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• In-memory Processing
• Stream Processing

Contents
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• Designed to process very large datasets
• Efficient at processing the Map stage

• Data already  distributed

• Inefficient in I/O - Communications
• Data must be loaded and written from HDFS
• Shuffle and Sort incur on large network traffic

• Job startup and finish takes seconds, regardless of 
size of  the dataset

Hadoop is a batch processing framework
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• Rigid structure: Map, Shuffle Sort, Reduce 
• No support for iterations
• Only one synchronization barrier
• See graph processing as an example…

Map/Reduce is not a good fit for every case
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• Data is already loaded in memory before starting 
computation

• More flexible computation processes
• Iterations can be efficiently supported
• Three big initiatives

• Graph-centric: Pregel
• General purpose: Spark
• SQL focused (read-only) : Cloudera Impala (Google 

Dremel)

In-memory processing
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• Iterative Parallel computing model proposed by 
Valiant in the 70s

• Computation happens in supersteps (iterations), 
with global synchronization points

• Every process works independently
• Processes can send messages to other processes
• A global synchronization barrier forces all 
processors to wait until everyone has finished

Bulk Synchronous Parallel (BSP)
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BSP synchronization model
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• Implement BSP for vertex-centric graph processing
• Different high-level abstraction: vertex, receiving 
and sending messages every iteration

• Open source implementation in Apache Giraph 
(built on top of Hadoop), other frameworks (Hama, 
Spark GraphX)

• Graph is automatically partitioned among the 
distributed machines

• No fault tolerance

Google Pregel
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public void compute(Iterator<DoubleWritable> msgIterator) {
if (getSuperstep() == 0) {

setVertexValue(new DoubleWritable(Double.MAX_VALUE));
}
double minDist = isSource() ? 0d : Double.MAX_VALUE;
while (msgIterator.hasNext()) {

minDist = Math.min(minDist, msgIterator.next().get());         }
if (minDist < getVertexValue().get()) {

setVertexValue(new DoubleWritable(minDist));
for (LongWritable targetVertexId : this) {

FloatWritable edgeValue = getEdgeValue(targetVertexId);
sendMsg(targetVertexId,  new DoubleWritable(minDist + edgeValue.get()));

}
}
voteToHalt();

}

Pregel example: SSSP in Apache Giraph
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• Originated at Berkeley uni, at AMPLab (creator 
Matei Zaharia)
• Now spin off company, DataBricks, handles development

• Origin: Resillient Distributed Datasets Paper 
• NSDI’ 12 – Best paper award

• Released as open source
• Became Apache top level project recently

• Currently the most active Apache project!

Spark project
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• Goal: Provide distributed collections (across a 
cluster) that you can work with as if they were local

• Retain the attractive properties of MapReduce:
• Fault tolerance (for crashes   stragglers)
• Data locality
• Scalability

• Approach: augment data flow model with “resilient 
distributed datasets” (RDDs)

Spark
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• Resilient distributed datasets (RDDs)
• Immutable collections partitioned across cluster that can 

be rebuilt if a partition is lost
• Can be cached across parallel operations

• Transformations (e.g. map, filter, groupBy, join) 
• Lazy operations to build RDDs from other RDDs 

• Actions (e.g. count, collect, save) 
• Return a result or write it to storage 

Resillient Distributed Datasets
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Spark RDD operations

Transformations
(define a new RDD from an 

existing one)
map
filter
sample
union
groupByKey
reduceByKey
join
cache
…

Parallel operations
(take an RDD and return a 

result to driver)
reduce
collect
count
save
lookupKey
…
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• It is possible to write Spark programs in Java, or Python, 
but Scala is the native language

• Syntax is similar to Java (bytecode compatible), but has 
powerful type inference features, as well as functional 
programming possibilities.
• We declare all variables as val (type is automatically inferred)
• Tuples of elements (a,b,c) are first order elements.

• Pairs (2-Tuples) will be very useful to model key-value pair elements

• We will make extensive use of Scala functional capabilities for 
passing functions as parameters
• x => x+2

Scala notes for Spark
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val lines = spark.textFile(“hdfs://...”)

val words = lines.flatMap(lines => 
lines.split(“\\s”) )

val counts = words.map(word => (word, 1))

.reduceByKey((a,b)=>a+b)

counts.saveAsTextFile(“hdfs://...”)

Word Count in Spark (Scala code)
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• A Spark application consists of a driver program that 
executes various parallel operations on RDDs partitioned 
across the cluster. 

• RDDs are created by starting with a HDFS or an existing 
Scala collection in the driver program, and transforming it. 
• Users may also ask Spark to persist an RDD in memory, allowing it 

to be reused efficiently across parallel operations. 

• Actions transfer RDDs are retrieved to either HDFS storage, 
or the memory of the driver program

• Spark also supports shared variables that can be used in 
parallel operations: broadcast variables, and accumulators

A closer look at Spark
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Spark Execution Architecture
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Where is my data?
RDDs

Transformations

Actions

CreateRDD

H
D

FS
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• Any existing collection can be converted to an RDD 
using parallelize
• sc.parallelize(List(1, 2, 3)) 

• HDFS input can be read with sc methods
• sc.textFile(“hdfs://namenode:9000/path/file”)
• Returns a collection of lines
• Other sc methods for reading SequenceFiles, or any 

Hadoop compatible InputFormat

Creating RDDs

19



• Computation is expressed as functions that are applied in RDD 
transformations, actions

• Anonymous functions (implemented inside the transformation)
timeSeries.map ((x: Int) => x + 2) // full version 
timeSeries.map ( x => x + 2 )// type inferred 
timeSeries.map (_ + 2 )// when each argument is used exactly once 
timeSeries.map ((x => { // when body is a block of code
val numberToAdd = 2 
x + numberToAdd })

• Named functions
def addTwo(x: Int): Int = x + 2 
list.map(addTwo) 

‘Move computation to the code’ in Spark
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• map: creates a new RDD with the same number of 
elements, each one is the result of applying the 
transformation function to it
• val tweet = messages.map( x => x.split(“,”)(3) ) //we 
select the 3rd element

• filter: creates a new RDD with at most the number of 
elements from the original one. The element is only 
transferred if the function returns true for the element
• val grave= logs.filter( x => x.startsWith(“GRAVE”) ) 

Sample Spark RDD Transformations
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• Analogous to functional programming. Returns one
single value from a list of values

• Applies a binary function that returns one value 
from two equal types
• list.reduce ((a,b) => (a+b) )
• [1,2,3,4,5] -> 15

• ReduceByKey is the transformation analogous to 
MapReduce’s Reduce + Combine

Spark RDD reduce operations
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• Spark has specific transformations that mirror the shuffling 
taking place between Map and Reduce jobs
• They require the input RDD to be a collection of pairs of 

(key,value) elements
• reduceByKey: groups together all the values belonging to 

the same key, and compute a reduce function (returning a 
single value from them)

• groupByKey: returns a dataset of (K, Iterable<V>) pairs 
(more generic)
• If followed by a Map it is equivalent to MapReduce’s Reduce

Map/Reduce pattern in Spark
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• RDD transformations are executed in parallel
• An RDD is partitioned into n slices
• Slices might be located in different machines
• Slice: Unit of parallelism
• How many? 2-4 slices are ok per CPU
• Number of slices is automatically computed

• Default: 1 per HDFS block size when reading from HDFS, can be 
higher

Spark Parallelism
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RDD Execution & message flows
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• Contrary to MapReduce, RDDs do not have to be 
key/value pairs

• Key/value pairs are usually represented by Scala 
tuples

• Easily created with map functions
• x => (x,1)

• The ._1, ._2 operator allows to select key or value 
respectively

Scala/Spark use of tuples
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• Spark can persist (cache) a dataset in memory across 
operations: Each node stores in memory the partitions it 
computes for later reuse.
• Much faster future actions to be much faster (>10x). 
• Key tool for iterative algorithms and fast interactive use.

• Explicit action: use persist() or cache() methods
• The first time it is computed in an action, it will be kept 

in memory on the nodes. created it.

• Multiple persistence options (memory &| disk)
• Can be difficult to use properly

RDD Persistence
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• Load error messages from a log into memory, then 
interactively search for various patterns

Example: Log Mining

lines = spark.textFile(“hdfs://...”)

errors = lines.filter(_.startsWith(“ERROR”))

messages = errors.map(_.split(‘\t’)(2))

cachedMsgs = messages.cache()

Block 1

Block 2

Block 3

Worker

Worker

Worker

Driver

cachedMsgs.filter(_.contains(“foo”)).count

cachedMsgs.filter(_.contains(“bar”)).count

. . .

tasks

results

Cache 1

Cache 2

Cache 3

Base RDD

Transformed RDD

Cached RDD
Parallel operation

Result: full-text search of Wikipedia in <1 sec (vs
20 sec for on-disk data)



• Spark provides option on which execution platform 
to use
• Mesos: solution developed also at UC Berkeley, default 

option. Also supports other frameworks
• Apache Hadoop YARN: integration with the Hadoop 

resource manager (allows Spark and MapReduce to 
coexist)

Spark execution platform

29



• Spark only executes RDD transformations the 
moment are needed

• When defining a set of transformations, only the 
invocation of an action (needing a final result) 
triggers the execution chain

• Allows several internal optimisations
• Combining several operations to the same element 

without keeping internal state

Deferred execution
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val data = spark.textFile(...).map(readPoint).cache()

var w = Vector.random(D)

for (i <- 1 to ITERATIONS) {
val gradient = data.map(p =>

(1 / (1 + exp(-p.y*(w dot p.x))) - 1) * p.y * p.x
).reduce(_ + _)
w -= gradient

}

println("Final w: " + w)

Logistic Regression Code

31



• “With great power comes great responsibility”
Ben Parker

• All the added expressivity of Spark makes the task 
of efficiently allocating the different RDDs much 
more challenging

• Errors appear more often, and they can be hard to 
debug 

• Knowledge of basics (eg Map/Reduce greatly helps)

Spark performance issues
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• Memory tuning
• Much more prone to OutOfMemory errors than 

MapReduce.
• How much memory is taken for each RDD slice? 

• How many partitions make sense for each RDD?
• What are the performance implications of each 
operation?

• Good advice can be found in
• http://spark.apache.org/docs/1.2.1/tuning.html

Spark Performance Tuning
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• GraphX
• Node and edge-centric graph processing RDD

• Spark Streaming
• Stream processing model with D-Stream RDDs

• MLib
• Set of machine learning algorithms implemented in Spark

• Spark SQL

Spark ecosystem
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• In-memory Processing
• Stream Processing

Contents
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• Data is continuously generated from multiple 
sources
• Messages from a social platform (e.g. Twitter)
• Network traffic going over a switch
• Readings from distributed sensors
• Interactions of users with a web application

• For faster analytics, we might need to process the 
information the moment it is generated 
• Process the information streams

Information streams
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• Continuous processing model
• Rather than processing a static dataset, we apply a 
function to each new element that comes from an 
information stream

• Rather than single results, we look for the evolution 
of computations, or to raise alerts when something 
is different than the norm

• Near real-time response times

Stream processing
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Information Streams

Message M M M M M

Unbounded sequence of messages
Arrival time is not fixed

t
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• Developed by BackType which was acquired by 
Twitter. Now donated to Apache foundation

• Storm provides realtime computation of data 
streams
• Scalable (distribution of blocks, horizontal replication)
• Guarantees no data loss
• Extremely robust and fault-tolerant
• Programming language agnostic

Apache Storm
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Storm Topology

Spouts and bolts execute as many tasks across the cluster 
Horizontal scaling/parallelism
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• Unlike pure stream processing, we process the 
incoming messages on micro batches

Spark Streaming: Discretized Streams
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• Reuse Spark Programming model
• Transformations on RDDs

• RDDs are created combining all the messages in a 
defined time interval

• A new RDD is processed at each slot
• Spark code for creating one:

• val streamFromMQTT = MQTTUtils.createStream(ssc, 
brokerUrl, topic, StorageLevel.MEMORY_ONLY_SER_2)

Discretized Streams
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Dstream RDDs

Discreteness of time matters!
- The shorter the time the faster response potentially
- … but also makes it slower to process
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D Stream transformations
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• Spark streaming flows are configured by creating a 
StreamingContext, configuring what 
transformations flow will be done, and the invoke 
the start method
• val ssc = new StreamingContext(sparkUrl, 
"Tutorial", Seconds(1), sparkHome, 
Seq(jarFile))

• There must be some action collecting in some way 
the results of a temporal RDD

D-Stream Streaming context
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Sample topology: Website click analysis

Filter
Bot 

Accesses

Stream of 
website 

clicks

Save to 
Cassandra

Accessed 
Website

URLs

Append to 
HDFS

Compute 
count 

referrals

Compute 
top 

referrals
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• Some computations need to look at a set of stream 
messages in order to perform its computation

• A sliding window stores a rolling list with the latest 
items from the stream

• Contents change over time, replaced by new 
entries 

Sliding windows

Message M M M M M M
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• D-Stream provides direct API support for specifying 
streams

• Two parameters: 
• Size of the window (in seconds)
• Frequency of computations (in seconds)

• E.g. process the maximum temperature over the 
last 60 seconds, every 5 seconds.
• reduceByWindowAndKey((a,b)=>math.max(a,b),

Seconds(60, Seconds(5) )

Sliding window operations in Spark D-Stream
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Sample Twitter processing stream

FlatMap
s=>s.split(“ “)

Map 
t=>t.status statusestweets words

hashtagsFilter
w=>w.startsWith(“ #“)

Map 
h=> ( h,1 )  

words

ReduceByKeyAndWindow
_ + _ , Seconds (60 * 500), Seconds (1)hashtags hashtag

counts
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Sample Twitter Processing Stream
val ssc = new StreamingContext(sparkUrl, 
"Tutorial", Seconds(1), sparkHome, Seq(jarFile))
val tweets = ssc.twitterStream()
val statuses = tweets.map(status => status.getText())
val words = statuses.flatMap(

status => status.split(" "))
val hashtags = words.filter(

word => word.startsWith("#"))
val hashtagCounts = hashtags.map(tag => (tag, 1)).

reduceByKeyAndWindow(
_ + _, Seconds(60 * 5), Seconds(1))

ssc.checkpoint(checkpointDir)
ssc.start();
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