
IOT EMULATION WITH COOJA

BA BAGULA & ZENVILLE ERASMUS
ISAT LABORATORY

DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF THE WESTERN CAPE (UWC)

CAPE TOWN – SOUTH AFRICA

ICTP-IoT Workshop, Trieste 16-27 March 2015

Outline

 What is Cooja

 Emulator vs Simulator

 Main steps

 Hello-world

 More examples

 UDP-RPL/broadcast

 Z1 sensors

 Sense/Send/Blink

 UDP-RPL/Unicast

Talk-Outline

 Energy monitoring

 Timeline

 Energest

 Powertrace

 PowerTracker

 Networking protocols

 RPL

 LIBP

 Multi-sink

Cooja is an emulator

 According to different sources, an emulator is:

 a hardware or software system that enables one computer

system (called the host) to behave like another computer system

(called the guest): e.g. Cooja enabling your laptop to behave

like a Z1 mote.

 a system that typically enables the host system to run software

or use peripheral devices designed for the guest system: e.g.

Cooja enabling your laptop to run the RPL protocol, LIBP

and/or other IoT protocols of interest .
Emulator

Cooja is an emulator

 According to different sources, an emulator is:

 a system that behaves exactly like the guest system, and abides

by all of the rules of the system being emulated, but operating

in a different environment to the environment of the original

emulated system.

 a complete replication of the guest system, right down to being

binary compatible with the emulated system's inputs and

outputs.

Emulator

Cooja is not a simulator

 According to different sources, a simulator is:

 a hardware or software that that enables one computer system

(called the host) to behave like another computer system (called

the guest), but is implemented in an entirely different way : e.g.

A flight simulator gives you the feeling of flying an airplane,

but you are completely disconnected from the reality of flying

the plane, and you can bend or break those rules as you see

fit. e.g. Fly an Airbus A380 upside down between London and

Sydney without breaking it.
Simulator

Cooja is not a simulator

 According to different sources, a simulator is:

 a system that provides the basic behaviour of a system but

may not necessarily abide by all of the rules of the system

being simulated.

 A system designed to recreate the operation or behaviour of

the guest system. The underlying principles can be the same

as the original or different.

Simulator

What is Cooja?

 Cooja is a Contiki network emulator

 An extensible Java-based simulator capable of emulating

Tmote Sky (and other) nodes

 The code to be executed by the node is the exact same firmware

 you may upload to physical nodes

 Allows large and small networks of motes to be simulated

 Motes can be emulated at the hardware level

 Slower but allows for precise inspection of system behaviour

 Motes can also be emulated at a less detailed level

 Faster and allows simulation of larger networks

Cooja

Cooja (continued)

 Cooja is a highly useful tool for Contiki development

 It allows developers to test their code and systems long before

running it on the target hardware

 Developers regularly set up new simulations to

 debug their software

 to verify the behaviour of their systems

Cooja

Main steps

1. Open a terminal window to start Cooja

2. Create a new simualtion to run Contiki in simulation and

wait for Cooja to start and compile itself

3. Set simulation options

4. Create a new mote type

5. Add motes to the simulation

6. Open a terminal Cooja is a highly useful tool for Contiki development

1. It allows developers to test their code and systems long before

1. running it on the target hardware

2. Developers regularly set up new simulations to

1. debug their software

2. to verify the behaviour of their systems
Cooja

1. Starting Cooja

 Open a terminal window

To start Cooja, first open a terminal window.

 cd contiki/tools/cooja (Cooja directory)

 start cooja by issuing ant run

Waiting for Cooja to start

 When Cooja first starts, it will compile itself. This may take some time

When Cooja is compiled, it will start with a blue empty window.

2. Create a new simulation

 Click the File menu and click New simulation...

3. Set simulation options

 Cooja now opens up the Create new simulation dialog.

Either change the dialog name or stick with My simulation.

 Click the Create button.

Simulation windows

 Cooja brings up the new simulation.

Shows all the motes

Shows all communication events over time

Shows all serial port printouts

from all the motes

Place notes for

our simulation

4. Add motes to the simulation

 Add motes

Create a new mote type

 Cooja opens up the Create Mote Type dialog

 choose a name for our mote type

 choose the Contiki application that our mote type will run

5. Find Contiki Application

 Hello World /opt/contiki-2.7/examples/hello-world

 Specify application C source file → Open

6. Compile the Contiki application

 Cooja will verify that the selected Contiki application compiles for the platform

 that we have selected

 Click on the Compile button. This will take some time...

 Compilation output will show up in the bottom white panel.

7. Create the mote type

 Click on the Create button to create the mote type. The window will close.

8. Add motes to simulation

 Add motes by changing the number of motes in the Number of motes field to 5.

 Click on Add motes to add motes to the simulation

9. Start the simulation

 The 5 added motes are now seen in the simulation window.

 Click the Start button to start the simulation.

10. Pause the simulation

 View → Select Log output: printf()'s

11. Get some statistics

 Mote output window

 Printouts from the simulated motes

 Network window

 Shows ongoing network communication

 Timeline

 Shows communication and radio events over time

 The small gray lines are ContikiMAC periodically waking up the radio

 Pause

 Click the Pause button to pause the simulation

More examples

 simple-udp-rpl/broadcast-example.c

More examples

 Z1 sensors

More examples

 Sense, send and blink with receive and blink

More examples

 unicast-example.c

 ipv6

 simple-udp-rpl

Timeline in COOJA

 Radio ON/OFF

 No colour: radio off

 Grey: radio on

 Radio RX/TX

 Green: received a packet

 Blue: packet sent

 Red: interfered radio (collisions etc.)

 Right-clicking will reveal additional info.[2]

Measure Power Consumption with Energest

 Can be used for obtaining per-component power consumption on Contiki.

 (cpu_ON, LPM, TX, RX)

 i.e. the time the radio was in RX mode (rxon)

 For RX:

 Power(mW) = (rxend – rxstart) * 20mA * 3V / 4096 / runtime(seconds)

 If you do not divide by runtime you get the energy consumption during runtime.

Measure Power Consumption: Powertrace

 Uses Energest along with a periodic difference of the rtimer ticks to get average

power over a shorter period of time or for particular network modes[3].

 Periodically prints out power consumption

Measure Power Consumption: PowerTracker

 A COOJA plugin that measures the average simulated radio duty cycles.

 simple-udp-rpl/broadcast-example.c

Network Protocols

 COOJA has 2 stacks: uIP and Rime

 Protocol stacks may be interconnected

 uIP data can be transmitted over Rime and vice versa

 Cooja can be used to emulate network protocols:

 RPL

 LIBP

Introduction to LIBP

 LIBP, known as the Least Interference Beaconing Protocol, is the

implementation of the Least Interference Beaconing Algorithm, LIBA.

 LIBP extends the beaconing process widely used by collection protocols with

 load balancing to improve the Ubiquitous Sensor Network (USN) energy

efficiency[4].

 The process involving the least interference paradigm allows the selection of

 a parent node that has the smallest number of children. This is a point of

 least traffic flow interference.

 The parent selection model chooses the first parent node heard from, whereby

 the sensor nodes hear from a set of neighbours and select the least burdened

 (in number of children) as the parent node.

LIBP – Rime startup

Upon network startup, Rime started with address 8.0 for Node ID 8.

The image details the radio channel as 26 and the channel check rate of 8 Hz.

LIBP – sink mote

Sink mote with ID 1 – After 2 minutes, 0 seconds and 673 milliseconds, ID 1 broad-casted

to the network that it is sink by sending “Hi from sink thread”.

LIBP - PowerTracker

PowerTracker after 5 minutes.

Sky 3 used the most power by being on most of the time.

It's Radio TX is also the highest with a value of 0.73%.

It has the second highest Radio RX of 0.09%.

LIBP – Parent with children

Node 3 has 2 children, namely nodes 5 and 6.

These nodes also have children.

Sky 10 used the least power with its

Radio on at 1.73%

Radio TX at 0.47% and

Radio RX of 0.02% (least percentage).

Sky 10 is ranked along the bottom of the tree,

has no children and is only active when it has

to send its data, unlike the other motes.

LIBP – large network

 Starting COOJA with “ant run” will give you the

 default Java maximum memory

 5 – 10 emulated nodes

 If you use “ant run_bigmem” you will be able

 to simulate/emulate larger networks.

LIBP – large network

Compiled 50 Cooja Motes

(Simulated motes – run as native java code)

Downside: Cannot do any power profiling

LIBP – 2 sinks

Node ID 1 : Primary Sink

Node ID 2 : Secondary Sink

Load balanced network with 2

sink nodes

LIBP – 2 sinks

• The 2 sink nodes help with load balancing and network recovery

 e.g. when one node goes offline, it's children

 (orphaned nodes) attempt to connect to the other sink

Secondary sink - offline Recovery in process

LIBP – 2 sinks

Recovery in process

Orphaned nodes also attempt

to connect with each other

Network has recovered and every

node is making use of Node 1 as

its sink node

Comparison of RPL and LIBP

Radio On Averages

LIBP uses less power amongst 10 Skymotes in relation to keeping their

radios on, thus creating a more energy efficient network.

References

[1] Alan, A., & Pritsker, B. (n.d.). Why Simulation Works. Proceedings of the 1989

 Winter Simulation Conference. Retrieved from http://www.sfu.ca/~vdabbagh/p1-pritsker.pdf

[2] Voigt, T. Contiki COOJA Crash Course. Swedish Institute of Computer Science.

 Retrieved from https://www.sics.se/~thiemo/seniot09cccc-slides.pdf

[3] Kopf, D. What is Difference Between The Energest and PowerTrace.

 Retrieved from

 http://contiki-developers.narkive.com/VMpBTquh/what-is-difference-between-the-energest-and-powertrace

[4] Bagula, A., Djenouri, D., Karbab, E. Ubiquitous Sensor Network Management: The Least Interference

 Beaconing Model. In Proceedings of PIMRC 2013, Pages 2352-2356, 2013.

[5] Lutando Ngqakaza & Antoine Bagula, “Least Path Interference Beaconing Protocol

(LIBP): A Frugal Routing Protocol for The Internet-of-Things”, in proceedings of the

IFIP Wired/Wireless Internet Communications WWIC 2014, Lecture Notes in Computer

Science Volume 8458, 2014, pp 148-161, 2014.

http://www.sfu.ca/~vdabbagh/p1-pritsker.pdf
http://www.sfu.ca/~vdabbagh/p1-pritsker.pdf
http://www.sfu.ca/~vdabbagh/p1-pritsker.pdf
https://www.sics.se/~thiemo/seniot09cccc-slides.pdf
https://www.sics.se/~thiemo/seniot09cccc-slides.pdf
https://www.sics.se/~thiemo/seniot09cccc-slides.pdf
http://contiki-developers.narkive.com/VMpBTquh/what-is-difference-between-the-energest-and-powertrace
http://contiki-developers.narkive.com/VMpBTquh/what-is-difference-between-the-energest-and-powertrace
http://contiki-developers.narkive.com/VMpBTquh/what-is-difference-between-the-energest-and-powertrace
http://contiki-developers.narkive.com/VMpBTquh/what-is-difference-between-the-energest-and-powertrace
http://contiki-developers.narkive.com/VMpBTquh/what-is-difference-between-the-energest-and-powertrace
http://contiki-developers.narkive.com/VMpBTquh/what-is-difference-between-the-energest-and-powertrace
http://contiki-developers.narkive.com/VMpBTquh/what-is-difference-between-the-energest-and-powertrace
http://contiki-developers.narkive.com/VMpBTquh/what-is-difference-between-the-energest-and-powertrace
http://contiki-developers.narkive.com/VMpBTquh/what-is-difference-between-the-energest-and-powertrace
http://contiki-developers.narkive.com/VMpBTquh/what-is-difference-between-the-energest-and-powertrace
http://contiki-developers.narkive.com/VMpBTquh/what-is-difference-between-the-energest-and-powertrace
http://contiki-developers.narkive.com/VMpBTquh/what-is-difference-between-the-energest-and-powertrace
http://contiki-developers.narkive.com/VMpBTquh/what-is-difference-between-the-energest-and-powertrace
http://contiki-developers.narkive.com/VMpBTquh/what-is-difference-between-the-energest-and-powertrace
http://contiki-developers.narkive.com/VMpBTquh/what-is-difference-between-the-energest-and-powertrace
http://contiki-developers.narkive.com/VMpBTquh/what-is-difference-between-the-energest-and-powertrace
http://contiki-developers.narkive.com/VMpBTquh/what-is-difference-between-the-energest-and-powertrace
http://contiki-developers.narkive.com/VMpBTquh/what-is-difference-between-the-energest-and-powertrace
http://contiki-developers.narkive.com/VMpBTquh/what-is-difference-between-the-energest-and-powertrace
http://contiki-developers.narkive.com/VMpBTquh/what-is-difference-between-the-energest-and-powertrace

