

IN-MEMORY AND STREAM PROCESSING BIG DATA

Félix Cuadrado

felix.cuadrado@qmul.ac.uk

Workshop on Scientific Applications for IoT ICTP, Trieste, Italy. 24th March 2015

Contents

- In-memory Processing
- Stream Processing

Hadoop is a batch processing framework

- Designed to process very large datasets
- Efficient at processing the Map stage
 - Data already distributed
- Inefficient in I/O Communications
 - Data must be loaded and written from HDFS
 - Shuffle and Sort incur on large network traffic
- Job startup and finish takes seconds, regardless of size of the dataset

Map/Reduce is not a good fit for every case

- Rigid structure: Map, Shuffle Sort, Reduce
- No support for iterations
- Only one synchronization barrier
- See graph processing as an example...

In-memory processing

- Data is already loaded in memory before starting computation
- More flexible computation processes
- Iterations can be efficiently supported
- Three big initiatives
 - Graph-centric: Pregel
 - General purpose: Spark
 - SQL focused (read-only) : Cloudera Impala (Google Dremel)

Bulk Synchronous Parallel (BSP)

- Iterative Parallel computing model proposed by Valiant in the 70s
- Computation happens in supersteps (iterations), with global synchronization points
- Every process works independently
- Processes can send messages to other processes
- A global synchronization barrier forces all processors to wait until everyone has finished

BSP synchronization model

Processors

Google Pregel

- Implement BSP for vertex-centric graph processing
- Different high-level abstraction: vertex, receiving and sending messages every iteration
- Open source implementation in Apache Giraph (built on top of Hadoop), other frameworks (Hama, Spark GraphX)
- Graph is automatically partitioned among the distributed machines
- No fault tolerance

Pregel example: SSSP in Apache Giraph

public void compute(Iterator<DoubleWritable> msgIterator) {

```
if (getSuperstep() == 0) {
```

setVertexValue(new DoubleWritable(Double.MAX_VALUE));

```
double minDist = isSource() ? 0d : Double.MAX_VALUE;
```

```
while (msglterator.hasNext()) {
```

```
minDist = Math.min(minDist, msgIterator.next().get()); }
```

```
if (minDist < getVertexValue().get()) {</pre>
```

```
setVertexValue(new DoubleWritable(minDist));
```

```
for (LongWritable targetVertexId : this) {
```

FloatWritable edgeValue = getEdgeValue(targetVertexId);

```
sendMsg(targetVertexId, new DoubleWritable(minDist + edgeValue.get()));
```

```
voteToHalt();
```


Spark project

- Originated at Berkeley uni, at AMPLab (creator Matei Zaharia)
 - Now spin off company, DataBricks, handles development
- Origin: Resillient Distributed Datasets Paper
 - NSDI' 12 Best paper award
- Released as open source
- Became Apache top level project recently
 - Currently the most active Apache project!

Spark

- Goal: Provide distributed collections (across a cluster) that you can work with as if they were local
- Retain the attractive properties of MapReduce:
 - Fault tolerance (for crashes stragglers)
 - Data locality
 - Scalability
- Approach: augment data flow model with "resilient distributed datasets" (RDDs)

Resillient Distributed Datasets

- Resilient distributed datasets (RDDs)
 - Immutable collections partitioned across cluster that can be rebuilt if a partition is lost
 - Can be *cached* across parallel operations
- Transformations (e.g. map, filter, groupBy, join)
 - Lazy operations to build RDDs from other RDDs
- Actions (e.g. count, collect, save)
 - Return a result or write it to storage

Spark RDD operations

Transformations (define a new RDD from an existing one)

map filter sample union groupByKey reduceByKey join cache Parallel operations (take an RDD and return a result to driver) reduce

collect count save lookupKey

. . .

Scala notes for Spark

- It is possible to write Spark programs in Java, or Python, but Scala is the native language
- Syntax is similar to Java (bytecode compatible), but has powerful type inference features, as well as functional programming possibilities.
 - We declare all variables as val (type is automatically inferred)
 - Tuples of elements (a,b,c) are first order elements.
 - Pairs (2-Tuples) will be very useful to model key-value pair elements
 - We will make extensive use of Scala functional capabilities for passing functions as parameters
 - x => x+2

Word Count in Spark (Scala code)

val lines = spark.textFile("hdfs://...")

val counts = words. map(word => (word, 1))
. reduceByKey((a, b) =>a+b)

counts. saveAsTextFile("hdfs: //...")

A closer look at Spark

- A Spark application consists of a driver program that executes various parallel operations on RDDs partitioned across the cluster.
- **RDDs** are **created** by starting with a HDFS or an existing Scala collection in the driver program, and **transforming** it.
 - Users may also ask Spark to persist an RDD in memory, allowing it to be reused efficiently across parallel operations.
- Actions transfer RDDs are retrieved to either HDFS storage, or the memory of the driver program
- Spark also supports shared variables that can be used in parallel operations: broadcast variables, and accumulators

Spark Execution Architecture

<u>\</u>

Creating RDDs

- Any existing collection can be converted to an RDD using parallelize
 - sc.parallelize(List(1, 2, 3))
- HDFS input can be read with sc methods
 - sc.textFile("hdfs://namenode:9000/path/file")
 - Returns a collection of lines
 - Other sc methods for reading SequenceFiles, or any Hadoop compatible InputFormat

'Move computation to the code' in Spark

- Computation is expressed as functions that are applied in RDD transformations, actions
- Anonymous functions (implemented inside the transformation) timeSeries.map ((x: Int) => x + 2) // full version timeSeries.map (x => x + 2)// type inferred timeSeries.map (_ + 2)// when each argument is used exactly once timeSeries.map ((x => { // when body is a block of code val numberToAdd = 2 x + numberToAdd })
 - Named functions

def addTwo(x: Int): Int = x + 2
list.map(addTwo)

Sample Spark RDD Transformations

- map: creates a new RDD with the same number of elements, each one is the result of applying the transformation function to it
 - val tweet = messages.map(x => x.split(",")(3)) //we select the 3rd element
- filter: creates a new RDD with at most the number of elements from the original one. The element is only transferred if the function returns true for the element
 - val grave= logs.filter(x => x.startsWith("GRAVE"))

Spark RDD reduce operations

- Analogous to functional programming. Returns one single value from a list of values
- Applies a binary function that returns one value from two equal types
 - list.reduce ((a,b) => (a+b))
 - [1,2,3,4,5] -> 15
- ReduceByKey is the transformation analogous to MapReduce's Reduce + Combine

Map/Reduce pattern in Spark

- Spark has specific transformations that mirror the shuffling taking place between Map and Reduce jobs
 - They require the input RDD to be a collection of pairs of (key,value) elements
- reduceByKey: groups together all the values belonging to the same key, and compute a reduce function (returning a single value from them)
- groupByKey: returns a dataset of (K, Iterable<V>) pairs (more generic)
 - If followed by a Map it is equivalent to MapReduce's Reduce

Spark Parallelism

- RDD transformations are executed in parallel
 - An RDD is partitioned into n slices
 - Slices might be located in different machines
 - Slice: Unit of parallelism
 - How many? 2-4 slices are ok per CPU
 - Number of slices is automatically computed
 - Default: 1 per HDFS block size when reading from HDFS, can be higher

RDD Execution & message flows

Scala/Spark use of tuples

- Contrary to MapReduce, RDDs do not have to be key/value pairs
- Key/value pairs are usually represented by Scala tuples
- Easily created with map functions
 - x => (x,1)
- The ._1, ._2 operator allows to select key or value respectively

RDD Persistence

- Spark can persist (cache) a dataset in memory across operations: Each node stores in memory the partitions it computes for later reuse.
 - Much faster future actions to be much faster (>10x).
 - Key tool for iterative algorithms and fast interactive use.
- Explicit action: use persist() or cache() methods
 - The first time it is computed in an action, it will be kept in memory on the nodes. created it.
- Multiple persistence options (memory & | disk)
 - Can be difficult to use properly

Queen Mary

Example: Log Mining

 Load error messages from a log into memory, then interactively search for various partnerns

Spark execution platform

- Spark provides option on which execution platform to use
 - Mesos: solution developed also at UC Berkeley, default option. Also supports other frameworks
 - Apache Hadoop YARN: integration with the Hadoop resource manager (allows Spark and MapReduce to coexist)

Deferred execution

- Spark only executes RDD transformations the moment are needed
- When defining a set of transformations, only the invocation of an action (needing a final result) triggers the execution chain
- Allows several internal optimisations
 - Combining several operations to the same element without keeping internal state

Logistic Regression Code

val data = spark.textFile(...).map(readPoint).cache()

```
var w = Vector.random(D)
```

```
for (i <- 1 to ITERATIONS) {
   val gradient = data.map(p =>
      (1 / (1 + exp(-p. y*(w dot p. x))) - 1) * p. y * p. x
   ).reduce(_ + _)
   w -= gradient
}
```

println("Final w: " + w)

Spark performance issues

"With great power comes great responsibility"

Ben Parker

- All the added expressivity of Spark makes the task of efficiently allocating the different RDDs much more challenging
- Errors appear more often, and they can be hard to debug
- Knowledge of basics (eg Map/Reduce greatly helps)

Spark Performance Tuning

- Memory tuning
 - Much more prone to OutOfMemory errors than MapReduce.
 - How much memory is taken for each RDD slice?
- How many partitions make sense for each RDD?
- What are the performance implications of each operation?
- Good advice can be found in
 - http://spark.apache.org/docs/1.2.1/tuning.html

Spark ecosystem

- GraphX
 - Node and edge-centric graph processing RDD

Spark Streaming

- Stream processing model with D-Stream RDDs
- MLib
 - Set of machine learning algorithms implemented in Spark
- Spark SQL

Contents

- In-memory Processing
- Stream Processing

Information streams

- Data is continuously generated from multiple sources
 - Messages from a social platform (e.g. Twitter)
 - Network traffic going over a switch
 - Readings from distributed sensors
 - Interactions of users with a web application
- For faster analytics, we might need to process the information the moment it is generated
 - Process the information streams

Stream processing

- Continuous processing model
- Rather than processing a static dataset, we apply a function to each new element that comes from an information stream
- Rather than single results, we look for the evolution of computations, or to raise alerts when something is different than the norm
- Near real-time response times

Unbounded sequence of messages Arrival time is not fixed

Apache Storm

- Developed by BackType which was acquired by Twitter. Now donated to Apache foundation
- Storm provides realtime computation of data streams
 - Scalable (distribution of blocks, horizontal replication)
 - Guarantees no data loss
 - Extremely robust and fault-tolerant
 - Programming language agnostic

Storm Topology

Spouts and bolts execute as many tasks across the cluster Horizontal scaling/parallelism

Spark Streaming: Discretized Streams

 Unlike pure stream processing, we process the incoming messages on micro batches

Discretized Streams

- Reuse Spark Programming model
 - Transformations on RDDs
- RDDs are created combining all the messages in a defined time interval
- A new RDD is processed at each slot
- Spark code for creating one:
 - val streamFromMQTT = MQTTUtils.createStream(ssc, brokerUrl, topic, StorageLevel.MEMORY_ONLY_SER_2)

Dstream RDDs

Discreteness of time matters!

- The shorter the time the faster response potentially
- ... but also makes it slower to process

D Stream transformations

D-Stream Streaming context

- Spark streaming flows are configured by creating a StreamingContext, configuring what transformations flow will be done, and the invoke the start method
 - •val ssc = new StreamingContext(sparkUrl, "Tutorial", Seconds(1), sparkHome, Seq(jarFile))
- There must be some action collecting in some way the results of a temporal RDD

<u>\Q</u>1

Queen Mary

Sliding windows

- Some computations need to look at a set of stream messages in order to perform its computation
- A sliding window stores a rolling list with the latest items from the stream
- Contents change over time, replaced by new entries

Sliding window operations in Spark D-Stream

- D-Stream provides direct API support for specifying streams
- Two parameters:
 - Size of the window (in seconds)
 - Frequency of computations (in seconds)
- E.g. process the maximum temperature over the last 60 seconds, every 5 seconds.
 - reduceByWindowAndKey((a,b)=>math.max(a,b), Seconds(60, Seconds(5))

Sample Twitter processing stream

Sample Twitter Processing Stream

val ssc = new StreamingContext(sparkUrl, "Tutorial", Seconds(1), sparkHome, Seq(jarFile)) val tweets = ssc.twitterStream() val statuses = tweets.map(status => status.getText() val words = statuses.flatMap(status => status.split(" ")) val hashtags = words.filter(word => word.startsWith("#")) val hashtagCounts = hashtags.map(tag => (tag, 1)). reduceByKeyAndWindow(+ _, Seconds(60 * 5), Seconds(1)) ssc.checkpoint(checkpointDir) ssc.start();