusted RH. These signatures
are hop-by-hop and accumulated in a REGISTER along the path.
In a similar manner, the RHs accumulate the distances; they
append their distance/cost to the previous-hop RH before sending

RH

RH RH RH

RH RH RH

Tier-1

Copy Copy Client

Figure 1: Registration state (solid arrows) in RHs after copies
have registered themselves. RHs route client-issued FIND
(dashed arrow) to a nearby copy.

register : the received REGISTER message, if any.
regs : all REGISTER messages for the name (P:L).
pref reg: preferred REGISTER to disseminate to peers/parents,

if any.
name : the name (P:L) event concerns.

regs ←load(name);1
if register received then2

if duplicate or invalid signature then3
return;4

end5
set timer for expiration(register);6

else7
// A REGISTER expired...8

end9
foreach out in provider and peer links do10

pref reg ←decision process(out,regs);11
if pref reg changed for out then12

msg ←new message(pref reg);13
add intra cost(out,msg);14
sign message(private key,msg);15
queue(out,msg);16

end17
end18
store(name, all changes);19

Figure 2: Pseudo code for processing received and expired
REGISTERs.

the REGISTER to next RH. REGISTER commands have a TTL
and must be refreshed periodically. DONA also provides an
UNREGISTER command so that clients can indicate that they are
no longer serving some datum. Figure 2 shows the pseudo code for
processing received and expired REGISTERs.

The FIND packet does not just resolve the name, it also initiates
the transport exchange. The FIND packet takes the form as shown
in Figure 3, where the DONA-related content is essentially inserted
as a shim layer between the IP and transport headers. The name-
based routing provided by DONA ensures that the packet reaches
an appropriate destination. If the FIND request reaches a Tier-1 AS
and doesn’t find a record associated with that principal, then the
Tier-1 RH returns an error message to the source of the FIND. If the
FIND does locate a record, the responding server returns a standard
transport-level response (the same as if the transport header had been
received on a normal data packet, not on a FIND packet). To make
this work, transport protocols should bind to names, not addresses,
but otherwise do not need to change. Similarly, application protocols
need only be modified to use names, not addresses, when calling

[Koponen et al., 2007] Koponen, et al (2007). A data-oriented (and beyond) network architecture. In Proceedings of the 2007 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications, SIGCOMM ’07, pages 181–192, New York, NY, USA. ACM.

[Tyson et al., 2013] Tyson, G., Sastry, N., Cuevas, R., Rimac, I., and Mauthe, A. (2013). Where is in a name? a survey of mobility in information-centric networks.

DONA: FIND msg

Transport protocol header

Name (P:L, 40 bytes)
Type

IP header

Next header type

Figure 3: Protocol headers of a FIND packet. Type is to
separate FINDs from their responses.

transport. In fact, many applications could be simplified when
implemented on top of DONA. Using HTTP as an example, we
note that the only essential information in an HTTP initiation is the
URL and header information (such as language, etc.); the URL is
not needed, since the data is already named in a lower layer, and
if each variation of the data (such as language) is given a separate
name then the header information is also superfluous.

The packet exchanges that occur after a FIND has been received
are not handled by RHs (except, as we note in Section 4, when they
serve as caches or other middleboxes), but instead are routed to the
appropriate destination using standard IP routing and forwarding.
To this extent, DONA does not require modifications of the IP
infrastructure.

2.4 Security Issues
There are a variety of security issues that must be addressed, some
by DONA itself and some by underlying or external mechanisms.

For bandwidth denial-of-service attacks, we assume that there are
IP-level mechanisms that can restrain unwanted packet streams that
are overwhelming an RH, server, or client. For resource exhaustion
attacks against RHs, DONA relies on contractual limits providers
place on customers for the number of FINDs and REGISTERs they
can submit per time period. RHs may additionally impose other
rate-limiting techniques such as cryptographic puzzles.

We assume that as part of establishing customer/provider/ peering
relationships, peering RHs have securely exchanged their public
keys, so RHs can always ensure that they are receiving packets from
the appropriate RH. However, a malicious RH can still cause damage.
For instance, a malicious RH can refuse to forward REGISTERs
and FINDs; this is a failure of the AS, in much the same way an AS
could fail to forward packets, and presumably commercial pressures
would reduce this form of misbehavior. More subtly, a malicious
RH could forward REGISTERs overheard from other RHs. To
minimize this risk, when RHs forward a REGISTER they include
the next-hop’s public key (or its cryptographic hash).

The worst a malicious RH can do is deny a client service (since
cryptographic measures allow the client to authenticate the data). In
Section 3 we discuss ways in which clients can request access to
other copies (i.e., not just the closest one); this will allow a client
to avoid misbehaving RHs, unless the misbehaving RH lies on the
path to all copies of that particular item.

In all cases, though, RHs are commercially related to the clients
they are serving; they are paid (perhaps recursively) by either the
client or the server. Thus, DONA is not relying on the cooperation
of arbitrary entities, but is relying on the nature of a commercially
provided service. Thus, while the design should be reasonably
secure against misconfigured or subverted RHs, we anticipate that
any such problems would be detected and corrected by the provider.

In such a key-centric design, the greatest fear is key compromise.
There is no remedy except for providing effective means for key
revocation. DONA does not, itself, provide a key revocation
mechanism. However, there are a variety of mechanisms one could
use for this, such as third-parties (e.g., Google) providing databases
of revocation lists. Each revocation is cryptographically proven, so

they cannot be faked; thus the database need merely provide access
to the data, not vouch for its correctness.

DONA could itself provide a useful substrate for revocation lists
and online key status query protocols. That is, key revocations
related to a principal P (both of P’s private key, and of any secondary
keys P has used) could be stored under P:L for some special reserved
name L, and if an RH finds any entry corresponding to that name it
immediately returns notification of a key compromise.2 Thus, if a
client wanted to check a key related to P it could issue a FIND(P:L)
for this special value of L. As we describe in Section 4, DONA
also supports update functionality, so a client could subscribe to be
notified of any such revocation.

Finally, principals and replicas may ensure that their key is not
already in use by doing a FIND(P:*) on a freshly generated key P
(using DONA’s name resolution).

2.5 Internet Addressing
The DONA design, as just described, could function over the current
IP layer, with its present form of addressing and routing. However,
many think the current Internet addressing scheme is facing a loom-
ing crisis, as the increasing demand for multihoming threatens to
explode routing tables [27]. Even aside from this speculative threat,
the current addressing paradigm requires a delicate balance between
scalability (e.g., aggregation) and flexibility (e.g., multihoming,
policy routing) that isn’t always easy to achieve.

DONA’s name-based anycast primitive can remove much of the
pressure on the lower-level addressing structure by providing a
separate mechanism for path discovery. In particular, DONA could
enable IP to use path-labels (as in [22]) rather than globally routable
addresses. In what follows, we refer to the client as the source of
the FIND and the server as the node that responds to the FIND
(presumably a node that generated the REGISTER, or a caching
RH as discussed later in Section 4). Moreover, each host has a
domain-specific address; that is, for each domain within which it
is homed, that domain associates an address to that host, and that
address has no meaning outside of that domain.

In this approach, when a client sends a FIND, its source address
is originally just its domain-specific address. As the FIND is
forwarded from client to server, next-hop domain path instructions
are appended to this source address. Each such instruction has
purely local meaning; for instance, as the FIND passes from domain
A to domain B, an annotation is added to the path instruction that
tells A that the next-hop domain is B and, vice-versa, tells B that, in
the reverse direction, the next hop is A. This instruction need only be
understood by the two connected domains A and B. When the FIND
arrives at the server, the server appends its domain-specific address
to the path description. It can then reverse these path instructions
and use them for its response to the client (since reversing the order
just gives the path in the opposite direction). Similarly, when the
server’s packets arrive at the client, the client can reverse the path in
order to send packets to the server.

Because these per-hop path instructions only need to distinguish
between the various next-hop domains, they can be quite short (say,
on the order of a few bytes), so the total path instruction would
be quite short. More importantly, the interdomain routing tables
would be extremely small (and quite static); merely enough to
translate these per-hop instructions into a next-hop AS. Note that
these path-instructions would not have global meaning, since if a
source in a different domain used this path, the domain-specific
next-hop instructions would not necessarily lead to the desired
2Note that once any key revocation entry has been registered for
that principal, there is nothing the key compromiser can do to cause
its removal from the registration tables.

ICN of DONA
• P:L reproduces the scoping model (easily

reproducible)

• Data Handlers corresponds to a functional
rendezvous (having sub domains)

• IP routing fabric: topology (completely
decentralised though in IP), and forwarding (keeps
state).

NDN — CCN, CCNX
• Named data networking

• Flexible hierarchical structure allowing various
namespaces

• Interest packets sent through to the network to the content.

• Longest prefix match. Aggregated name hierarchy

• Way back through breadcrumbs in PIT

• Content item’s naming reflect the underlying topology (thus
can potentially create state explosion in the core network).

NDN- CCN, CCNX
[Tyson et al., 2013] Tyson, G., Sastry, N., Cuevas, R., Rimac, I., and Mauthe, A. (2013). Where is in a name? a survey of mobility in information-centric networks.

NetInf
• Relies on Name Resolution (NR) service.

• Publishing Named Data Objects and locators (named routing hints) to be
discovered later.

• Provide in a multilevel DHTs for finding the location (or the optimal location).

• Self certified NDO mapped to a set of locators.

• Requester-controlled lookups with eventual list of potencial sources, to
choose for optimal (s).

• MDHT-controlled mode, single consumer matched with single source
(by MDHT)

• Content delivery can be done in many ways (e.g., in-router caching)

Distributed Hash Tables

NetInf
[Dannewitz et al., 2013] Dannewitz, C., Kutscher, D., Ohlman, B., Farrell, S., Ahlgren, B., and Karl, H. (2013). Network of information (netinf) - an information-
centric networking architecture. Comput. Com- mun., 36(7):721–735.

[Tyson et al., 2013] Tyson, G., Sastry, N., Cuevas, R., Rimac, I., and Mauthe, A. (2013). Where is in a name? a survey of mobility in information-centric networks.

Juno
• Placement of ICN at the middleware layer

• Flat self-certifying IDs indexed on DHT called Juno
Content Discovery Service (JCDS).

• Can probe third party index services such as eMule.

• Delivery framework retrieves the content by using
dynamically attachable protocol plug-ins.

• Intelligent reconfiguration for different sources based
on: performance, cost, resilience.

Juno
[Tyson et al., 2013] Tyson, G., Sastry, N., Cuevas, R., Rimac, I., and Mauthe, A. (2013). Where is in a name? a survey of mobility in information-centric networks.

[Tyson et al., 2012] Tyson, G., Mauthe, A., Kaune, S., Grace, P., Taweel, A., and Plagemann, T. (2012). Juno: A middleware platform for supporting delivery-centric
applications. ACM Trans. Internet Technol., 12(2):4:1–4:28.

RIFE (a word)
• rife-project.eu

http://rife-project.eu

PURSUIT
• A systems approach that operates on graphs of

information with a late (as late as possible) binding
to a location at which the computation over this
graph is going to happen, enables the full potential
for optimisation!

• This systems approach requires to marry
information & computation (and with it storage) into
a single design approach for any resulting
distributed system

source: PURSUIT FP7 public dissemination reports.

Starting Point: Solving Problems
in Distributed Systems

• One wants to solve a problem, each of which might
require solving another problem.

• Example:

• Send data from A to B(s), eventually solving
fragmentation on a restrained link(s)

—> Computation in distributed systems is all
about information dissemination (pertaining to a
task at hand)

source: PURSUIT FP7 public dissemination reports.

 Design Tenets
• Provide means for identifying individual information (items)

• Can be done via labelling or naming

• Provide means for scoping information

• Allows for forming DAGs (directed acyclic graphs)

• Expose core functions

• Rendezvous, topology management, and forwarding

• Common dissemination strategy per sub-structure of information

• Define particulars of functional implementation and information governance (naming type:
flat), adapting to a particular computational problem

• Expose service model

• Can be pub/sub

Trossen, D. and Parisis, G. (2012). Designing and realizing an information-centric internet. IEEE Communications
Magazine, 50(7):60–67.

Layered Model

IEEE Communications Magazine • July 2012 61

deployment, including an international testbed.
With this, we show the feasibility of our
approach in a first realization as a basis for our
future work. We then provide an outlook for
information-centric networking.

DESIGN TENETS
At the heart of our efforts is a set of design
tenets that form the basis for a functional view
of an information-centric architecture. These
tenets can be implemented through a set of
design choices; it is the next section that pre-
sents the current implementation of our design
choices.

Intuitively, our tenets derive from our moti-
vation to place information at the heart of our
architecture. Hence, aspects of directly providing
manipulation of information flows together with
building transient communication relations
between computational entities are captured by
our tenets. Finally, we embed this information-
centric view into an approach for building lay-
ered systems at scale.

The first tenet is that of providing means for
identifying individual information items. Such
identification can be realized, for instance,
through some form of naming scheme or through
flat labels similar to the ones in [7].

The second tenet places individual informa-
tion items into a context; we call this scoping.
Scopes define the set of information that need
dissemination in order to realize a particular
problem solution. Each information item is
being placed in at least one scope. With scopes
being sets of information, they are information
themselves. Hence, they are identified as such
and can be nested in another scope. With that,
combining the first and second tenet allows for
building complex directed acyclic graphs of infor-
mation over which computation can take place.

With our third tenet, we expose a service
model that directly operates on the information
graph. With that, any design can implement
computational problem solutions through com-
putation over an information flow among enti-
ties that utilize the exposed service model.

Our fourth tenet outlines three core functions
for disseminating information within a given
scope. The first one, rendezvous, matches the
availability of information to interest in it. Such
process determines some form of location, pro-
viding a late binding to location for the request-
ed information. Such location is used by the
second function, topology management and for-
mation, to determine a suitable delivery graph
for the transfer of the computational informa-
tion, this transfer being executed by the third
function, forwarding.

The fifth tenet is that of associating dissemi-
nation strategies with (parts of) the information
structure. Each strategy defines the particular
implementation for the aforementioned core
functions but also the aspects regarding informa-
tion space governance and management (e.g.,
utilizing flat labels) within said part of the infor-
mation space. Hence, together with the scoping
tenet, this allows for optimizing these distinct
core functions towards the particular computa-
tional problem.

Combining the previous with our sixth and
last tenet provides the flexible modularity across
problems; a modularity that deconstrains the
constraints of individual problem solutions. This
sixth tenet is concerned with assembling individ-
ual optimized solutions towards larger problem
solutions (which in themselves are recursively
assembled to a larger whole again in a layered
manner). With that, we can formulate our sixth
tenet as follows: A given problem within a dis-
tributed system is implemented through an assem-
bly of subproblem solutions, whose individual
dissemination strategies are not in conflict with the
ones set out by the problem in question.

For this to happen, any conflicts between
possibly different dissemination strategies across
these problems will need resolution. Such reso-
lution takes place through methods of require-
ments engineering, functional specification, and
standardization at design (or redesign) time of
the system. We leave the possibility of runtime
reconciliation for a future discussion.

Based on these six tenets, we can formulate a
functional model for information-centric sys-
tems, shown in Fig. 1. It is this model that allows
for the utilization of the full optimization space,
as envisioned in our introduction.

It is the first two tenets together with the ser-
vice model that allow for manipulating informa-
tion flows independent from the location of the
information. The separation of functions, defined
through their specific dissemination strategy
enables the (robust) optimization of resources
that are utilized for a particular problem. And it
is the assembly toward larger problems in a flexi-
ble, layered manner that deconstrains the indi-
vidual problem constraints, catering to the
possible fragility of the larger-scale system.

PROOF OF CONCEPT
It is the design tenets of the previous section
that define building an internetworking architec-
ture through a set of design choices for the par-
ticular core functions. In the following, we
present a proof of concept that demonstrates the
feasibility of this approach in a networked envi-
ronment.

In the following, we outline our realization of
the information management, the exposed ser-
vice model, as well as the particular node imple-
mentation.

Figure 1. Functional layered model.

Problem-specific
operations

Layer n+1

Layer n-1

Layer n

Optimization through
modularity within each
problem

Deconstraining through
recursive layering

Information flow
manipulation

Topology

Forwarding

Rendezvous

The layering
process is
recursive!

Dissemination
strategy

TROSSEN LAYOUT_Layout 1 6/21/12 3:21 PM Page 61

[Trossen and Parisis] Trossen, D. and Parisis, G. (2012). Designing and realizing an information-centric internet. IEEE
Communications Magazine, 50(7):60–67.

efficiency of the proposed method with simulations. Further,
we give an indication of the potentially achievable speed
from our early measurements on our NetFPGA-based im-
plementation.

The rest of this paper is organized as follows. First, in
Section 2, we discuss the overall problem and outline the
proposed solution. In Section 3, we go into details of the de-
sign. Next, in Section 4, we provide scalability evaluation of
our forwarding fabric in networks up to metropolitan scales.
Section 5 discusses how to inter-connect multiple networks,
scaling towards Internet-wide systems, and Section 6 briefly
describes our two implementations. Section 7 contrasts our
work with related work, and Section 8 concludes the paper.

2. BACKGROUND AND BASIC DESIGN
Our main focus in this paper is on a multicast forward-

ing fabric for pub/sub-based networking. First, we briefly
describe the overall pub/sub architecture our work is based
on, and then present our forwarding solution, in the con-
text of that architecture. The presented solution, provid-
ing forwarding without end-to-end addressing, is a first step
towards an environment preventing DDoS attacks, as the
data delivery is based on explicit subscriptions. Finally, at
the end of the section, we briefly describe how our proposed
forwarding fabric could be used within the present IP archi-
tecture.

2.1 A pub/sub-based network architecture
In general, pub/sub provides decoupling in time, space,

and synchronization [15]. While publish/subscribe, as such,
is well known, it is most often implemented as an over-
lay. Our work is based on a different approach where the
pub/sub view is taken to an extreme, making the whole sys-
tem based on it. In the work we rely on, inter-networking
is based on topic-based publish/subscribe rather than the
present send/receive paradigm [32, 39, 41].

The overall pub/sub architecture can be described through
a recursive approach, depicted in Figure 1. The same archi-
tecture is applied in a recursive manner on the top of itself,
each higher layer utilising the rendezvous, topology, and for-
warding functions offered by the lower layers; the idea is
similar to that of the RNA architecture [20] and the one
described by John Day [12]. At the bottom of the architec-
ture lies the forwarding fabric, denoted as “forwarding and
more”, the main focus of this paper.

The structure can be divided into a data and control
plane. At the control plane, the topology system creates a
distributed awareness of the structure of the network, simi-
lar to what today’s routing protocols do. On the top of the
topology system lies the rendezvous system, which has the
responsibility of handling the matching between the pub-
lishers and subscribers. The rendezvous does not need to
differ substantially from other topic-based pub/sub systems;
cf. [15, 23, 36]. Whenever it identifies a publication that has
both a publisher (or an up-to-date cache) and one or more
active subscribers, it requests the topology system to con-
struct a logical forwarding tree from the present location(s)
of the data to the subscribers and to provide the publisher
(or the caches) with suitable forwarding information for the
data delivery. While being aware of the scalability require-
ments for rendezvous and topology systems, we do not de-
scribe them in details, but refer to our ongoing work in these
areas [41, 45].

Forwarding and more

Topology

Rendezvous
Rendezvous

Forwarding and more
Topology

T r a n s p o r t

For-
war-
ding

 ��Network
����coding

Frag-
���mentation

Caching���

Error
correction

Rendez-������
vous

�Topol-
ogy

Figure 1: Rendezvous, Topology, Forwarding

The data plane takes care of forwarding functionality as
well as traditional transport functions, such as error detec-
tion and traffic scheduling. In addition to that, a number of
new network functions are envisioned (referred to as more),
such as opportunistic caching [14, 40] and lateral error cor-
rection [3].

The data and control plane functions will work in concert,
utilizing each other in a component wheel [41], similar to the
way Haggle managers are organized [33] into an unlayered
architecture, providing asynchronous way of communicating
between different functional entities in a node.

In this paper, we focus on the forwarding layer, including
the required information needed to be passed to it. The ren-
dezvous and topology systems have responsibility for higher-
layer operations, such as scalable handling of publish/sub-
scribe requests (multicast tree join/leave in IP); they do not
affect the forwarding performance directly.

2.2 Recursive bootstrapping
To achieve initial connectivity in the pub/sub network, the

rendezvous and topology systems need to be bootstrapped
[30]. Bootstrapping is done bottom-up, assuming that the
layer below offers (static) connectivity between any node and
the rendezvous system. At the lowest layer, this assumption
is trivially true, since any two nodes connected by a shared
link (wireline or wireless) can, by default, send packets that
the other node(s) can receive.

During the bootstrap process, the topology management
functions on each node learn their local connectivity, by
probing or relying on the underlying layer to provide the in-
formation. Then, in a manner similar to the current routing
protocols, they exchange information about their perceived
local connectivity, creating a map of the network graph
structure. The same messages are also used to bootstrap
the rendezvous system, allowing the dedicated rendezvous
nodes to advertise themselves [32, 41].

2.3 Forwarding on Bloomed link identifiers
In our approach, we do not use end-to-end addresses in

the network, and instead of naming nodes, we identify all
links with a name. To forward packets through the net-
work, we use a hybrid, Bloom-filter-based approach, where
the topology system both constructs forwarding identifiers
by encoding the link identifiers into them in a source routing
manner (see Figure 2), and on demand installs new state at
the forwarding nodes. In this section, we present the basic
ideas in a somewhat simplified form, ignoring a number of
details such as loop prevention, error recovery, etc., which
are described in Section 3.

196

Recursive models

[Jokela et al., 2009] Jokela, P., Zahemszky, A., Esteve Rothenberg, C., Arianfar, S., and Nikander, P. (2009). Lipsin: Line
speed publish/subscribe inter-networking. SIGCOMM Comput. Commun. Rev., 39(4):195– 206.

Global Architecture

Forwarding
Network

TM

Forwarding
Network

TM

Forwarding
Network

TM
Forwarding
Network

TM
FN

Rendezvous
Network

RP
ITF

Pub SubPub Fragmentation

Caching

Forwarding

Totpology Rendezvous Helper

Service
Model

Error Control

N
et

w
or

k
A

rc
hi

te
ct

ur
e

N
od

e
 A

rc
hi

te
ct

ur
e

source: PURSUIT FP7 public dissemination reports.

Information Graph

Information Semantics:
immutable versus mutable

• Documents

• Each RId points to immutable data (e.g., document version)

• Not well suited for real-time type of traffic

• Each item is identifiable throughout the network

• Each RId points to channel of data (e.g., a video stream), i.e., the
data is mutable (channel in the item)

• Well-suited for video type of traffic

• Problems with caching though (since no individual video
segment visible)

I should be commenting on the
specifics of this work and its
relationship to DONA, CCN, etc. (how
these other works are seen as
dissemination strategies)

Built-in multicast capability
• Information is sent along a route of (intra-domain) hops in the

Internet

• -> Requires some form of minimal state in each hop

• If forwarding on names, limiting this state is hard/impossible

 What if we could instead include the state in the packet?

To: {Hop1, Hop2, Hop N} To: {Bloom Filter}

What are Bloom Filters?

• Test if a piece of information has been inserted in
the BF:

• All turned-on after a set of hash functions have
been tested? Then, positive response!

Bloom Filters
• Data structure for compressing items into a bit

string
0
0
1
0
0
1
0
0
1
0

ID 1

ID 2

Hash1(ID1) = 2
Hash2(ID1) = 8

Hash1(ID2) = 9
Hash2(ID2) = 4

10-bit BF

Bloom Filter

0
0
1
0
0
1
0
0
1
0

ID 1
10-bit BF

Test if “Data 1” has been inserted in the BF
All corresponding bits are set => positive response!

Hash1(ID1) = 2
Hash2(ID1) = 8

Line Speed Publish/Subscribe
Inter-Network (LIPSIN)

• Line speed forwarding with simplified logic

• Links are (domain-locally) named instead of nodes (LId),
therefore there is no equivalent to IP addresses

• Link identifiers are combined in a bloom filter (called zFilter) that
defines the transit path

• Advantages

• Very fast forwarding

• No need for routing tables

• Native multicast support
A->B 0 1 0 0 0 1 0 0 1
B->C 1 0 0 0 0 1 1 0 1

zF: A -> B -> C 1 1 0 0 0 1 1 0 1

B C
A

D

Zorglub

Forwarding Decision
• Forwarding decision based on binary AND and CMP

• zFilter in the packet matched with all outgoing Link IDs

• Multicasting: zFilter contains more than one outgoing links

& =
?

Link ID

zFilter zFilter

YES -- > FORWARD

False Positive in Forwarding
• False positives occur when test is positive in a given node despite

nonhashed

• LId (probability for consecutive false positives is multiplicative!)

• Increase with number of links in a domain (since more data is hashed
into constant length Bloom filter)

• Two immediate solutions:

• Use Link Identity Tags: tag a single link with N names instead of one,
then pick resulting Bloom filter with lowest false positive probability

• Virtual trees: fold “popular” sub-trees into single virtual link, i.e.,
decrease number of LIds to be used

Forwarding Efficiency
• Simulations with

• Rocketfuel

• SNDlib

• Forwarding efficiency
with 20 subscribers

• ~80%

-> suited for MAN-size
multicast groups AS6461 Abovenet (US) 367 (R -ISP) 1,000 (L -ISP)

2,259 (R - CUST) 1,400 (L - CUST)

Users AS
Links (#) Efic. (%) fpr (%)

mean 95th mean 95th mean 95th

4

TA2 8.6 12.7 99.92 100 0.02 0
1221 9.7 13.6 98.08 88.89 0.37 2.13
3257 9.6 13.5 99.83 100 0.02 0

8

TA2 15.6 20.0 99.6 94.12 0.2 1.59
1221 16.8 21.3 97.78 90.89 0.54 2.02
3257 17.9 22.9 98.95 91.3 0.28 1.25

16

TA2 25.7 30.9 97.92 91.67 0.83 2.67
1221 27.4 31.0 95.51 88.22 1.28 3.17
3257 31.3 36.7 92.37 79.58 1.76 3.86

24

TA2 34.1 38.8 95.2 87.18 1.95 4.63
1221 36.1 41.0 92.06 83.33 2.65 5.19
3257 42.2 48.1 82.27 67.69 4.17 6.96

32

TA2 41.4 46.0 92.04 84.31 3.46 6.46
1221 44.0 48.3 88.22 78.95 4.32 7.45
3257 52.2 57.9 71.47 59.34 7.3 10.41

Table 2: ns-3 results for d=8, variable k-distr.

Users AS
links fprfpa (%) fprfpr (%) Stdrd
mean kc kd kc kd k = 5

8

TA2 15.6 0.12 0.2 0 0 0.18
1221 16.83 0.44 0.54 0.26 0.26 0.55
3967 17.72 0.28 0.33 0.03 0.03 0.48
6461 17.18 0.32 0.39 0.06 0.07 0.36

16

TA2 25.7 0.54 0.83 0.01 0.03 0.8
1221 27.37 1.17 1.28 0.36 0.45 1.57
3967 29.04 1.13 1.29 0.24 0.34 1.48
6461 29.31 1.55 1.57 0.71 0.83 1.89

24

TA2 34.1 1.65 1.95 0.38 0.58 2.03
1221 36.14 2.48 2.65 1.21 1.33 3.55
3967 37.65 2.55 2.78 1.31 1.48 3.22
6461 39.60 3.72 3.79 2.81 2.86 4.86

Table 3: Mean fpr values for different configurations.

of k. The performance appears adequate in all of the topolo-
gies, up to 23 subscribers (≈ 32 links); forwarding efficiency
is still above 90% in the majority of the test cases. The
result is much better than multiple unicast, where the same
links would be used multiple times by the same publication.
For example, in AS3257 the unicast forwarding efficiency is
only 43% for 23 subscribers.

Table 3 sheds light on the difference between fpa and fpr
algorithms. There is an interesting relation between the dis-
tribution of k and the optimization strategies: in our region
of interest, kc = 5 performs better than the variable k dis-
tribution (kd). As expected, fpr-optimization successfully
reduces the false positive rate, and outperforms the non-
optimised (d = 1) approach by 2–3 times in the scenarios
with 16 users. The gain of using fpa instead of the non-
optimised algorithm is clear, although not as significant as
with fpr. These improvements can be also observed in the
sample results of AS6161, see Fig. 5.

Of course, as the link IDs are inserted into the zFilters,
delivery trees are only present in the packet headers, and
therefore completely independent from each other. Hence,
the number of simultaneous active trees does not affect the
forwarding performance.

Stateful forwarding: In networks with scale-free prop-
erties, a large part of the traffic flows between high-degree
hubs. We experimented with the effects of installing virtual

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 5 10 15 20 25 30 35
 0

 2

 4

 6

 8

 10

fo
rw

ar
di

ng
 e

ffi
ci

en
cy

 (
%

)

fa
ls

e
po

si
tiv

e
ra

te
 (

%
)

Users (1 publisher and N-1 subscribers)

False positive and forwarding efficiency evaluation in AS6461 (d=8, k=5)

Standard zFilter fpr
fpa-opt. zFilter fpr
fpr-opt. zFilter fpr

Standard zFilter fw. eff.
fpa-opt. zFilter fw. eff.
fpr-opt. zFilter fw. eff.

Figure 5: ns-3 simulation results for AS 6461.

 90

 92

 94

 96

 98

 100

 10 20 30 40 50

fo
rw

ar
di

ng
 e

ffi
ci

en
cy

 (
%

)

Nodes covered (%)

Forwarding efficiency evaluation when virtual trees are installed

AS 1221
AS 3257
AS6461

Figure 6: Stateful dense multicast efficiency

links covering different parts of the network. We built vir-
tual links from the publisher towards the core and between
the hubs, but that enhanced the performance only slightly,
as virtual links substituted only a couple of physical links.

Significant performance enhancements can be reached if
we install virtual links rooted at (high-degree) core nodes
and covering a set of subscribers, avoiding thereby the pres-
ence of many LITs in the zFilter. The results on Fig. 6 show
that dense multicast can be supported with more than 92%-
95% forwarding efficiency even if we need to cover more than
50% of the total nodes in the network (cf. Table 2).

Forwarding table sizes: Assuming that each forward-
ing node maintains d distinct forwarding tables, with an
entry consisting of a LIT and the associated output port,
we can estimate the amount of memory we need for the for-
warding tables:

FTmem = d · #Links · [size(LIT) + size(Pout)] (4)

Considering d = 8, 128 links (physical & virtual), 248-bit
LITs and 8 bits for the outport, the total memory required
would be 256Kbit, which easily fits on-chip.

Although this memory size is already small , we can design
a more efficient forwarding table by using a sparse represen-
tation to store just the positions of the bits set to 1. Thereby,
the size of each LIT entry is reduced to k ·log2(LIT) and the
total forwarding table requires only ≈ 48Kbit of memory, at
the expense of the decoding logic.

4.3 Discussion
To support larger trees than we can comfortably address

with a single zFilter, two choices can be considered. First,
we can create virtual links to maintain the fill factor and
to keep the overdeliveries under control. This comes at the

201

[Jokela et al., 2009] Jokela, P., Zahemszky, A., Esteve Rothenberg, C., Arianfar, S., and Nikander, P. (2009).
Lipsin: Line speed publish/subscribe inter-networking. SIGCOMM Comput. Commun. Rev., 39(4):195– 206.

Multi Stage BF
• Divide a delivery tree into stages

• Generally, each stage has individual trees

• Operation performed at topology
manager

• Provide single BF forwarding identifier per
stage

• Concatenate all stage into variable size
header

• Perform BF-based forwarding at each
stage

• Remove appropriate BF after each stage

Stage 2

Stage 1

Stage 3

<256 bits <256 bits <256 bits DATA

Topology Formation
• Calculate a tree with 0 false positives for given <pub,subs> relationship

• Within each stage:

• Define in_tree as the set of LIds being in the tree and out_tree as the ones that are not

• Determine minimal length of BF that can hold in_tree with P(false positive)=0 (also
taking into account out_tree)

• Determine BF through ORing in_tree into BF

• Test if BF would cause false positives, then increase the length if so.

• Determine overall header by joining all possible stages

• Write length of stageBF through Elias omega encoding (https://en.wikipedia.org/wiki/
Elias_omega_coding)

• Write the stageBF

https://en.wikipedia.org/wiki/Elias_omega_coding

Summarising

length h 10 bits length h 8 bits length h 9 bits DATA

Stage 2

Stage 1

Stage 3

S

P

in tree
out tree

Pros and Cons
• Advantages

• Arbitrary tree size (limits may exist for maximum size for variable length header)

• Tradeoff between false positive rate and header size (in this approach false
positives is zero)

• Single hop vs multi-hop stages possible (single hops naturally limit BF
anomalies)

• Lends itself to inter-domain as well as intra-domain forwarding

• Disadvantages

• Higher complexity in forwarding (decompress/compress)

• Higher overhead due to variable length, but overhead reduces as you traverse
the tree

source: PURSUIT FP7 public dissemination reports.

Header Length

Prototype

Blackadder
• Implements design tenets

• Based on Click router platform

• Easy user/kernel space
support

• Portable to other OSes

• Compatible with ns-3

• Available at: https://github.com/
fp7-pursuit/blackadder

• Domain-local throughput
reaches 1GB/s

IEEE Communications Magazine • July 2012 63

receiving a matching notification from the ren-
dezvous function.

NODE IMPLEMENTATION
Figure 3 shows the architecture of a single net-
work node in our system. Currently, our node
design is utilizing the Click Router framework
[8], enabling the realization of problem solutions
from the lowest (Ethernet) level to the applica-
tion level. Our prototype runs as a user space
application or kernel space Linux module. This
is a direct benefit from basing our prototype on
the Click router framework.

The IPC element implements a non-blocking
interprocess mechanism (currently, we support
netlink and TCP loopback sockets) so that user-
space applications can issue publish/subscribe
requests to communicate with our prototype,
using the service model described earlier.

The lower part of Fig. 3 consists of the com-
munication elements, which are responsible for
transmitting publications to the network. The
current implementation is based on Click ele-
ments, creating Ethernet frames and forwarding
them to the appropriate network interface. In
addition, we provide the ability to utilize raw IP
data packets as an alternative mechanism. This
enables us to test the prototype in Internet-wide
scenarios.

The local proxy element keeps a record of all
pending subscriptions within local applications
(connected via the IPC element), dispatching
requests to the appropriate functions upon
arrival. The functions for rendezvous (RV),
topology management (TM), and forwarding are
the core elements of our network node, address-
ing the fourth tenet of our functional model.
Their implementation depends on the dissemi-
nation strategy that is supported by each net-
work node. We outline the currently
implemented strategies and therefore the differ-
ences in implementing these functions.

In general terms, the rendezvous element
implements the matching functionality for all
scopes the particular network node is authorized
to manage. The topology formation element runs
in each network node. Its responsibility is to
enrich the scope data structures with appropriate
forwarding information once a match between
publisher(s) and subscriber(s) has been made.
We currently use the iGraph library [9] for com-
puting shortest paths between network nodes.
Finally, the forwarding element receives publica-
tions from the local proxy and communication
elements. Depending on the forwarding informa-
tion in each frame, it forwards them to other
network interfaces and/or to the local proxy,
which in turn forwards the frames to interested
applications.

Figure 3 is a minimal implementation that
realizes the core functional model described ear-
lier. Additional “problems” that would utilize
the layering property of our functional model
relate to, e.g., congestion and flow control,
caching and other functionality. We briefly pre-
sent an example of fragmentation.

The Click approach favors extensibility over
performance. Combining the Click basis with
approaches such as directly compiling Click ele-
ments onto NetFPGA hardware [10] or partially

replacing Click elements with memory-optimized
modules is a software engineering effort that
needs to be undertaken to improve overall node
performance.

IMPLEMENTED DISSEMINATION STRATEGIES
Our prototype provides us with the basis for
implementing a variety of dissemination strate-
gies. The following section provides examples of
such strategies.

Dissemination within a Single Node —
Within a single node, information is merely dis-
seminated among local applications that are con-
nected via the IPC interface. The IPC socket
here serves as the information that represents
the dissemination strategy.

Dissemination over a Single Local Link —
Here, we assume nodes being directly connected
in an Ethernet LAN. Given the known location
of publisher and subscriber, an explicit ren-
dezvous is not required. The prototype merely
forwards data to the communication elements.
The topology formation function is implemented
through the link management within the local
Ethernet drivers, such that an existing link is
interpreted as an established topology between
both nodes. The link local Ethernet operations,
which are supported by the Click elements,
implement the forwarding function.

Dissemination within a Local Graph — Let
us now expand towards a local graph of nodes.
The approach in [11] presents a solution for dis-
seminating information along such a graph,
using a constant length identifier (called LIPSIN
identifier in the following). For that, every link
in the graph is denoted with its (locally unique)
identifier, which is folded into a single Bloom-
filter-based identifier of constant length. When
now sending information from the publisher to a
set of subscribers, the forwarding nodes along
the graph compare the given identifier against
their local outgoing link identifiers (this being
implemented through an AND operation). In
the case of a positive match, the incoming infor-
mation is copied toward the positive outgoing

Figure 3. Node implementation architecture.

Cl
ic

k

Local proxy

Forwarding

Rendezvous Topology
formation

IPC element

Communication elements

AppN...App4App3App2App1

/dev/eth0 /dev/eth1 Raw IP sockets

TROSSEN LAYOUT_Layout 1 6/21/12 3:21 PM Page 63

Bl
ac

ka
dd

er
 N

od
e

*Trossen, D. and Parisis, G. (2012). Designing and realizing an information-centric internet. IEEE Communications
Magazine, 50(7):60–67.

https://github.com/fp7-pursuit

Click scheme

proxy loRV

FW

tonetlink

raw socket (UDP, 55555)
IPClassifier(dst udp port 55555 and src udp port 55555)[0]

1000

thread safe queue

0

0

1 0

2

1

fromnetlink
BA-APP

Node Structure
require(blackadder);

globalconf::GlobalConf(MODE ip, NODEID 00000001,
DEFAULTRV
000
000
000000100
0000000000000000000000000000000000000,
TMFID
000
000
000000100
0000000000000000000000000000000000000,
iLID
000
000
000000100
0000000000000000000000000000000000000);

Node Structure
localRV::LocalRV(globalconf);
netlink::Netlink();
tonetlink::ToNetlink(netlink);
fromnetlink::FromNetlink(netlink);

proxy::LocalProxy(globalconf);

fw::Forwarder(globalconf,2,
1,192.168.15.4,192.168.15.5,00
000000000000000100
00
00
0000,
1,192.168.15.4,10.0.2.17,000
00
0000000000000000000000000000000000010000000000000000000000000000000000
00
0);

Testbed
• 9 international sites

• 26 machines with
+40 on demand ones

• tunneled via
openVPN with
configurable
topologies

*Trossen, D. and Parisis, G. (2012). Designing and realizing an information-centric internet. IEEE Communications
Magazine, 50(7):60–67.

Fast Path Evaluation
Forwarding efficiency

• 15 in a chain

• Multicasting
(when nodes is
sub)

• ~line speed even
when 3 subs per
node for 13 nodes

• Degradation when 6
pubs and more due
to local copies

*Trossen, D. and Parisis, G. (2012). Designing and realizing an information-centric internet. IEEE Communications
Magazine, 50(7):60–67.

Slow Path Evaluation
• 100.000 adverts under single

scope

• Subscribers subscribe to random
item, wait until receive it and
reiterate (500 times)

• -> worst case for slow path
(ignores any possible
optimisations due to domain-local
rendezvous or mutable semantics)

• Node local: No net delays, No TM, 20ms for 500 processes.

• Domain local (Gbit-LAN): Centralised TM, ~400ms for 500
processes per node (7000 subs)

• Domain local (Planet Lab): Large delays, ~250ms for 1 sub per
node (73 in total), 680 ms for 500 subs

source: PURSUIT FP7 public dissemination reports.

Conclusions
• Information centric networking as a raising paradigm for

dealing with scalable access to information

• Two main different strategies: completely distributed
(CCN), and partially distributed (PURSUIT, PSIRP, LIPSIN).

• Potential state explosion in CCN based on naming versus
economy of space for LIPSIN/PURSUIT

• Open issues: interfacing existent services over IP,
standardisation of interfaces for regular devices: discovery
of information and services in local networks, and wider
area networks.

