
CoAP and 

MQTT

Antonio Liñán Colina, 

Zolertia



http://electronicdesign.com/iot/mqtt-and-coap-underlying-protocols-iot

http://electronicdesign.com/iot/mqtt-and-coap-underlying-protocols-iot


03-coap



https://tools.ietf.org/html/rfc7252
http://coap.technology/

• UDP-reliable (confirmable), SMS supported

• CoRE Link-format (GET /.well known/core)

• Client/Server

• IANA Registered (error codes, content format)

• Resource Discovery and asynchronous subscription

• Four-bytes compact header

• Multicast and one-to-one supported

• HTTP verbs GET, PUT, POST, DELETE

• HTTP-like header (Options)

• URI (Uniform Resource Identifier)

https://tools.ietf.org/html/rfc7252
http://coap.technology/


http://www.slideshare.net/zdshelby/coap-tutorial

http://www.slideshare.net/zdshelby/coap-tutorial


CoAP URI

coap://[aaaa::c30c:0:0:1234]:5683/actuators/leds?color=b

Host Port Path Query



http://www.slideshare.net/paolopat/mqtt-iot-protocols-comparison

http://www.slideshare.net/paolopat/mqtt-iot-protocols-comparison


apps/er-coap
apps/rest-engine



apps/er-coap
apps/rest-engine



apps/er-coap
apps/rest-engine



examples/zolertia/tutorial/03-coap/resources/res-adxl345.c

Resource declaration

Resource implementation

URI Query

Function to invoke whenever 

there’s a GET request

The CoAP Accept option can be 

used to indicate which Content-

Format is acceptable to the client.



examples/zolertia/tutorial/03-coap/resources/er-example-server.c

Resource activation

Importing the Resource



examples/zolertia/tutorial/03-coap/resources/Makefile

Search resources to include 

in the “resources” directory

REST engine and CoAP libraries



https://addons.mozilla.org/en-US/firefox/addon/copper-270430/
http://people.inf.ethz.ch/mkovatsc/copper.php

https://addons.mozilla.org/en-US/firefox/addon/copper-270430/
http://people.inf.ethz.ch/mkovatsc/copper.php


examples/zolertia/tutorial/02-ipv6/03-client-and-server

er-example-server

CoAP server in Contiki OS

Border Router

IPv6/6LoWPAN

Copper CoAP user-agent

On Firefox browse the CoAP Server, 

discover and learn its resources



apps/er-coap
apps/rest-engine

TIP: enable the DEBUG to 1 to print more information about the processes

taking place inside the CoAP and REST libraries (all .c files inside!)



Pong! – check the CoAP server is online

examples/zolertia/tutorial/03-coap/resources/er-example-server.c



Discover – learn the Resources the CoAP server has

examples/zolertia/tutorial/03-coap/resources/er-example-server.c



Hover over the resources to learn its attributes

examples/zolertia/tutorial/03-coap/resources/er-example-server.c



POST/PUT – change the LEDs state (on or off)

examples/zolertia/tutorial/03-coap/resources/er-example-server.c



GET – read the ADXL345 with JSON format (application/json)

examples/zolertia/tutorial/03-coap/resources/er-example-server.c



OBSERVE – get notifications about an event (press the user button)

examples/zolertia/tutorial/03-coap/resources/er-example-server.c



04-mqtt



http://mqtt.org

• On top of TCP/IP

• Publish/Subscribe messaging pattern

• Message Broker distributes topics to clients

• Topics are UTF-8 string-based with hierarchical structure

• No direct connection between clients

• Quality of Service

• Retain-Flag: new subscribed clients will received last value

• Last Will: notify other clients when disconnected ungracefully

• KeepAlive: ping request messages to the bróker

• Clients have to know beforehand the structure of the data published to a 

topic

• MQTT is data-agnostic

http://mqtt.org/


CONNECT
Waits for a connection to be established with the server

DISCONNECT
Waits for the MQTT client to finish any pending task and closes the TCP session

SUBSCRIBE
Request the server to subscribe the client to one or more topics

UNSUBSCRIBE
Request the server to subscribe the client to one or more topics

PUBLISH
Updates a topic with data



http://www.hivemq.com/blog/how-to-get-started-with-mqtt

http://www.hivemq.com/blog/how-to-get-started-with-mqtt


http://www.slideshare.net/paolopat/mqtt-iot-protocols-comparison

http://www.slideshare.net/paolopat/mqtt-iot-protocols-comparison


http://www.hivemq.com/blog/mqtt-essentials-part-5-mqtt-topics-best-practices

Topics starting with $ are special

These are reserved for the broker 

statistics

http://www.hivemq.com/blog/mqtt-essentials-part-5-mqtt-topics-best-practices


apps/mqtt

Required to be included in the process using MQTT



apps/mqtt

To start the MQTT client this function should be called first

The max_segment_size is the TCP chunk of data to be sent (default is 32 bytes)

The client_id is a string identifying the client



apps/mqtt

The keep_alive value is used by a timer waiting a PINGRES from the broken,

if expired and no response is obtained, it triggers a disconnection



apps/mqtt

Message ID (mid) is zero for QoS=0



apps/mqtt



apps/mqtt



mqtt-demo

The MQTT client publishing to the

topic “zolertia/evt/status” and 

subscribed to “zolertia/cmd/leds”

Border Router

IPv6/6LoWPAN

mqtt_client.py

Paho MQTT client

Subscribed to the “zolertia/evt/status” 

topic, used to check the example

examples/zolertia/tutorial/04-mqtt

MQTT bróker

test.mosquitto.org



examples/zolertia/tutorial/04-mqtt



examples/zolertia/tutorial/04-mqtt

static void
mqtt_event(struct mqtt_connection *m, mqtt_event_t event, void *data)
{
switch(event) {
case MQTT_EVENT_CONNECTED: {

printf("APP - Application has a MQTT connection\n");
state = STATE_CONNECTED;
break;
}
case MQTT_EVENT_DISCONNECTED: {

printf("APP - MQTT Disconnect. Reason %u\n", *((mqtt_event_t *)data));
state = STATE_DISCONNECTED;
process_poll(&mqtt_demo_process);
break;
}
case MQTT_EVENT_PUBLISH: {

pub_handler(msg_ptr->topic, strlen(msg_ptr->topic), msg_ptr->payload_chunk,
msg_ptr->payload_length);

break;
}

case MQTT_EVENT_SUBACK: {
printf("APP - Application is subscribed to topic successfully\n");
break;
}
case MQTT_EVENT_UNSUBACK: {

printf("APP - Application is unsubscribed to topic successfully\n");
break;
}
case MQTT_EVENT_PUBACK: {

printf("APP - Publishing complete.\n");
break;
}
}



examples/zolertia/tutorial/04-mqtt

STATE_INIT: mqtt_register(…)

STATE_REGISTERED: mqtt_connect(…)

STATE_CONNECTING: ctimer checking(…)

STATE_CONNECTED: mqtt_subscribe(…)

STATE_PUBLISHING: etimer_set(publish interval)

DISCONNECTED: mqtt_disconnect(…)



examples/zolertia/tutorial/04-mqtt

Set default configuration values

Create topic/subscription/id strings (STATE_INIT)

Polls the state machine as described before



apps/mqtt/mqtt.c

TIP: enable the DEBUG to 1 to print more information about the processes

taking place inside the MQTT library



examples/zolertia/tutorial/04-mqtt

MQTT demo client running on the Z1 mote

Paho MQTT client in Python subscribed

Mosquitto publishing to turn a LED on



Antonio Liñán Colina

Twitter: @4Li6NaN

LinkedIn: Antonio Liñan Colina

github.com/alignan

hackster.io/alinan

alinan@zolertia.com

antonio.lignan@gmail.com


