

Developing a low-cost WSN for environmental monitoring

Iván René Morales. Universidad de San Carlos, Guatemala Workshop on Scientific Applications for the Internet of Things

Trieste, Italy, March 27th 2015

Project requirements

- Lower the costs as most as possible
 - Available off-the-shelf WSN solutions were not a choice
 - Founding through students' donations. No financial support from University
- Short development time
 - Show us you can build a working prototype before December 2014 and the project is yours

Technical requirements

- Low power
 - Continuous operation during at least one month
- Wireless connectivity within a 20 m. range indoors
- Data visualization through web interface
- Local data logging
- On-the-fly sampling periods customization

Measured variables

- Temperature
 - Resolution
 - > +/- | °C
 - Range
 - ▶ 5°C to 40°C
- Humidity
 - Resolution
 - **+/- 5%**
 - Range
 - ▶ 10% to 100% range

- Atmospheric pressure
 - Resolution
 - +/- I hPa
 - Range
 - > 700 hPa to 1100 hPa
- Illuminance (visible light spectrum)
 - Resolution
 - ▶ 10 lux
 - Range
 - ▶ 0 lux to 50000 lux

Modularity requirements

- Adding more sensors shouldn't be a big deal
- Nodes should support actuators through expansion boards

Chosen solutions

Nodes

- Texas Instruments' Value-line MSP430 microcontrollers
- Nordic NRF24L01+ 2.4GHz
 Transceivers

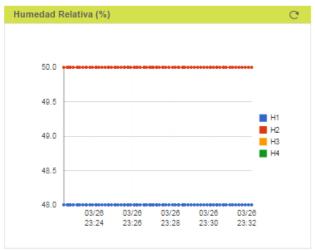
Gateway

(CTP

- Raspberry PI B+
- ▶ Nordic NRF24L01+ 2.4GHz Transceiver
 - Tx power: +4 dBm
 - ▶ Rx sensitivity: -85 dBm
- Web interface
 - Exosite portal
 - Python API

Chosen sensors

- ▶ Temperature + Pressure
 - Bosch BMP180 (I²C)
- Illuminance
 - ▶ BH1750 (I²C)
- Relative humidity
 - DHTII (doesn't meet all requirements)
 - But still works as a proof of concept and is much cheaper than DHT22



Exosite portal

Nice temperature inside GGH dorms ©!

Nodo 1			
Name▲	Value	Units	Last Reported Time
H1	48	%	16:32:15 Mar 26, 2015
L1	16	lux	16:32:15 Mar 26, 2015
P1	1000	hPa	16:32:15 Mar 26, 2015
T1	22	°C	16:32:15 Mar 26, 2015

Achieved results

- Remember, this is a project into development stage!
 - Suggestions kindly accepted ©
- Star-topology WSN
- Low power
 - Battery lifetime of 40 days (sampling every 15 minutes)
- Up to 16 nodes (software dependent)
- No hopping supported
- Low cost
 - Less than \$12 each node (including sensors)
 - Gateway costs about \$60
- Relatively long indoor range
 - Up to 30 meters, depending on walls' composition
 - More than what was expected from 2.4GHz + GFSK @ IMbps
 - These radios are great, even with Auto-retransmission disabled

DEMO

