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A general Information
Centric Networking
arcnitecture considering lol

[Song et al., 2013]



Design Tenets

Weak networked devices with restricted capacity

Super Routers designed with core network capacity
not appropriate for edge networks

Proposing an architecture for task mapping: mapping
the overcapacity tasks (store/pub/sub,pull retrieve)

Propose ditferent strategies tfor task mapping

Camera use-case



Context

e Four layers for loT: object sensing/controlling, data communication,
information integration, app and service layer.

e CCN as an architectural base for data communication.
* SR with large content stores.

* Millions of ND connected with restricted storage, computing and
communication.

« ND as consumer: difficult to retrieve content or services on the
edges

 ND as a producer: not having large enough storage to publish
the produced content.



Some preliminary of Work

« Named data support in V2V communication (not
considering storage and computing capabilities)

e Efficient ad-hoc networking. Content within the ad-
hoc network, thus content retrieval from the edge
(non-existent)

* Multicast for mobility (Motioncast)



CCN for resource
constrained ND

 ND are restrained enough to interact directly with CCN basic
model.

e Proposed memory-in-core-networks, having the tollowing
messages

e M from ND

* IM from SR (the nearest optimal) after decoding what the IM/
ND transport

e Datato SR

e Data (ACK) to the ND
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Features

SR-dependent (there is no separation in original
CCN)

ND-driven: CCN is a consumer driven architecture,
M being sent from consumers. In this architecture
M are sent for both consuming and producing.

2 Nested IM/data

Memory In core network.



Case 1: ND as producer

Network Device
as a Producer

'

Produce a content
Interest for storing service “IS”

Super Router

- Interest for content to be stored “IC”

-

\

If “IS” in
Service Index

Data for content to be stored “DC”

Data for storing service “DS” as response

>

-

Drop the content

\J

\/

Store the content, announce
the name 1n core networks

Fig. 2. Strategy for resource-constrained ND as a producer



Case 2: ND as consumer

Network Device Super Router Local applications
as a Consumer or other SRs

Desire for a content
Interest for retrieving service “IS”

>
 J
If “IS” in
Service Index
Interest for content to be retrieved “IC” .
- Data for content to be retrieved “DC”
Data for retrieving service “DS” with content
-
\J Y Y

Fig. 3. Strategy for resource-constrained ND as a consumer



Use Case

service/storing-publishing/video/traffic/{Tucheng Road, Xueyuan Road}/{1334601700,1334604800}

Camera as Producer
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Fig. 4. Cases for content-centric internetworking scheme based on task mapping

/service/service-retrieving/target- classification/surveillance-HOG/FHOG(HOG features)



Information Centric
Networking over lol: a use-
case with There equipment

[Waltari, 2013]



Content Centric Networking
nlol

0T seen as a large scale sensing eco-system (all
possible devices contribute)

e |nformation not being produced by humans

The internet was not designed for data sharing use-
case

Network services for loT through CCN

Two main challenges: connectivity & communication



Why CCN / loT

* Most current communication protocols rely on point
to point connections (vulnerable to link
breakdowns)

* Relying on data storages (single point of failures)

* High diversity of loT protocols



What problems to address

» Connectivity

 Naming of every point of communication (universally
addressed)

 Communication
 Competing protocols
 Gateways and protocols to interconnect competing protocols
* Central data storages

 Opaque network caching



Goals

No point to point connections
e |[CN network definition
Transparent in-network caching
* |[CN network infrastructure
In-network storage of sensor data
e |CN in-network support for alternative storage
Reduced workload for sensor devices
e Caching alleviates sensor’s load
High level abstraction layer to access sensor devices

* Naming in ICN



Architecture

[ Semantic layer ]

semantic middleware

Internet layer

connectivity for everything

[ Things layer ]

Figure 2: Internet of Things paradigm illustrated as a stack.



accessing content

* client accessing ccnx://foobar, will obtain ccnx://

foobar/index.html \

ccnx://foobar/login.html

l

ccnx://foobar/video



ccnx://foobar
ccnx://foobar/index.html
ccnx://foobar/login.html
ccnx://foobar/video

CCN architecture

IM: interest messages, CO: content objects, CR: content routers
Forwarding Information Base (FIB)

e forwarding info for routing IM

Pending Interest Table (PIT)

» traces left on each CR to find way back when IM has been satisfied
Content Store (CS)

» cache within CR that stores CO

Caching is done in all CCN enabled routers



Data Retrieval

 CCN is pull-data driven (hierarchical name plus some description)

* IMis sent by a client and either obtains a response or Interest lifetime
expires.

e Data returns in the way back of the IM marked path and leave copies
of the CO

L]

d(t) o

P

d(t)
i ;

Figure 5: Two clients are interested in data object d(t). Intermediate CCN router

provides a cached copy of d(t) in exchange to the second interest 7.



One sensor multiple
CONSUMErS

* n clients scattered around the network, data d
generated at time t (d(t)) from the sensor

* each of the n clients generated IM matching d(t)
* one of n messages arrive first to the sensor, then:

* the CR caches a copy of the Object which is sent
back to other clients also waiting for it.



Stored Data Retrieval

* Since caches are volatile

there has to be a permanent sw, d(t) d(t) 1. -1
repository in a CCN (on a 7’ 1 ;
CR) a(t)

e Criteria has to be defined to Y\d“}
store in permanen’[ rep i, i
e the Star’[ Write command has Figure 6: Sensor node pushes its data to a CCN repository. Data is available at the

e be issued from sSensor to repository even if cached copies at the CCN router had expired.
the Rep (asynchronously)

* |M goes directly to the
Rep therefore the sensor
has control of the data
pushing (and energy
consumption)



Actuators

* a prefix per action should be appended to the name,
ex. ccnx://alice/light/on

* IMon ‘light on" is routed to the actuator, which sends
in turn an ACK saying "light is on".

e Some contradictions with ICN
e | ocation matters

* No benefits from in-network cache, actually caching
tends to be harmful


ccnx://alice/light/on

Implementation PoC

repository

Pttt . e s

ThereCo re)

sensor
interface

PIT, FIB Interface with sensors (handlers):
* reqgisters serving sensors

*

sensor
mesh

Internet




{

}

Specifics of pb-ccnx

linked list (n = curr = prev+1)

"ts":"1379431971",
"prev":"1379431671",

"data":
{

"attr":"Temperature”,
"val":"22.50"

}
]

JSON for CO of a
temperature sensor

pulls special names
and control data

[

access: ccnx:/my/temperature/n

ccnx://my/temperature/n+1

CCN | ' [
repository

- - - -y

handler1

.

\

handler2

>

7~

.

(

———————

handlern

I]

DBus monitor ]1—

— -

I


ccnx://my/temperature/n
ccnx://my

Tests Performed (reviewed)

cenx:/.../[n] < cenx:/. .. /[n+l]  <€— ccnx:/.../[n+2]

payload payload payload
ts: n ts: n+1 ts: n+2
prev: -1 prev: n prev: n+l
time >

Figure 11: Linked list construction where previous link is carried within the payload.

e [ransparent in network caching
* In network storage of sensor data

* High level abstraction of devices



Increasing the Scale

[Baccelli et al., 2014]



Implication of Routing
Approacnes

* Current ICN proposals rely on IP routing or use
proactive link state algorithms.

* |arge amount of control traftic (with or without
data)

* |arge amount of memory O(n), where n is the
number of nodes in the network

* Routing protocols should aim for O(1) routing state
and minimal control



An implementation ICN/loT

» Porting of CCN-lite (NDN) to RIOT

 CCN-lite less than 1000 LoC in C and low memory
footprint

e restrictions
e appropriate configuration of FIBs

» for hierarchical namespaces space should be
restricted. 30 to 100 bytes per packet, and link layer
does not support fragmentation



EXperiments

e Large scale deployment set-up

60 nodes distributed in: rooms, floors, buildings, producing 200
bytes/min

Node: sub GHz wireless interface, humidity, temperature, etc.
Max frame size 64 bytes.

Experiments: 400 ms interest timeout (stop-n-go, expiring after 5
tries) 900 ms nonce timeouts, content named in NDN fashion.

names: /riot/text/a (CCN: 16+12=28 bytes)

single producer, one or multiple consumers, topology can
change due to link layer (wireless) nature.



3D visualisation of the
topology

Figure 1: 3D visualization of the topology of the deployment, consisting in 60 nodes that interconnect via
wireless communications (sub-GHz) and that are physically distributed in multiple rooms, multiple floors,
and multiple buildings.
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~looding Mechanisms

* Vanilla Interests Flooding

* To flood the entire network for every chunk.

* FIB are empty, and the content sent in the reverse path

* VIF suits loT: no additional control to maintain FIB, minimal state on FIB for reverse path
* Reactive Optimistic Name based routing

* To flood initial interest message

* Unicast subsequent messages over the path automatically configured on FIB, on the way
back

* Ex: for accessing /riot/text/a, there is an entry /riot/text/* that will later match /riot/text/b or /
riot/text/c

* |tis also considered optimistic because it assumes that all the content is stored on a single
node



Results Single Consumer
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Figure 3: Single-consumer scenario. NDN performance for different routing schemes. Average number of
packets transmitted in a network of 10 nodes to fetch content of various size.



Results Multiple Consumer +
Cache

20 chunks accessed by 1, 2 or 3 nearby consumers (pairwise 1 hop)

e cache capacity 20 chunks all nodes (2% of RAM)
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Figure 4: Multi-consumer scenario. NDN performance for RONR and different content cache schemes.
Average number of packets transmitted in a network of 20 nodes with a variable number of consumers.



Standardisation Efforts
at the IETF



Ftforts at the IETF

Information-Centric Networking: Baseline Scenarios. http://
tools.ietf.org/html/ric7476

Applicability and Tradeofts of Information-Centric Networking
for Efficient loT. draft-lindgren-icnrg-efficientiot-03. (expired,
January 7, 2016)

ICN Research Challenges. dratft-irtf-icnrg-challenges-04.
https://tools.ietf.org/html/draft-irtf-icnrg-challenges-04. (active)

ICN based Architecture for loT - Requirements and Challenges.
draft-zhang-iot-icn-challenges-02. https://tools.ietf.org/html/
draft-zhang-iot-icn-challenges-02. (expired, February 29, 2016)



https://tools.ietf.org/html/draft-irtf-icnrg-challenges-04
https://tools.ietf.org/html/draft-zhang-iot-icn-challenges-02

Baseline Scenarios

Social Networking
Real-Time Communication
Mobile Networking
Infrastructure Sharing
Content Dissemination
Vehicular Networking
Delay- and Disruption-Tolerance
Opportunistic Content Sharing
Emergency Support and Disaster Recovery
Internet of Things

Smart City



Applicability and Tradeoffs

e The importance of time

* Handling actuators in the ICN model document ghject
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Research Challenges

Naming, Data Integrity, and Data Origin Authentication
Security

Routing and Resolution System Scalability

mechanisms
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|[CN based Architecture for loT
Requirements and Cha\lenges

loT Architectural Requirements
. Naming

. Scalability

. Resource Constraints

. Traffic Characteristics

. Contextual Communication

. Handling Mobility

. Storage and Caching

. Security and Privacy

. Communication Reliability

. Self-Organization

. Ad hoc and Infrastructure Mode

. Open API
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