Introduction to electromagnetic compatibility and interference mitigation

Prof. Dr. R. Struzak

Former Vice-Chairman, Radio Regulations Board, ITU r.struzak@ieee.org

Note: These are preliminary notes, intended only for distribution to participants. Beware of misprints!

Main topics for discussion

- What is electromagnetic compatibility?
- Why should we consider it?
- What are basic EMC concepts?
- What are EMC limits?
- Where to find EMC standards, etc.?
- How EMC tests look like?

Purpose

- The purpose of the lecture is to raise the awareness of problems that are peculiar to all electronic technologies, wired and wireless:
 - Electromagnetic disturbance
 - Electromagnetic immunity
 - Electromagnetic interference
 - Electromagnetic compatibility

Electrical systems everywhere

- There is an unprecedented proliferation of electrical devices and electronic controls in almost every aspect of human life
- "Intelligence" is being added to even the lowest-cost products due to:
 - General proliferation of electricity
 - Low price of integrated functional blocks
 - Progress in digital signal processing

We depend on electronics...

- Life of individuals and functioning of the society is increasingly dependent on errorless functioning of numerous systems:
 - Emergency telecommunication systems
 - Air, maritime, land transportation systems,...
 - Safety systems, etc., etc, ...
- Most of such critical systems are controlled by electronic sub-systems
 - Hardware and software

Side effect

- Whilst electronic controls and "intelligence" bring many benefits, they also suffer from peculiar performance/ reliability problems
- EM interference is one of major problems related to performance/ reliability, common to <u>all</u> electronic technologies

Electromagnetic Interference (EMI)

- any electromagnetic disturbance that interrupts, obstructs, or otherwise degrades the equipment performances.
 - It can be induced unintentionally, as a result of spurious emissions, vulnerabilities, etc.
 - It can also be induced intentionally, as in some forms of electronic warfare.
 - » Synonym: RFI, Radio Frequency Interference
 - » [T1 Telecom Glossary 2000, Radio Regulations 2000]

EMI-provoked avalanche

- EMI is able to cause malfunctioning of any electronic system component, especially integrated circuits
- A malfunctioning component can disrupt the operation of the whole system
- Such a disruption in safety- related applications can provoke an accident or catastrophe

The issue is not just academic

- The functioning of numerous industrial plants and large systems (e.g. air, maritime and land navigation, communication, regional/national electricity supply) depends critically on errorless operation of electronic systems that are EMI susceptible
- The EMI/EMC problems have been 'discovered' first in military applications (1950's) and have increased since

Legal consequences

 A user, operator, owner, manufacturer, and provider of an apparatus that caused material losses or other harm to a third party due to EMI may be prosecuted.

Examples

- A lot of publicity was given to electronic pacemakers, aircraft navigational control systems, or ABS car-braking systems, but it is only a 'tip of iceberg'.
- At a previous lecture, I presented a number of real-life examples taken from open literature (1970-2003) and from personal experience of my colleagues and me.
- It was pointed out that users experiencing equipment performance degradation often do not suspect EMI as a cause, and a number of EMI problems are not registered.

EMI-related threats

- Many EMC-related malfunctions, incidents, and potential incidents are known, especially to EMC consultants, but they are bound by confidentiality agreements and so these do not get reported.
- It is suggested that the actual rate of EMCrelated malfunctions exceeds those reported in the press by <u>several thousand-fold</u> or so
- An increasing number of these will have safety implications as electronic technologies become more widely used in safety-related systems.

EMI threat data

- Neither equipment makers nor plant owners and directors are keen to report on their EMI problems because of competition and because it could be used in possible legal proceedings.
- Thus, equipment/ system data on disturbance emissions and on immunity vulnerabilities are often kept confidential.
- Possible use of that data by terrorists give additional reason to keep them secret.

EMI threat assessment

- As no publicly available statistics exists on the number and consequences of EMI incidents, EMI-related threats can be assessed only basing on
 - Indirect evidence
 - Relevant recommendations and standards
 - Case-by-case analyses

EMC recommendations

- Most countries follow the relevant regulations, standards, recommendations, and reports of major international organizations:
 - The ITU: regulations, recommendations, handbooks and reports on telecommunication equipment of all kind, including radio (<u>www.itu.int</u>)
 - The IEC: standards and publications on electrical and electronic equipment, including low-voltage power network equipment (<u>www.iec.ch/zone/emc</u>)
 - The WHO: health issues related to EM energy www.who.int/health_topics/electromagnetic_fields/en/

Warning

- EMC standards <u>should not</u> be relied on totally.
 - Actual EMI effects depend on specific situation, current EM environment, and actual degree of coupling. These may differ significantly from those assumed in the standard.
 - Actual EM environment is subject to change (temporary or permanently) due to equipment movement, installation modifications, etc.
 - In safety-related and other critical applications, even temporary degradation of performance or loss of function may not be acceptable.

EMC definition

- Electromagnetic compatibility (EMC):
 ability of an equipment or system to
 function satisfactorily without introducing
 intolerable electromagnetic disturbance to
 anything in that environment
- Criteria of 'satisfactory', and 'intolerable' and the definition of 'anything' and "environment' are all situation dependent

EMI depends on what?

- Given interference criteria, it depends on
 - System emissions (energy radiated by source)

 Fritsch C A: Radiative Heat Transfer; Physical Design of Electronic Systems, Vol. 1 Design Technology, Prentice-Hall 1970, p. 259-286
 - System immunity (ability of a system to perform without degradation in the presence of EM disturbance). [Telecomm Glossary 2000]
 - Coupling between the interference source and victim system
 Buus R G: Electrical Interference; Physical Design of Electronic Systems, Vol. I Prentice-Hall 1970, p. 381-438

Any electrical/ electronic apparatus emits EM energy

- If that energy (disturbance) exceeds some safe level:
 - it can interfere with the operation of other devices, degrade it, or disrupt it completely.
 - It may be harmful to living organisms.
- The victim may be the user of the apparatus and/ or a third party.

Any electrical/ electronic apparatus reacts to EM stimuli.

- If the reaction of an apparatus to external EM stimuli (disturbances) exceeds some safe level, it can interfere with the correct operation of the apparatus, degrade it, or disrupt it completely.
- The victim may be the user of the device and/or a third party.

Principal EM phenomena

Conducted low-frequency phenomena

- Voltage dips and interruptions
- Harmonics
- Voltage fluctuations
- Voltage unbalance
- DC in AC networks
- Power-frequency variations
- Signaling voltages
- Induced low-frequency voltages

Radiated low-frequency phenomena

- * Magnetic fields
- * Electric fields

Conducted high-frequency phenomena

- * Induced CW voltages or currents
- * Unidirectional transients
- * Oscillatory transients

Radiated high-frequency phenomena

- * Magnetic fields
- * Electric fields
- * Electromagnetic fields
 - -Continuous waves
 - -Transients

Electrostatic discharge phenomena (ESD)

High altitude nuclear electromagnetic pulse (HEMP)

EM interactions

- Variability
- Probability

Black-Box approach

- The apparatus interacts with its electromagnetic environment through a number of physical 'ports'.
- Each port can transport energy in both directions using various EM phenomena and various transport modes

Ways to EMC

- Decrease emissions from sources
 - Legal means: impose emission limits
 - Technical means: apply EMI filters and shields
- Increase immunity of victim systems
 - Legal means: impose immunity limits
 - Technical means:
 - » Apply EMI filters and shields
 - » Apply robust signal processing methods
- Reduce coupling between the interference sources and victims systems
 - Legal means: introduce zones
 - Technical means: separate sources and victims in time, geometrical space, and signal space

EMC limits

- Emission limits: the maximum disturbance levels which the equipment is allowed to produce
- Immunity limits: the minimum disturbance levels which the equipment should withstand without its operation being unacceptably degraded
- Standard 'average' conditions and performance criteria are assumed
- Verifying these limits may require special EM energy sources, applicators, etc. (expensive!)

Coupling reduction

- Conductive coupling (various modes)
 - EMI filters & optical couplers
- M-Field (magnetic or inductive) coupling
 - Distance & magnetic shields
- E-Field (Electric or capacitive) coupling
 - Distance & electric shields
- EM-Field Coupling
 - Distance & electromagnetic shields

Mitigating harmful interference

- Harmful interference when the risk (probability) of interference and extent of its consequences exceed the acceptable levels
- To mitigate interference, the acceptable limits for emissions, immunity, and coupling must be observed during the operation
- These must be observed during the entire lifecycle (design, make, install, upgrade and maintain phases) of the system and verified using appropriate test methods for each port and EM phenomenon

EMC control

- In critical cases the following should be considered:
 - What EM disturbances might my apparatus be exposed to now and in the foreseeable future?
 - What are the foreseeable effects of these disturbances on my apparatus/ system?
 - What EM disturbances my apparatus emits and how these could affect other apparatuses (existing or planned)?
 - What are the foreseeable implications of these disturbances (safety level required, severity of the hazard, scale of the risk)?
 - What level of confidence (tests? verification? proof? specification? documentation?) is required that the above have been fully considered and necessary actions taken to achieve the desired level of safety?

Maintenance

- When installing new equipment ensure that it will be compatible with the existing and planned equipment.
- Maintenance procedures should also consider EMC.
 - In particular, the use of mobile radiocommunications close to equipment which has had covers removed should be controlled, particularly when equipment is being maintained 'on-line'.
- Software changes and upgrades in critical electronic equipment can also negatively affect EMC and hence functional safety, so these should be treated as for hardware maintenance.
- Ensure appropriate test/ validation after installation, maintenance, modification, upgrade, and refurbishment.

Trends

- Miniaturisation, integration, and increasing complexity, all make electronic systems and components more vulnerable to electrical influences.
- Newer electronic devices (silicon chips) tend to be more susceptible to EM disturbance than the devices they replace.
- The proliferation of electronic/ electrical apparatuses (wired and wireless) brings the sources and victims of disturbance closer together and increases the interference potential

Safety issues

- Safety = the freedom from unacceptable risks that are harmful to an individual, a group, or the public.
- Many safety-related systems use electronic components and sub-systems that are vulnerable to EMI
- Consequences of EMI in safety-related systems may be catastrophic, involving economic, legal, and social factors, in addition to technical ones.

EMC concerns all of us

- The aim of EMC is
 - to ensure the reliability of all types of electronic devices wherever they are used
 - and thus to ensure the reliable and safe operation of the systems in which they are employed.

References

- Armstrong K: EMC-related functional safety; ITEM update 2001, p. 52-59
- EUROPEAN EMC Directive (<u>http://europa.eu.int/comm/enterprise/electr_equipment/emc/guides/english.pdf</u>)
- EUROPEAN RTTE Directive (http://europa.eu.int/eur-lex/pri/en/oj/dat/1999/l_091/l_09119990407en00100028.pdf)
- IEEE Electromagnetic Compatibility Society: http://www.emcs.org/
- IEE Guide to EMC and Functional Safety, IEE September 2000 (free) http://www.iee.org/Policy/Areas/Emc/index.cfm
- International Electrotechnical Commission (<u>www.iec.ch</u>)
- International Telecommunication Union (<u>www.itu.int</u>)
- Mannon J, Johnson E: Radio Waves Spell Trouble for Industry; New Scientist, 5 May 1983
- Moroñ W: Nature and Technology: improving relations; in Struzak R (Ed.) Global Communications Asia 1997, ISBN 0946393869, p. 259-263

References (cont.)

- NASA Reference Publication 1374, Jul. 1995
- Online guide to EMC (http://www.interferencetechnology.com/)
- Rohde & Schwarz: Measuring EMI and wanted signals; News from Rohde & Schwarz Special
- Struzak R: Terrestrial Electromagnetic Environment; in Rotkiewicz W (ed.) Electromagnetic Compatibility in Radio Engineering, p.3-57, ISBN 0-444-99722-9, Elsevier 1982
- Szentkuti B: EMC standards today: starting point into the future; in Struzak R (Ed.) Global Communications Interactive 1999, ISBN 1902221230, p.86-92
- Teichmann H: Electromagnetic compatibility concerns all of us; in Struzak R (Ed.) Global Communications Asia 1998, ISBN 190222101-X, p. 80-85
- www.emc.wroc.pl

EMC tests

Courtesy of Rohde & Schwarz

EMC tests

EMC tests

Courtesy of Rohde & Schwarz

Test antennas

Courtesy of Rohde & Schwarz

Test antennas

Courtesy of Rohde & Schwarz

Tests from the air

Property of R. Struzak

Flying laboratory (1)

Property of R. Struzak

Flying laboratory (2)

Property of R. Struzak

What we have learned

- What is electromagnetic compatibility and why should we consider it
- What are basic EMC concepts and what are EMC limits
- Where to find more information on EMC standards, recommendations, etc.
- How EMC tests looks like

Any questions?

Thank you for your attention

Copyright note

- Copyright © 2004 Ryszard Struzak. All rights are reserved.
- These materials and any part of them may not be published, copied to or issued from another Web server without the author's written permission.
- These materials may be used freely for individual study, research, and education in not-for-profit applications.
- If you cite these materials, please credit the author.
- If you have comments or suggestions, you may send these directly to the author at r.struzak@ieee.org.