Green TVWS

School on Applications of Open Spectrum and White Spaces Technologies

ICTP Trieste

12 March 2014

Sebastian Büttrich Network Startup Resource Center NSRC IT University of Copenhagen

What is this Talk about?

Green TV White Spaces

Green TV White Spaces

Sustainable Intelligent Autonomous Economically attractive Power

for (more than just) IT networks

My background

IT University of Copenhagen

Background

OIL AND NATURAL GAS FORMATION

Tiny sea plants and animals died and were buried on the ocean floor. Over time, they were covered by layers of silt and sand.

Over millions of years, the remains were buried deeper and deeper. The enormous heat and pressure turned them into oil and gas.

Today, we drill down through layers of sand, silt, and rock to reach the rock formations that contain oil and gas deposits.

What all fossile energy sources have in common:

They are finite.

But we will find more?

We will. But that does not matter much.

Sustainable energy

Solar Photovoltaic Thermal Wind Hydro Wave, Tidal Geothermal

Other forms of harvesting: Vibration Bio-mechanical Radiation Human power

... & hybrid solutions

Sustainable energy

Small wind turbines

< \$1 / W

Photovoltaics

Solar panel: I-V-curves and MPP

Principle

Principle

Types of solar cells

Monochrystalline

Types of solar cells

Polychrystalline

Types of solar panels

Thin film, CIGS, ...

New types of solar cells

Best Research-Cell Efficiencies

New types: organic printed cells

http://plasticphotovoltaics.org/ Note: free online course and free cell samples for education

DTU Denmark

Solar in all sizes

Economics

What is the cost per Watt?

Today, Solar panels (*in the 100 Watt class!*) cost

< 1 \$ per Watt

(you can get quality for \$0.50 per Watt)

... but smaller cells cost more:

-	0.5w Solar Panel 55x70	\$2.00
	1.5W Solar Panel 81X137	\$6.99
	1w Solar Panel 75X100	\$3.50
	2.5W Solar Panel 116X160	\$12.90
-	2w Solar Panel 80X180	\$9.90 N
	3W Solar Panel 138X160	₩ \$14.90
	B-Squares (SOLAR-SQUARE)	\$22.50

Source: seeedstudio.com

Economics (up against 15 cents/kWh)

Table showing average cost in cents/kWh over 20 years for solar power panels

		Insolation [peak sun hours] 6 4								2
Cost	[\$/W]	2400 kWh/ kWp•y	2200 kWh/ kWp•y	2000 kWh/ kWp•y	1800 kWh/ kWp•y	1600 kWh/ kWp•y	1400 kWh/kWp•y	1200 kWh/kWp•y	1000 kWh/kWp•y	800 kWh/kWp•y
0.5 1	200 \$/kWp	0.8	0.9	1.0	1.1	1.3	1.4	1.7	2.0	2.5
	600 \$/kWp	2.5	2.7	3.0	3.3	3.8	4.3	5.0	6.0	7.5
	1000 \$/kWp	4.2	4.5	5.0	5.6	6.3	7.1	8.3	10.0	12.5
2	1400 \$/kWp	5.8	6.4	7.0	7.8	8.8	10.0	11.7	14.0	17.5
	1800 \$/kWp	7.5	8.2	9.0	10.0	11.3	12.9	15.0	18.0	22.5
	2200 \$/kWp	9.2	10.0	11.0	12.2	13.8	15.7	18.3	22.0	27.5
3 4	2600 \$/kWp	10.8	11.8	13.0	14.4	16.3	18.6	21.7	26.0	32.5
	3000 \$/kWp	12.5	13.6	15.0	16.7	18.8	21.4	25.0	30.0	37.5
	3400 \$/kWp	14.2	15.5	17.0	18.9	21.3	24.3	28.3	34.0	42.5
	3800 \$/kWp	15.8	17.3	19.0	21.1	23.8	27.1	31.7	38.0	47.5
	4200 \$/kWp	17.5	19.1	21.0	23.3	26.3	30.0	35.0	42.0	52.5
	4600 \$/kWp	19.2	20.9	23.0	25.6	28.8	32.9	38.3	46.0	57.5
5	5000 \$/kWp	20.8	22.7	25.0	27.8	31.3	35.7	41.7	50.0	62.5

Economics: System cost

Economics & (non)sense

http://www.littlesun.com

100 little suns = 40 Watt \$3000

\$75 / Watt

Economics & sense

Sunblazer – South Sudan - see http://communitysolutionsinitiative.org/

Economics & sense

Sunblazer – South Sudan - see http://communitysolutionsinitiative.org/

Power & ICTs

Power is frequently named as **biggest obstacle in building networks** before skills/capacity and budget.

Power & ICTs

Note: Percentage indicates what firms identify as most important obstacle Source: World Bank (2006-2011).

StatLink and http://dx.doi.org/10.1787/888932600754

Electrical Power is No Longer a Problem in ICT for Development

Published on: Mar 10 2013 by Wayan Vota

Power and IT Infrastructure

The stable grid is a myth

In most places, the stable grid is nothing but an assumption, a myth rather than a reality.

Even where grids exist, these are often unstable or subject to brown outs and load shedding.

http://peacecorpsdmb.blogspot.it/2012/02/power-or-lack-thereof.html
Power outages kill hardware

Unstable power not only leads to service disruptions,

it also kills hardware, leading to massive losses of investments.

Building networks without solving the power issue is like

trying to fill a bottomless bucket.

We can wait for the grid myth to become reality, or we can set a goal:

Only deploy networks and IT infrastructure that you can power autonomously.

Dimensioning a PV system

The main things you need to know:

Your input – how much sun, when, where? Insolation

Your output – what is the load? Consumption

What uptime, stability and autonomy is required? **Expectation**

Insolation

Insolation data

e.g. From online databases

http://www.wunderground.com/calculators/solar.html

http://www.altestore.com/howto/Solar-Electric-Power/Reference-Materials/Sol

Photovoltaic Geographical Information System (PVGIS) http://re.jrc.ec.europa.eu/pvgis/

Remember real life intelligence and open eyes!

Measure!

Peak sun hours

Insolation: How many Watts per square meter?

A useful unit: Peak sun hours (PSH)

Peak = 1 kW/sqm

Dimensioning

Useful quick facts to remember:

Peak: 1 kW/sqm

With 15 % efficiency, that gives 150 W/sqm or 7 sqm of panel for 1 kW of output.

Multiply with your PSH, and you know What you are getting per day.

Without words

University of Cape Coast, Ghana

Global insolation

Africa

East Africa

Europe

Global horizontal irradiation

Europe

Got less sun? No big prob! :)

Germany sets world record for solar power generation

By Madonna Gauding Published: June 15, 2012 Posted in: Energy, Environment, Technology

Tags: Fossil fuel subsidies , Germany , Solar energy

Consumption

Loads / Consumption

First rule:

Try to minimize the consumption.

Each Watt of consumption will cost you!

HOW MUCH POWER ? AN OLD BIG COMPUTER: 100 W , A LIGHT BULB : 60 W @ AN ENERGY SAVING LIGHT BULB: 5-10 W. A MODERN SMALL COMPUTER : 5W. 20-40 W . A LAPTOP : LED LIGHT : ~ 3W

Typical power consumptions

Your mobile phone?

Arduino: $\sim 1 \dots 5$ W (it depends ...)

Raspberry Pi: < 5 W

Typical WiFi AP: 2 - 10 W ... and more

Carlson TVWS base station: 30-40 W

Doodle labs TVWS card DL-435: 5 W

Example: Doodle Labs DL-435

Operating Voltage

3.3 Volts

Power Consumption

5W @ 30 dBm, in continuous data transfer mode

3W @ 24 dBm, in continuous data transmit mode @ 48 Mbps

2W in continuous data receive mode 0.9W in Sleep mode

http://www.doodlelabs.com/products/radio-transceivers/sub-ghz-range/

Example: 6Harmonics TVWS

Let's ask! :)

We ve asked:

about **25 Watts** for the 6Harmonics base station

If the datasheet does not say ...

Not good ...

Ask! http://www.adaptrum.com/Products_index.htm Read the label! Check power supply to guess the max! Measure!

Side comment: Arduinos & Open Energy Monitor

Side comment: Open Energy Monitor

Side comment: Precision measurement of power consumption

Expectation

Autonomy expectations ultimately depend on the network engineers' and users' educated opinion.

While it might be acceptable for a computer classroom to run out of power during the night or on weekends, for networks we should generally design for near 100% uptime.

Dimensioning

Dimensioning - Approaches

- 1) All year average approach
- 2) Worst month approach
- 3) "Battery" approach

Formula

The following formula provide the basis for dimensioning:

PSH peak sun hours (year average or worst month) [h] Pl load [W] Wp Power (Watt peak) of solar panels [W] Ep Energy produced by panels, in Wh/day. Eff Efficiency of solar panel [%] Cb Capacity of battery [Wh], never be discharged to below 50%. A Area of solar panel [sqm] t0 time of operations without recharge [h] t0 is at least (24 hrs - PSH), but likely significantly larger tC charge time for batteries [h]

Year average approach

Minimum panel size, in Watts peak = $\underline{P}_{i} \times 24$ / PSH (year average)

The battery size in Wh may then (optimistically!) be deducted from

(2)
$$C_b = 2 * P_l * (24 - PSH (year average))$$

Note the factor 2, due to the fact that Batteries

should never be discharged to below 50% of their capacity.

Worst month approach

Minimum panel size = $\underline{Pl} \times 24 / PSH$ (worst month)

The battery size may then be deducted from

(3)
$$C_b = 2 * P_l * t_o$$

Battery approach:

Starting with a more conservative assumption

(4) Battery capacity
$$C_b = 2 * P_1 * t_o$$

we deduct optimistically,

(5) Minimum panel size $W_p = C_b / (2 * PSH)$

or more conservative,

(6) Minimum panel size $W_p = C_b / (2 * t_c)$

Powering a 100 W load / PSH

Table 13.1: PSH in different locations.

Location	PSH	PSH
	Year Average	Worst Month
	[h]	[h]
Kenya, Nairobi	6.00	5.00
Germany, Berlin	3.00	1.00
South Africa, Cape Town	6.00	4.00
UK, Cambridge	3.00	1.00
Malawi, Lilongwe	6.00	5.00

Powering a 100 W load

$\underline{P}_{1} = 100 \text{ W}$

		PSH Year average	PSH, Worst month	Minimum panel size Year average approach	Minimum panel size Worst month approach	Minimum panel size Batterv approach	Battery capacity Minimum	Battery capacity Minimum	Battery capacity Minimum
3	Location	[h]	[h]	Wp [W]	Wp [W]	Wp [W]	Year average approach [Wh]	Worst month approach [Wh]	For 3 days operations [Wh]
	Kenya, Nairobi	6.00	5.00	400	480	380	3600	3800	7200
	Germany, Berlin	3.00	1.00	800	2400	2300	4200	4600	7200
	South Africa, Cape Town	6.00	4.00	400	600	500	3600	4000	7200
	UK, Cambridge	3.00	1.00	800	2400	2300	<mark>4200</mark>	4600	7200
	Malawi, Lilongwe	6.00	5.00	400	480	380	3600	3800	7200

Powering a 100 W load

Table 13.2: Minimum Panel Size in different locations.

Location	Minimum Panel Size	Minimum Panel Size	Minimum Panel Size
	Year Average Approach	Worst Month Approach	Battery Approach
	[W]	[W]	[W]
Kenya, Nairobi	400	480	380
Germany, Berlin	800	2400	2300
South Africa, Cape Town	400	600	500
UK, Cambridge	800	2400	2300
Malawi, Lilongwe	400	480	380

Powering a 100 W load

Table 13.3: Battery Capacity in different locations.

Location	Battery Capacity	Battery Capacity	Battery Capacity	
	Minimum	Minimum	Minimum	
	Year Average Approach	Worst Month Approach	For 3 Days Operation	
	[Wh]	[Wh]	[Wh]	
Kenya, Nairobi	3600	3800	7200	
Germany, Berlin	4200	4600	7200	
South Africa, Cape Town	3600	4000	7200	
UK, Cambridge	4200	4600	7200	
Malawi, Lilongwe	3600	3800	7200	

Economics

We can compare the cost of solar power to Grid electricity or Diesel generator electricity
Economics

CAPEX	initial capital expenses							
PSH	peak sun hours (year average) [h]							
YOP	years of operation							
MF	annual maintenance factor for replacement of equipment, etc.							
PD	price of diesel per liter							
HOP	hours of operation per year (for Diesel generator)							
CD	Diesel consumption [Liter per kWh]							

Cost of solar and diesel power

Table 13.4: Cost per kWh [\$], in year of operation.

			1	5	10	20	30
Solar	PSH	Accumulated CAPEX	3000	4200	5700	8700	11700
DK	2	Cost/kWh	4.11	1.15	0.78	0.60	0.53
KE	5	Cost/kWh	1.64	0.46	0.31	0.24	0.21
Diesel	Price/Liter [\$]	Accumulated CAPEX	500	700	950	1450	1950
DK	1.8	Cost/kWh	0.60	0.56	0.55	0.44	0.55
KE	1	Cost/kWh	0.36	0.32	0.31	0.31	0.31

Remark:

these calculations are very Diesel friendly! Too friendly! Diesel needs to be transported too, generators break, etc ... Please do your own calculations!

Year of break-even

After how many years is solar cheaper than diesel?

 $CAPEXSOLAR/((PSH * 365)(CAPEXDIESEL/8760 + P_D * C_D))$

In most reasonably sunny places, It will be some years ... up to 10 years, Of course depending on input values!

Comparison with grid power

As of 2013, solar electricity reaches approximately

\$ 0.20 / kWh

(in sunny climates, over 25 years) -

What do you pay for the grid kWh?

- Cint	Power
3	questions
I come from {Country/City}:	
The cost of grid electricity p	ber kWh is
Price of Diesel (for Generat	ors) per Liter or Gallon is
The price of Diesel generat	ed electricity per kWh is
The price of a 100 W solar p	panel is
The price of solar generate	d electricity (overyears) is
Grid electricity is (stable / u	instable / not there at all)?
What else i would like to sa	y about power at my place:
Thank you! sebastian@	nsrc.org

Cost of grid power

- IT University of Copenhagen
- \$ 0.26 / kWh
- Solar break even after ~ 9 years
- ... and the other 42 countries?

https://en.wikipedia.org/wiki/Electricity_pricing#Global_electricity_price_comparison

Cost of grid power, Africa

In 2010, the average effective electricity tariff in Africa was \$ 0.14/kWh, vs. \$ 0.18/kWh in production costs.

Source: African Development Bank 2013,

http://www.howwemadeitinafrica.com/why-africas-electricity-generation-costs-are-among-thehighest-in-the-world/24508/

The average effective tariff in South Asia was \$ 0.04/kWh, while that for East Asia was \$ 0.07/kWh.

Economics (up against 15 cents/kWh)

Table showing average cost in cents/kWh over 20 years for solar power panels

		Insolation [peak sun hours] 6 4								2
Cost	[\$/W]	2400 kWh/ kWp•y	2200 kWh/ kWp•y	2000 kWh/ kWp•y	1800 kWh/ kWp•y	1600 kWh/ kWp•y	1400 kWh/kWp•y	1200 kWh/kWp•y	1000 kWh/kWp•y	800 kWh/kWp•y
~ -	200 \$/kWp	0.8	0.9	1.0	1.1	1.3	1.4	1.7	2.0	2.5
0.5	600 \$/kWp	2.5	2.7	3.0	3.3	3.8	4.3	5.0	6.0	7.5
1	1000 \$/kWp	4.2	4.5	5.0	5.6	6.3	7.1	8.3	10.0	12.5
	1400 \$/kWp	5.8	6.4	7.0	7.8	8.8	10.0	11.7	14.0	17.5
2	1800 \$/kWp	7.5	8.2	9.0	10.0	11.3	12.9	15.0	18.0	22.5
	2200 \$/kWp	9.2	10.0	11.0	12.2	13.8	15.7	18.3	22.0	27.5
	2600 \$/kWp	10.8	11.8	13.0	14.4	16.3	18.6	21.7	26.0	32.5
3	3000 \$/kWp	12.5	13.6	15.0	16.7	18.8	21.4	25.0	30.0	37.5
-	3400 \$/kWp	14.2	15.5	17.0	18.9	21.3	24.3	28.3	34.0	42.5
4	3800 \$/kWp	15.8	17.3	19.0	21.1	23.8	27.1	31.7	38.0	47.5
	4200 \$/kWp	17.5	19.1	21.0	23.3	26.3	30.0	35.0	42.0	52.5
	4600 \$/kWp	19.2	20.9	23.0	25.6	28.8	32.9	38.3	46.0	57.5
5	5000 \$/kWp	20.8	22.7	25.0	27.8	31.3	35.7	41.7	50.0	62.5

The future - solar

The future - oil

Q & A Examples, cases, discussion

Some examples: Kopan, Nepal

Some examples: COSMGrid

IT University of Copenhagen

Some examples: Guam

Some examples: TVWS Kenya

Thank you!

sebastian@nsrc.org