
MAP/REDUCE PROGRAMMING
BIG DATA
Félix Cuadrado
felix.cuadrado@qmul.ac.uk

Workshop on Scientific Applications for IoT
ICTP, Trieste, Italy. 23rd March 2015

mailto:felix.cuadrado@eecs.qmul.ac.uk

• Parallel Computing
• The Map/Reduce Programming Model
• Apache Hadoop
• Map/Reduce Programming
• Dataflow languages

Contents

2

• The use of a number of processors, working
together, to perform a calculation or solve a
problem.

• The calculation will be divided into tasks, sent to
different processors.
• Processor coordination will be required

• Processors can be different cores in the same
machine, and/or different machines linked by a
network

Parallel Computing

3

• Parallel Computing is generally very hard, because:
• Many algorithms are hard to divided into subtasks (or

cannot be divided at all)
• The subtasks might use results from each other, so

coordinating the different tasks might be difficult

• Some problem areas are much easier than others
to parallelize

Parallel computing is hard

4

• There are many problems we cannot solve by
running them on a simple processor/machine. They
are:
• Too large (do not fit in one machine)
• Take too long

Parallel computing can provide faster results, and it
can even be cheaper

Why Parallelize?

5

• Basic model based on Von Neumann architecture in
the 40s

• One instruction is fetched, decoded and executed
at a time

• As processor speed increases, more instructions
can be executed in the same time

Sequential Program Execution

6

• We have roughly reached the practical limitations
in the amount of computing power a single
processor can have
• We cannot make processors much faster, or much bigger

• According to Moore’s law the number of transistors
per chip will continue to increase

• But this means now we have chips containing an
increasing amount of processors
• Multicore chips

Single processor limitations

7

• Task: count the number of occurrences of each
word in one document

• Input: text document
• Output: sequence of: word, count

• The 56
• School 23
• Queen 10
• …

Our first parallel program

8

Program Input
Queen Mary University of London (QMUL) has been ranked among the top 100 universities in
the world in the latest edition of the respected QS World University Rankings, released today
(Tuesday 16 September). QMUL has risen almost 50 places in the last two years, and is now
listed at 98th position globally.
Principal and President of Queen Mary, Professor Simon Gaskell, comments: “The
improvement in our ranking over the last two years is a tremendous achievement that stems
from the hard work and achievements of all our staff.
"It is also evidence of Queen Mary’s increasingly prominent role in global academia, and a
sign of our ongoing reputation as a destination for the very best students, inspiring teachers,
and leading researchers from across the world.” QMUL is rated particularly highly for the
number of international students on campus. With students and staff from more than 150
countries, it is ranked as the world’s 25th ‘most international’ university for students.
The university is ranked 19th amongst UK institutions and 10th in the UK for both research
impact and staff to student ratio.
2014 sees the tenth anniversary of the QS World University Rankings, which are based on
90,000 survey responses. More than 3,000 universities were considered for ranking. QS is the
only global ranking to have been independently scrutinised and IREG Approved.

9

How to solve the problem on a single processor?

List<String> words= text.split();
Hashtable<String,Integer> count = new Hashtable();
for (String word: words){
if(count.containsKey(word){

count.put(word, count.get(word)+1);
}
else{

count.put(word,1)
}

}

10

• Splitting the load on subtasks:
• Split sentences/lines into words

• Count all the occurrences of each word

• …What do we do with the intermediate results?
• Merge into single collection
• Possibly requires parallelism too

Parallelizing the problem

11

• Parallel Computing
• The Map/Reduce Programming Model
• Apache Hadoop
• Map/Reduce Programming
• Dataflow languages

Contents

12

MapReduce
• “A simple and powerful interface that enables
automatic parallelization and distribution of large-
scale computations, combined with an
implementation of this interface that achieves high
performance on large clusters of commodity PCs.”

• More simply, MapReduce is:
• A parallel programming model and associated
implementation.

Dean and Ghermawat, “MapReduce: Simplified Data Processing on Large Clusters”,
Google Inc.

13

MapReduce Programming Model
• Process data using special map() and reduce() functions

• The map() function is called on every item in the input and emits a
series of intermediate key/value pairs

• All values associated with a given key are grouped together
• The reduce() function is called on every unique key, and its value

list, and emits a value that is added to the output

• More formally,
• Map(k1,v1) --> list(k2,v2)
• Reduce(k2, list(v2)) --> list(k2, v2)

14

Example: word count
public void Map (String filename,

String text) {

List<String> words= text.split();

for (String word: words){

emit(word, 1)

}

}

15

Example: word count
public void Reduce (String key,

List<Integer> values) {

int sum = 0;

for (Integer count: values){

sum+=count;

}

emit(key, sum);

}

16

How MapReduce parallelizes
• Input data is partitioned into processable chunks
• One Map job is executed per chunk

• All can be parallelized (depends on number of nodes)

• One Reduce Job is executed for each distinct key
emitted by the Mappers
• All can be parallelized (partitioned ‘evenly’ among nodes)

• Computing nodes first work on Map jobs. After all
have completed, a synchronization step occurs, and
they start running Reduce jobs

17

Word Count Example

���

How now
Brown cow

How does
It work now

brown 1
cow 1
does 1
How 2

it 1
now 2
work 1

M

M

M

M

���
R

R

<How,1>
<now,1>
<brown,1>
<cow,1>
<How,1>
<does,1>
<it,1>
<work,1>
<now,1>

<How,1 1>
<now,1 1>
<brown,1>
<cow,1>
<does,1>
<it,1>
<work,1>

Input Output
Map

ReduceMapReduce
Framework

18

A Brief History
• Inspiration from functional programming (e.g., Lisp)

• map() function
• Applies a function to each individual value of a sequence to

create a new list of values
• Example: square x = x * x

map square [1,2,3,4,5] returns [1,4,9,16,25]

• reduce() function
• Combines all elements of a sequence using a binary operator
• Example: sum = (each elem in arr, total +=)

reduce [1,2,3,4,5] returns 15 (the sum of the elements)

19

MapReduce Benefits
• High level parallel programming abstraction
• Framework implementations provide good
performance results

• Scalability close to linear with increase in cluster size
• Greatly reduces parallel programming complexity
• However, it is not suitable for every parallel
programming algorithm!

20

Data store 1 Data store n
map

(key 1,
values...)

(key 2,
values...)

(key 3,
values...)

map

(key 1,
values...)

(key 2,
values...)

(key 3,
values...)

Input key*value
pairs

Input key*value
pairs

== Barrier == : Aggregates intermediate values by output key

reduce reduce reduce

key 1,
intermediate

values

key 2,
intermediate

values

key 3,
intermediate

values

final key 1
values

final key 2
values

final key 3
values

...

Synchronization and message passing

21

Shuffle and Sort steps
• Every key-value item generated by the mappers is
collected
• items are transferred over the network

• Same key items are grouped into a list of values
• Data is partitioned among the number of Reducers
• Data is copied over the network to each Reducer
• The data provided to each Reducer is sorted
according to the keys

22

MapReduce Runtime System
• Partitions input data
• Schedules execution across a set of machines
• Handles load balancing
• Shuffles, partitions and sorts data between Map
and Reduce steps

• Handles machine failure transparently
• Manages inter process communication

23

• Parallel Computing
• The Map/Reduce Programming Model
• Apache Hadoop
• Map/Reduce Programming
• Dataflow languages

Contents

24

• The brainchild of Doug
Cutting (Yahoo)

• Open source project hosted at Apache
• Started in 2007 when code was spun out of Nutch
• Has grown into a large top-level project at Apache
with significant ecosystem
• V2 (YARN, 2013) structures it as a generic platform
• Even third-party distros a la Linux (Cloudera,

Hortonworks)

The Apache Hadoop project

25

• Designed to run in clusters of commodity PCs
• Leverages heterogeneous capabilities

• Scales up to thousands of connected machines
• Suitable for Local Networks / DataCenters

• Rack servers connected over a LAN
• Clusters distributed over the Internet are not feasible

• Network would become an enormous bottleneck

Hadoop Physical Requirements

26

• Hadoop executes on a cluster of networked PCs
• Each node runs a set of daemons

• ResourceManager
• NodeManager
• NameNode
• SecondaryNameNode
• DataNode

Hadoop Architecture

Computing

Storage

27

Hadoop Master-Slave architecture

Secondary
NameNodeNameNode

ResourceManager

DataNode

NodeManager

DataNode

NodeManager

DataNode

NodeManager

DataNode

NodeManager

28

Map/Reduce job

Input
Data

Output
Data

Map
Reduce

Map

Map

Reduce

Job

M R

29

• A Hadoop Job is packaged as a Jar file containing all
the code for Mapper and Reducer functions

• The job is assigned a cluster-unique id
• A set number of reattempts is managed for job tasks

• The file is replicated over the Hadoop nodes
• Move computation to the data

Hadoop job

30

1. All key value pairs are collected
in-memory buffer (100MB default size), spills to HD

2. Pairs are partitioned depending on target reducer
each partition is sorted by key

3. Combiner runs on each partition
4. Output is available to the Reducers through HTTP

server threads

Shuffling: @Mapper

31

1. The reducer copies output from mappers
• asks ApplicationManager for map output locations

2. Downloaded output is merged and sorted into
the full input for the Reducer
• List of <k2, list<v2> >, sorted by k2

Sort: @Reducer

32

• The Apache Hadoop project
• Hadoop job execution: YARN
• Hadoop storage: HDFS
• The Combiner

Contents

33

• HaDoop Distributed Filesystem
• Shared storage among the nodes of the Hadoop cluster

• Storage for Input and output of MapReduce jobs
• HDFS is Tailored for MapReduce jobs

• Large block size (64MB default)
• But not too large, blocks define the minimum parallelization unit

• HDFS is not a POSIX compliant Filesystem
• Tradeoffs for improving data processing throughput

HDFS

34

• Data distribution is a key element of the
MapReduce model and architecture

• “Move computation to data” principle
• Blocks are replicated over the cluster

• Default ratio is three times
• spread replicas among different physical locations
• Improves reliability

HDFS Data distribution

35

Data replication

36

HDFS Usage

37

1. Input data -> Mappers
• Mappers are assigned

input splits from HDFS
input path
• (default 64MB)

• Data locality optimization:
ApplicationManager
attempts to assign
Mappers where data
block is stored

MR Job input and output data

2. Reducers -> Output
data

• Reducer output copied to
HDFS
• One file per Reducer

• For reliability concerns,
HDFS replication

38

• Parallelizing Map and Reduce jobs allow algorithms
to scale close to linearly

• One potential bottleneck for MapReduce programs
is the cost of Shuffle and Sort operations
• Data has to be copied over network communications
• All the keys emitted by the mappers
• Sorting large amounts of elements can be costly

• Combiner is an additional optional step that is
executed before these steps

The cost of communications

39

• Parallel Computing
• The Map/Reduce Programming Model
• Apache Hadoop
• Map/Reduce Programming
• Dataflow languages

Contents

40

• Hadoop uses its own hierarchy of datatypes
• They implement Writable interface

• Equivalent to Java types, designed for serialization
• Should also implement Comparable

• Enabling key sort operations

• Most Hadoop types are wrappers to Java types
• get, set methods for accessing its value.

Writables (Hadoop Java Data types)

41

Class Description
BooleanWritable Wrapper for a Boolean variable
ByteWritable Wrapper for a single byte
DoubleWritable Wrapper for a Double
FloatWritable Wrapper for a Float
IntWritable Wrapper for a Integer
LongWritable Wrapper for a Long
Text Wrapper to store text using the UTF8 format
NullWritable Placeholder when the key or value is not needed

Default Writable Types

42

public class Edge implements WritableComparable<Edge>{
private String departureNode;
private String arrivalNode;
// getters and setters
public void readFields(DataInput in) throws IOException{

departureNode = in.readUTF();
arrivalNode = in.readUTF();

}
public void write(DataOutput out) throws IOException {

out.writeUTF(departureNode);
out.writeUTF(arrivalNode);

}
public int compareTo(Edge o) {

return (departureNode.compareTo(o.departureNode) != 0) ?
departureNode.compareTo(o.departureNode) :
arrivalNode.compareTo(o.arrivalNode);

}
}

Sample custom Writable

43

• The Job class assembles a complete configuration
for a map/reduce job
• setMapperClass
• setReducerClass
• setCombinerClass
• setMapOutputKeyClass, setMapOutputValueClass
• FileInputFormat, FileOutputFormat
• setNumReduceTasks

MapReduce job main class

44

• Goal: Calculate aggregate statistical values over a
dataset

• Extract features from the dataset elements,
compute the same function for each feature

• Examples: count, maximum/ minimum values,
average/median/std deviation

Numerical Summarization

45

Numerical Summarization Structure

Mapper Partitioner

Mapper

Mapper

Partitioner

Partitioner

Reducer

Reducer

[Feature,
partial
summary]

[Feature,
partial
summary]

[Feature,
partial
summary]

[Feature, result]

[Feature, result]

46

• Mapper
• Find features in Input
• Set partial aggregate value for the features in that

iteration

• Reducer
• Compute final aggregate result from all the intermediate

values

Writing Map and Reduce functions

47

ec03847293847 100

ec29347298347 100

ec23894283472 100

ec23489209348 100

ec23492834343 100

ec34948758493 0

ec56456456545 100

ec73453435434 100

Computing averages
Input: Row with student information, grade
Goal: Compute module average

Mapper

Mapper

Reducer

48

ec03847293847 100

ec29347298347 100

ec23894283472 100

ec23489209348 100

ec23492834343 100

ec34948758493 0

ec56456456545 100

ec73453435434 100

Computing averages
Input: Row with student information, grade
Goal: Compute module average

Mapper

Mapper

Reducer

C

C

49

• Average is NOT an associative operation
• Cannot be executed partially with the Combiners

• Solution: Change Mapper results
• Emit aggregated quantities, and number of elements
• Mapper. For input entries (100,100,20),

• Emit (100,1),(100,1), (20,1)

• Combiner: adds aggregates and number of elements
• Emits (220,3)

• Reducer
• Adds aggregates and computes average

Combining Averages

50

• Goal: Generate index from a dataset to allow faster
searches for specific features

• Examples: building index from a textbook. Finding
all websites that match a search term

Inverted index

51

Inverted Index Structure

Mapper Partitioner

Mapper

Mapper

Partitioner

Partitioner

Reducer

Reducer

[keyword,
documentId]

[keyword,
documentId]

[keyword,
documentId]

[keyword, list of Ids]

[keyword, list of Ids]

52

• Mapper
• Find features in Input
• Emit [feature, document identifier]

• Reducer
• Identity function (emits the list of results provided in

shuffle and sort)

Writing Map and Reduce functions

53

• Parallel Computing
• The Map/Reduce Programming Model
• Apache Hadoop
• Map/Reduce Programming
• Dataflow languages

Contents

54

• Map/Reduce can express many computations…
• … but it exposes a relatively low-level programming
interface

• Very Rigid: 1 Map and 1 Reduce
• Possible to chain jobs, but done programmatically

• Approach: Define higher-level languages that can
be automatically translated into multiple
Map/Reduce jobs
• Hadoop Pig / Hive

Dataflow languages

55

• Hive: data warehousing application in Hadoop
• Query language is HQL, variant of SQL
• Tables stored on HDFS as flat files
• Developed by Facebook, now open source

• Pig: large-scale data processing system
• Scripts are written in Pig Latin, a dataflow language
• Developed by Yahoo!, now open source
• Roughly 1/3 of all Yahoo! internal jobs

• Common idea:
• Provide higher-level language to facilitate large-data processing
• Higher-level language “compiles down” to Hadoop jobs

Hive and Pig

56

• Started at Yahoo! Research
• Now runs about 30% of Yahoo!’s jobs
• Features:

• Expresses sequences of MapReduce jobs
• Data model: nested “bags” of items
• Provides relational (SQL) operators

(JOIN, GROUP BY, etc)
• Easy to plug in User-Defined Java functions

Pig

57

Suppose you have user
data in one file, website
data in another, and
you need to find the top
5 most visited pages by
users aged 18 - 25.

An Example Problem

Load Users Load Pages

Filter by age

Join on name

Group on url

Count clicks

Order by clicks

Take top 5

Example from http://wiki.apache.org/pig-data/attachments/PigTalksPapers/attachments/ApacheConEurope09.ppt 58

In MapReduce
import java.io.IOException;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;

import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.Writable;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.KeyValueTextInputFormat;
import org.a pache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.RecordReader;
import org.apache.hadoop.mapred.Reducer;
import org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.mapred.SequenceFileInputFormat;
import org.apache.hadoop.mapred.SequenceFileOutputFormat;
import org.apache.hadoop.mapred.TextInputFormat;
import org.apache.hadoop.mapred.jobcontrol.Job;
import org.apache.hadoop.mapred.jobcontrol.JobC ontrol;
import org.apache.hadoop.mapred.lib.IdentityMapper;

public class MRExample {
 public static class LoadPages extends MapReduceBase
 implements Mapper<LongWritable, Text, Text, Text> {

 public void map(LongWritable k, Text val,
 OutputCollector<Text, Text> oc,
 Reporter reporter) throws IOException {
 // Pull the key out
 String line = val.toString();
 int firstComma = line.indexOf(',');
 String key = line.sub string(0, firstComma);
 String value = line.substring(firstComma + 1);
 Text outKey = new Text(key);
 // Prepend an index to the value so we know which file
 // it came from.
 Text outVal = new Text("1 " + value);
 oc.collect(outKey, outVal);
 }
 }
 public static class LoadAndFilterUsers extends MapReduceBase
 implements Mapper<LongWritable, Text, Text, Text> {

 public void map(LongWritable k, Text val,
 OutputCollector<Text, Text> oc,
 Reporter reporter) throws IOException {
 // Pull the key out
 String line = val.toString();
 int firstComma = line.indexOf(',');
 String value = line.substring(firstComma + 1);
 int age = Integer.parseInt(value);
 if (age < 18 || age > 25) return;
 String key = line.substring(0, firstComma);
 Text outKey = new Text(key);
 // Prepend an index to the value so w e know which file
 // it came from.
 Text outVal = new Text("2" + value);
 oc.collect(outKey, outVal);
 }
 }
 public static class Join extends MapReduceBase
 implements Reducer<Text, Text, Text, Text> {

 public void reduce(Text key,
 Iterator<Text> iter,
 OutputCollector<Text, Text> oc,
 Reporter reporter) throws IOException {
 // For each value, figure out which file it's from and
store it
 // accordingly.
 List<String> first = new ArrayList<String>();
 List<String> second = new ArrayList<String>();

 while (iter.hasNext()) {
 Text t = iter.next();
 String value = t.to String();
 if (value.charAt(0) == '1')
first.add(value.substring(1));
 else second.add(value.substring(1));

 reporter.setStatus("OK");
 }

 // Do the cross product and collect the values
 for (String s1 : first) {
 for (String s2 : second) {
 String outval = key + "," + s1 + "," + s2;
 oc.collect(null, new Text(outval));
 reporter.setStatus("OK");
 }
 }
 }
 }
 public static class LoadJoined extends MapReduceBase
 implements Mapper<Text, Text, Text, LongWritable> {

 public void map(
 Text k,
 Text val,
 OutputColle ctor<Text, LongWritable> oc,
 Reporter reporter) throws IOException {
 // Find the url
 String line = val.toString();
 int firstComma = line.indexOf(',');
 int secondComma = line.indexOf(',', first Comma);
 String key = line.substring(firstComma, secondComma);
 // drop the rest of the record, I don't need it anymore,
 // just pass a 1 for the combiner/reducer to sum instead.
 Text outKey = new Text(key);
 oc.collect(outKey, new LongWritable(1L));
 }
 }
 public static class ReduceUrls extends MapReduceBase
 implements Reducer<Text, LongWritable, WritableComparable,
Writable> {

 public void reduce(
 Text ke y,
 Iterator<LongWritable> iter,
 OutputCollector<WritableComparable, Writable> oc,
 Reporter reporter) throws IOException {
 // Add up all the values we see

 long sum = 0;
 wh ile (iter.hasNext()) {
 sum += iter.next().get();
 reporter.setStatus("OK");
 }

 oc.collect(key, new LongWritable(sum));
 }
 }
 public static class LoadClicks extends MapReduceBase
 i mplements Mapper<WritableComparable, Writable, LongWritable,
Text> {

 public void map(
 WritableComparable key,
 Writable val,
 OutputCollector<LongWritable, Text> oc,
 Reporter reporter) throws IOException {
 oc.collect((LongWritable)val, (Text)key);
 }
 }
 public static class LimitClicks extends MapReduceBase
 implements Reducer<LongWritable, Text, LongWritable, Text> {

 int count = 0;
 public void reduce(
 LongWritable key,
 Iterator<Text> iter,
 OutputCollector<LongWritable, Text> oc,
 Reporter reporter) throws IOException {

 // Only output the first 100 records
 while (count < 100 && iter.hasNext()) {
 oc.collect(key, iter.next());
 count++;
 }
 }
 }
 public static void main(String[] args) throws IOException {
 JobConf lp = new JobConf(MRExample.class);
 lp.se tJobName("Load Pages");
 lp.setInputFormat(TextInputFormat.class);

 lp.setOutputKeyClass(Text.class);
 lp.setOutputValueClass(Text.class);
 lp.setMapperClass(LoadPages.class);
 FileInputFormat.addInputPath(lp, new
Path("/ user/gates/pages"));
 FileOutputFormat.setOutputPath(lp,
 new Path("/user/gates/tmp/indexed_pages"));
 lp.setNumReduceTasks(0);
 Job loadPages = new Job(lp);

 JobConf lfu = new JobConf(MRExample.class);
 lfu.s etJobName("Load and Filter Users");
 lfu.setInputFormat(TextInputFormat.class);
 lfu.setOutputKeyClass(Text.class);
 lfu.setOutputValueClass(Text.class);
 lfu.setMapperClass(LoadAndFilterUsers.class);
 FileInputFormat.add InputPath(lfu, new
Path("/user/gates/users"));
 FileOutputFormat.setOutputPath(lfu,
 new Path("/user/gates/tmp/filtered_users"));
 lfu.setNumReduceTasks(0);
 Job loadUsers = new Job(lfu);

 JobConf join = new JobConf(MRExample.class);
 join.setJobName("Join Users and Pages");
 join.setInputFormat(KeyValueTextInputFormat.class);
 join.setOutputKeyClass(Text.class);
 join.setOutputValueClass(Text.class);
 join.setMapperClass(IdentityMap per.class);
 join.setReducerClass(Join.class);
 FileInputFormat.addInputPath(join, new
Path("/user/gates/tmp/indexed_pages"));
 FileInputFormat.addInputPath(join, new
Path("/user/gates/tmp/filtered_users"));
 FileOutputFormat.se tOutputPath(join, new
Path("/user/gates/tmp/joined"));
 join.setNumReduceTasks(50);
 Job joinJob = new Job(join);
 joinJob.addDependingJob(loadPages);
 joinJob.addDependingJob(loadUsers);

 JobConf group = new JobConf(MRE xample.class);
 group.setJobName("Group URLs");
 group.setInputFormat(KeyValueTextInputFormat.class);
 group.setOutputKeyClass(Text.class);
 group.setOutputValueClass(LongWritable.class);
 group.setOutputFormat(SequenceFi leOutputFormat.class);
 group.setMapperClass(LoadJoined.class);
 group.setCombinerClass(ReduceUrls.class);
 group.setReducerClass(ReduceUrls.class);
 FileInputFormat.addInputPath(group, new
Path("/user/gates/tmp/joined"));
 FileOutputFormat.setOutputPath(group, new
Path("/user/gates/tmp/grouped"));
 group.setNumReduceTasks(50);
 Job groupJob = new Job(group);
 groupJob.addDependingJob(joinJob);

 JobConf top100 = new JobConf(MRExample.class);
 top100.setJobName("Top 100 sites");
 top100.setInputFormat(SequenceFileInputFormat.class);
 top100.setOutputKeyClass(LongWritable.class);
 top100.setOutputValueClass(Text.class);
 top100.setOutputFormat(SequenceFileOutputF ormat.class);
 top100.setMapperClass(LoadClicks.class);
 top100.setCombinerClass(LimitClicks.class);
 top100.setReducerClass(LimitClicks.class);
 FileInputFormat.addInputPath(top100, new
Path("/user/gates/tmp/grouped"));
 FileOutputFormat.setOutputPath(top100, new
Path("/user/gates/top100sitesforusers18to25"));
 top100.setNumReduceTasks(1);
 Job limit = new Job(top100);
 limit.addDependingJob(groupJob);

 JobControl jc = new JobControl("Find top 100 sites for users
18 to 25");
 jc.addJob(loadPages);
 jc.addJob(loadUsers);
 jc.addJob(joinJob);
 jc.addJob(groupJob);
 jc.addJob(limit);
 jc.run();
 }
}

Example from http://wiki.apache.org/pig-data/attachments/PigTalksPapers/attachments/ApacheConEurope09.ppt 59

Users = load ‘users’ as (name, age);
Filtered = filter Users by

age >= 18 and age <= 25;
Pages = load ‘pages’ as (user, url);
Joined = join Filtered by name, Pages by user;
Grouped = group Joined by url;
Summed = foreach Grouped generate group,

count(Joined) as clicks;
Sorted = order Summed by clicks desc;
Top5 = limit Sorted 5;

store Top5 into ‘top5sites’;

In Pig Latin

Example from http://wiki.apache.org/pig-data/attachments/PigTalksPapers/attachments/ApacheConEurope09.ppt 60

Ease of Translation
Notice how naturally the components of the job translate into Pig Latin.

Load Users Load Pages

Filter by age

Join on name

Group on url

Count clicks

Order by clicks

Take top 5

Users = load …
Fltrd = filter …
Pages = load …
Joined = join …
Grouped = group …
Summed = … count()…
Sorted = order …
Top5 = limit …

Job 1

Job 2

Job 3

Example from http://wiki.apache.org/pig-data/attachments/PigTalksPapers/attachments/ApacheConEurope09.ppt 61

• They speedup development of some analysis tasks
• …but they do not help with performance
• All the limitations of MapReduce are still present
• Plus potentially inefficiencies from the automated
translations (maybe more jobs than required,
although implementations are reasonable.
• According to PigMix2, 16% less efficient than well written

MR code
• https://cwiki.apache.org/PIG/pigmix.html

Critique of dataflow languages

62

	Map/Reduce Programming�BIG DATA
	Contents
	Parallel Computing
	Parallel computing is hard
	Why Parallelize?
	Sequential Program Execution
	Single processor limitations
	Our first parallel program
	Program Input
	How to solve the problem on a single processor?
	Parallelizing the problem
	Contents
	MapReduce
	MapReduce Programming Model
	Example: word count
	Example: word count
	How MapReduce parallelizes
	Word Count Example
	A Brief History
	MapReduce Benefits
	Synchronization and message passing
	Shuffle and Sort steps
	MapReduce Runtime System
	Contents
	The Apache Hadoop project
	Hadoop Physical Requirements
	Hadoop Architecture
	Hadoop Master-Slave architecture
	Map/Reduce job
	Hadoop job
	Shuffling: @Mapper
	Sort: @Reducer
	Contents
	HDFS
	HDFS Data distribution
	Data replication
	HDFS Usage
	MR Job input and output data
	The cost of communications
	Contents
	Writables (Hadoop Java Data types)
	Default Writable Types
	Sample custom Writable
	MapReduce job main class
	Numerical Summarization
	Numerical Summarization Structure
	Writing Map and Reduce functions
	Computing averages
	Computing averages
	Combining Averages
	Inverted index
	Inverted Index Structure
	Writing Map and Reduce functions
	Contents
	Dataflow languages
	Hive and Pig
	Pig
	An Example Problem
	In MapReduce
	In Pig Latin
	Ease of Translation
	Critique of dataflow languages

