
IN-MEMORY AND STREAM
PROCESSING
BIG DATA
Félix Cuadrado
felix.cuadrado@qmul.ac.uk

Workshop on Scientific Applications for IoT
ICTP, Trieste, Italy. 24th March 2015

• In-memory Processing
• Stream Processing

Contents

2

• Designed to process very large datasets
• Efficient at processing the Map stage

• Data already distributed

• Inefficient in I/O - Communications
• Data must be loaded and written from HDFS
• Shuffle and Sort incur on large network traffic

• Job startup and finish takes seconds, regardless of
size of the dataset

Hadoop is a batch processing framework

3

• Rigid structure: Map, Shuffle Sort, Reduce
• No support for iterations
• Only one synchronization barrier
• See graph processing as an example…

Map/Reduce is not a good fit for every case

4

• Data is already loaded in memory before starting
computation

• More flexible computation processes
• Iterations can be efficiently supported
• Three big initiatives

• Graph-centric: Pregel
• General purpose: Spark
• SQL focused (read-only) : Cloudera Impala (Google

Dremel)

In-memory processing

5

• Iterative Parallel computing model proposed by
Valiant in the 70s

• Computation happens in supersteps (iterations),
with global synchronization points

• Every process works independently
• Processes can send messages to other processes
• A global synchronization barrier forces all
processors to wait until everyone has finished

Bulk Synchronous Parallel (BSP)

6

BSP synchronization model

7

• Implement BSP for vertex-centric graph processing
• Different high-level abstraction: vertex, receiving
and sending messages every iteration

• Open source implementation in Apache Giraph
(built on top of Hadoop), other frameworks (Hama,
Spark GraphX)

• Graph is automatically partitioned among the
distributed machines

• No fault tolerance

Google Pregel

8

public void compute(Iterator<DoubleWritable> msgIterator) {
if (getSuperstep() == 0) {

setVertexValue(new DoubleWritable(Double.MAX_VALUE));
}
double minDist = isSource() ? 0d : Double.MAX_VALUE;
while (msgIterator.hasNext()) {

minDist = Math.min(minDist, msgIterator.next().get()); }
if (minDist < getVertexValue().get()) {

setVertexValue(new DoubleWritable(minDist));
for (LongWritable targetVertexId : this) {

FloatWritable edgeValue = getEdgeValue(targetVertexId);
sendMsg(targetVertexId, new DoubleWritable(minDist + edgeValue.get()));

}
}
voteToHalt();

}

Pregel example: SSSP in Apache Giraph

9

• Originated at Berkeley uni, at AMPLab (creator
Matei Zaharia)
• Now spin off company, DataBricks, handles development

• Origin: Resillient Distributed Datasets Paper
• NSDI’ 12 – Best paper award

• Released as open source
• Became Apache top level project recently

• Currently the most active Apache project!

Spark project

10

• Goal: Provide distributed collections (across a
cluster) that you can work with as if they were local

• Retain the attractive properties of MapReduce:
• Fault tolerance (for crashes stragglers)
• Data locality
• Scalability

• Approach: augment data flow model with “resilient
distributed datasets” (RDDs)

Spark

11

• Resilient distributed datasets (RDDs)
• Immutable collections partitioned across cluster that can

be rebuilt if a partition is lost
• Can be cached across parallel operations

• Transformations (e.g. map, filter, groupBy, join)
• Lazy operations to build RDDs from other RDDs

• Actions (e.g. count, collect, save)
• Return a result or write it to storage

Resillient Distributed Datasets

12

Spark RDD operations

Transformations
(define a new RDD from an

existing one)
map
filter
sample
union
groupByKey
reduceByKey
join
cache
…

Parallel operations
(take an RDD and return a

result to driver)
reduce
collect
count
save
lookupKey
…

13

• It is possible to write Spark programs in Java, or Python,
but Scala is the native language

• Syntax is similar to Java (bytecode compatible), but has
powerful type inference features, as well as functional
programming possibilities.
• We declare all variables as val (type is automatically inferred)
• Tuples of elements (a,b,c) are first order elements.

• Pairs (2-Tuples) will be very useful to model key-value pair elements

• We will make extensive use of Scala functional capabilities for
passing functions as parameters
• x => x+2

Scala notes for Spark

14

val lines = spark.textFile(“hdfs://...”)

val words = lines.flatMap(lines =>
lines.split(“\\s”))

val counts = words.map(word => (word, 1))

.reduceByKey((a,b)=>a+b)

counts.saveAsTextFile(“hdfs://...”)

Word Count in Spark (Scala code)

15

• A Spark application consists of a driver program that
executes various parallel operations on RDDs partitioned
across the cluster.

• RDDs are created by starting with a HDFS or an existing
Scala collection in the driver program, and transforming it.
• Users may also ask Spark to persist an RDD in memory, allowing it

to be reused efficiently across parallel operations.

• Actions transfer RDDs are retrieved to either HDFS storage,
or the memory of the driver program

• Spark also supports shared variables that can be used in
parallel operations: broadcast variables, and accumulators

A closer look at Spark

16

Spark Execution Architecture

17

Where is my data?
RDDs

Transformations

Actions

CreateRDD

H
D

FS

18

• Any existing collection can be converted to an RDD
using parallelize
• sc.parallelize(List(1, 2, 3))

• HDFS input can be read with sc methods
• sc.textFile(“hdfs://namenode:9000/path/file”)
• Returns a collection of lines
• Other sc methods for reading SequenceFiles, or any

Hadoop compatible InputFormat

Creating RDDs

19

• Computation is expressed as functions that are applied in RDD
transformations, actions

• Anonymous functions (implemented inside the transformation)
timeSeries.map ((x: Int) => x + 2) // full version
timeSeries.map (x => x + 2)// type inferred
timeSeries.map (_ + 2)// when each argument is used exactly once
timeSeries.map ((x => { // when body is a block of code
val numberToAdd = 2
x + numberToAdd })

• Named functions
def addTwo(x: Int): Int = x + 2
list.map(addTwo)

‘Move computation to the code’ in Spark

20

• map: creates a new RDD with the same number of
elements, each one is the result of applying the
transformation function to it
• val tweet = messages.map(x => x.split(“,”)(3)) //we
select the 3rd element

• filter: creates a new RDD with at most the number of
elements from the original one. The element is only
transferred if the function returns true for the element
• val grave= logs.filter(x => x.startsWith(“GRAVE”))

Sample Spark RDD Transformations

21

• Analogous to functional programming. Returns one
single value from a list of values

• Applies a binary function that returns one value
from two equal types
• list.reduce ((a,b) => (a+b))
• [1,2,3,4,5] -> 15

• ReduceByKey is the transformation analogous to
MapReduce’s Reduce + Combine

Spark RDD reduce operations

22

• Spark has specific transformations that mirror the shuffling
taking place between Map and Reduce jobs
• They require the input RDD to be a collection of pairs of

(key,value) elements
• reduceByKey: groups together all the values belonging to

the same key, and compute a reduce function (returning a
single value from them)

• groupByKey: returns a dataset of (K, Iterable<V>) pairs
(more generic)
• If followed by a Map it is equivalent to MapReduce’s Reduce

Map/Reduce pattern in Spark

23

• RDD transformations are executed in parallel
• An RDD is partitioned into n slices
• Slices might be located in different machines
• Slice: Unit of parallelism
• How many? 2-4 slices are ok per CPU
• Number of slices is automatically computed

• Default: 1 per HDFS block size when reading from HDFS, can be
higher

Spark Parallelism

24

RDD Execution & message flows

25

• Contrary to MapReduce, RDDs do not have to be
key/value pairs

• Key/value pairs are usually represented by Scala
tuples

• Easily created with map functions
• x => (x,1)

• The ._1, ._2 operator allows to select key or value
respectively

Scala/Spark use of tuples

26

• Spark can persist (cache) a dataset in memory across
operations: Each node stores in memory the partitions it
computes for later reuse.
• Much faster future actions to be much faster (>10x).
• Key tool for iterative algorithms and fast interactive use.

• Explicit action: use persist() or cache() methods
• The first time it is computed in an action, it will be kept

in memory on the nodes. created it.

• Multiple persistence options (memory &| disk)
• Can be difficult to use properly

RDD Persistence

27

• Load error messages from a log into memory, then
interactively search for various patterns

Example: Log Mining

lines = spark.textFile(“hdfs://...”)

errors = lines.filter(_.startsWith(“ERROR”))

messages = errors.map(_.split(‘\t’)(2))

cachedMsgs = messages.cache()

Block 1

Block 2

Block 3

Worker

Worker

Worker

Driver

cachedMsgs.filter(_.contains(“foo”)).count

cachedMsgs.filter(_.contains(“bar”)).count

. . .

tasks

results

Cache 1

Cache 2

Cache 3

Base RDD

Transformed RDD

Cached RDD
Parallel operation

Result: full-text search of Wikipedia in <1 sec (vs
20 sec for on-disk data)

• Spark provides option on which execution platform
to use
• Mesos: solution developed also at UC Berkeley, default

option. Also supports other frameworks
• Apache Hadoop YARN: integration with the Hadoop

resource manager (allows Spark and MapReduce to
coexist)

Spark execution platform

29

• Spark only executes RDD transformations the
moment are needed

• When defining a set of transformations, only the
invocation of an action (needing a final result)
triggers the execution chain

• Allows several internal optimisations
• Combining several operations to the same element

without keeping internal state

Deferred execution

30

val data = spark.textFile(...).map(readPoint).cache()

var w = Vector.random(D)

for (i <- 1 to ITERATIONS) {
val gradient = data.map(p =>

(1 / (1 + exp(-p.y*(w dot p.x))) - 1) * p.y * p.x
).reduce(_ + _)
w -= gradient

}

println("Final w: " + w)

Logistic Regression Code

31

• “With great power comes great responsibility”
Ben Parker

• All the added expressivity of Spark makes the task
of efficiently allocating the different RDDs much
more challenging

• Errors appear more often, and they can be hard to
debug

• Knowledge of basics (eg Map/Reduce greatly helps)

Spark performance issues

32

• Memory tuning
• Much more prone to OutOfMemory errors than

MapReduce.
• How much memory is taken for each RDD slice?

• How many partitions make sense for each RDD?
• What are the performance implications of each
operation?

• Good advice can be found in
• http://spark.apache.org/docs/1.2.1/tuning.html

Spark Performance Tuning

33

• GraphX
• Node and edge-centric graph processing RDD

• Spark Streaming
• Stream processing model with D-Stream RDDs

• MLib
• Set of machine learning algorithms implemented in Spark

• Spark SQL

Spark ecosystem

34

• In-memory Processing
• Stream Processing

Contents

35

• Data is continuously generated from multiple
sources
• Messages from a social platform (e.g. Twitter)
• Network traffic going over a switch
• Readings from distributed sensors
• Interactions of users with a web application

• For faster analytics, we might need to process the
information the moment it is generated
• Process the information streams

Information streams

36

• Continuous processing model
• Rather than processing a static dataset, we apply a
function to each new element that comes from an
information stream

• Rather than single results, we look for the evolution
of computations, or to raise alerts when something
is different than the norm

• Near real-time response times

Stream processing

37

Information Streams

Message M M M M M

Unbounded sequence of messages
Arrival time is not fixed

t

38

• Developed by BackType which was acquired by
Twitter. Now donated to Apache foundation

• Storm provides realtime computation of data
streams
• Scalable (distribution of blocks, horizontal replication)
• Guarantees no data loss
• Extremely robust and fault-tolerant
• Programming language agnostic

Apache Storm

39

Storm Topology

Spouts and bolts execute as many tasks across the cluster
Horizontal scaling/parallelism

40

• Unlike pure stream processing, we process the
incoming messages on micro batches

Spark Streaming: Discretized Streams

41

• Reuse Spark Programming model
• Transformations on RDDs

• RDDs are created combining all the messages in a
defined time interval

• A new RDD is processed at each slot
• Spark code for creating one:

• val streamFromMQTT = MQTTUtils.createStream(ssc,
brokerUrl, topic, StorageLevel.MEMORY_ONLY_SER_2)

Discretized Streams

42

Dstream RDDs

Discreteness of time matters!
- The shorter the time the faster response potentially
- … but also makes it slower to process

43

D Stream transformations

44

• Spark streaming flows are configured by creating a
StreamingContext, configuring what
transformations flow will be done, and the invoke
the start method
• val ssc = new StreamingContext(sparkUrl,
"Tutorial", Seconds(1), sparkHome,
Seq(jarFile))

• There must be some action collecting in some way
the results of a temporal RDD

D-Stream Streaming context

45

Sample topology: Website click analysis

Filter
Bot

Accesses

Stream of
website

clicks

Save to
Cassandra

Accessed
Website

URLs

Append to
HDFS

Compute
count

referrals

Compute
top

referrals

46

• Some computations need to look at a set of stream
messages in order to perform its computation

• A sliding window stores a rolling list with the latest
items from the stream

• Contents change over time, replaced by new
entries

Sliding windows

Message M M M M M M

47

• D-Stream provides direct API support for specifying
streams

• Two parameters:
• Size of the window (in seconds)
• Frequency of computations (in seconds)

• E.g. process the maximum temperature over the
last 60 seconds, every 5 seconds.
• reduceByWindowAndKey((a,b)=>math.max(a,b),

Seconds(60, Seconds(5))

Sliding window operations in Spark D-Stream

48

Sample Twitter processing stream

FlatMap
s=>s.split(“ “)

Map
t=>t.status statusestweets words

hashtagsFilter
w=>w.startsWith(“ #“)

Map
h=> (h,1)

words

ReduceByKeyAndWindow
_ + _ , Seconds (60 * 500), Seconds (1)hashtags hashtag

counts

49

Sample Twitter Processing Stream
val ssc = new StreamingContext(sparkUrl,
"Tutorial", Seconds(1), sparkHome, Seq(jarFile))
val tweets = ssc.twitterStream()
val statuses = tweets.map(status => status.getText())
val words = statuses.flatMap(

status => status.split(" "))
val hashtags = words.filter(

word => word.startsWith("#"))
val hashtagCounts = hashtags.map(tag => (tag, 1)).

reduceByKeyAndWindow(
_ + _, Seconds(60 * 5), Seconds(1))

ssc.checkpoint(checkpointDir)
ssc.start();

50

	In-memory and Stream processing�Big data
	Contents
	Hadoop is a batch processing framework	
	Map/Reduce is not a good fit for every case
	In-memory processing
	Bulk Synchronous Parallel (BSP)
	BSP synchronization model
	Google Pregel
	Pregel example: SSSP in Apache Giraph
	Spark project
	Spark
	Resillient Distributed Datasets
	Spark RDD operations
	Scala notes for Spark	
	Word Count in Spark (Scala code)
	A closer look at Spark
	Spark Execution Architecture
	Where is my data?
	Creating RDDs
	‘Move computation to the code’ in Spark
	Sample Spark RDD Transformations
	Spark RDD reduce operations
	Map/Reduce pattern in Spark
	Spark Parallelism
	RDD Execution & message flows
	Scala/Spark use of tuples
	RDD Persistence
	Example: Log Mining
	Spark execution platform
	Deferred execution
	Logistic Regression Code
	Spark performance issues
	Spark Performance Tuning
	Spark ecosystem
	Contents
	Information streams
	Stream processing
	Information Streams
	Apache Storm
	Storm Topology
	Spark Streaming: Discretized Streams
	Discretized Streams
	Dstream RDDs
	D Stream transformations
	D-Stream Streaming context
	Sample topology: Website click analysis
	Sliding windows
	Sliding window operations in Spark D-Stream
	Sample Twitter processing stream
	Sample Twitter Processing Stream

