
 - 1 - 

AWK....................................................................................................................................4 

BC .....................................................................................................................................11 

CHGRP .............................................................................................................................16 

CHMOD.............................................................................................................................19 

CHOWN ............................................................................................................................26 

CP .....................................................................................................................................29 

CRON................................................................................................................................34 

CSH...................................................................................................................................36 

CUT...................................................................................................................................71 

DATE ................................................................................................................................75 

DF .....................................................................................................................................79 

DIFF ..................................................................................................................................84 

ENV...................................................................................................................................89 

EXPR ................................................................................................................................92 

FIND..................................................................................................................................96 

GREP ..............................................................................................................................104 

KILL ................................................................................................................................111 

KSH.................................................................................................................................116 

LN ...................................................................................................................................181 

LS....................................................................................................................................186 



 - 2 - 

MAKE..............................................................................................................................194 

MAN ................................................................................................................................234 

MORE .............................................................................................................................241 

MV...................................................................................................................................251 

NROFF............................................................................................................................254 

OD...................................................................................................................................257 

PRINTF ...........................................................................................................................265 

PS ...................................................................................................................................271 

REGEXP .........................................................................................................................283 

RM...................................................................................................................................292 

SCRIPT ...........................................................................................................................297 

SED.................................................................................................................................298 

SHUTDOWN ...................................................................................................................309 

SLEEP ............................................................................................................................312 

SORT ..............................................................................................................................314 

SPELL.............................................................................................................................324 

SUM ................................................................................................................................328 

TAR.................................................................................................................................330 

TR ...................................................................................................................................342 

TROFF ............................................................................................................................349 



 - 3 - 

UNIQ ...............................................................................................................................352 

VI.....................................................................................................................................355 

WC ..................................................................................................................................365 

WHICH ............................................................................................................................367 

WHO ...............................................................................................................................370 



 - 4 - 

awk 
awk - pattern scanning and processing language

SYNOPSIS 
/usr/bin/awk [ -f progfile ] [ -Fc ] [ 'prog' ]

[ parameters ] [ filename...]

/usr/xpg4/bin/awk [ -F ERE ] [ -v assignment ... ]
'program' | -f progfile ... [ argument ... ]

DESCRIPTION 
The /usr/xpg4/bin/awk utility is described on the nawk(1)
manual page.

The /usr/bin/awk utility scans each input filename for lines
that match any of a set of patterns specified in prog. The
prog string must be enclosed in single quotes (') to protect
it from the shell. For each pattern in prog there may be an
associated action performed when a line of a filename
matches the pattern. The set of pattern-action statements
may appear literally as prog or in a file specified with the
-f progfile option. Input files are read in order; if there
are no files, the standard input is read. The file name '-'
means the standard input.

OPTIONS 
-f progfile awk uses the set of patterns it reads from

progfile.

-Fc Use the character c as the field separator
(FS) character. See the discussion of FS
below.

USAGE 
Input Lines

Each input line is matched against the pattern portion of
every pattern-action statement; the associated action is
performed for each matched pattern. Any filename of the
form var=value is treated as an assignment, not a filename,
and is executed at the time it would have been opened if it
were a filename. Variables assigned in this manner are not
available inside a BEGIN rule, and are assigned after previ-



 - 5 - 

ously specified files have been read.

An input line is normally made up of fields separated by
white spaces. (This default can be changed by using the FS
built-in variable or the -Fc option.) The default is to
ignore leading blanks and to separate fields by blanks
and/or tab characters. However, if FS is assigned a value
that does not include any of the white spaces, then leading
blanks are not ignored. The fields are denoted $1, $2, ...;
$0 refers to the entire line.

Pattern-action Statements
A pattern-action statement has the form:

pattern { action }

Either pattern or action may be omitted. If there is no
action, the matching line is printed. If there is no pat-
tern, the action is performed on every input line.
Pattern-action statements are separated by newlines or semi-
colons.

Patterns are arbitrary Boolean combinations ( !, ||, &&, and
parentheses) of relational expressions and regular expres-
sions. A relational expression is one of the following:

expression relop expression
expression matchop regular_expression

where a relop is any of the six relational operators in C,
and a matchop is either ~ (contains) or !~ (does not con-
tain). An expression is an arithmetic expression, a rela-
tional expression, the special expression

var in array

or a Boolean combination of these.

Regular expressions are as in egrep(1). In patterns they
must be surrounded by slashes. Isolated regular expressions
in a pattern apply to the entire line. Regular expressions
may also occur in relational expressions. A pattern may
consist of two patterns separated by a comma; in this case,
the action is performed for all lines between the occurrence
of the first pattern to the occurrence of the second pat-
tern.

The special patterns BEGIN and END may be used to capture



 - 6 - 

control before the first input line has been read and after
the last input line has been read respectively. These key-
words do not combine with any other patterns.

Built-in Variables
Built-in variables include:

FILENAME name of the current input file

FS input field separator regular expression
(default blank and tab)

NF number of fields in the current record

NR ordinal number of the current record
OFMT output format for numbers (default %.6g)

OFS output field separator (default blank)

ORS output record separator (default new-
line)

RS input record separator (default new-
line)

An action is a sequence of statements. A statement may be
one of the following:

if ( expression ) statement [ else statement ]
while ( expression ) statement
do statement while ( expression )
for ( expression ; expression ; expression ) statement
for ( var in array ) statement
break
continue
{ [ statement ] ... }
expression # commonly variable = expression
print [ expression-list ] [ >expression ]
printf format [ , expression-list ] [ >expression ]
next # skip remaining patterns on this input line
exit [expr] # skip the rest of the input; exit status

is expr

Statements are terminated by semicolons, newlines, or right
braces. An empty expression-list stands for the whole input
line. Expressions take on string or numeric values as
appropriate, and are built using the operators +, -, *, /,



 - 7 - 

%, ^ and concatenation (indicated by a blank). The opera-
tors ++, --, +=, -=, *=, /=, %=, ^=, >, >=, <, <=, ==, !=,
and ?: are also available in expressions. Variables may be
scalars, array elements (denoted x[i]), or fields. Vari-
ables are initialized to the null string or zero. Array
subscripts may be any string, not necessarily numeric; this
allows for a form of associative memory. String constants
are quoted (""), with the usual C escapes recognized within.

The print statement prints its arguments on the standard
output, or on a file if >expression is present, or on a pipe
if '|cmd' is present. The output resulted from the print
statement is terminated by the output record separator with
each argument separated by the current output field separa-
tor. The printf statement formats its expression list
according to the format (see printf(3S)).

Built-in Functions
The arithmetic functions are as follows:

cos(x) Return cosine of x, where x is in
radians.

sin(x) Return sine of x, where x is in radians.

exp(x) Return the exponential function of x.

log(x) Return the natural logarithm of x.

sqrt(x) Return the square root of x.

int(x) Truncate its argument to an integer. It
will be truncated toward 0 when x > 0.

The string functions are as follows:

index(s, t) Return the position in string s where
string t first occurs, or 0 if it does
not occur at all.

int(s) truncates s to an integer value. If s
is not specified, $0 is used.

length(s) Return the length of its argument taken
as a string, or of the whole line if
there is no argument.



 - 8 - 

match(s, re) Return the position in string s where
the regular expression re occurs, or 0
if it does not occur at all.

split(s, a, fs)
Split the string s into array elements
a[1], a[2], a[n], and returns n. The
separation is done with the regular
expression fs or with the field separa-
tor FS if fs is not given.

sprintf(fmt, expr, expr,...)
Format the expressions according to the
printf(3S) format given by fmt and
returns the resulting string.

substr(s, m, n)
returns the n-character substring of s
that begins at position m.

The input/output function is as follows:

getline Set $0 to the next input record from the
current input file. getline returns 1
for successful input, 0 for end of file,
and -1 for an error.

Large File Behavior
See largefile(5) for the description of the behavior of awk
when encountering files greater than or equal to 2 Gbyte
(2**31 bytes).

EXAMPLES 
Print lines longer than 72 characters:

length > 72

Print first two fields in opposite order:

{ print $2, $1 }

Same, with input fields separated by comma and/or blanks and
tabs:

BEGIN { FS = ",[ \t]*|[ \t]+" }
{ print $2, $1 }



 - 9 - 

Add up first column, print sum and average:

{ s += $1 }
END { print "sum is", s, " average is", s/NR }

Print fields in reverse order:

{ for (i = NF; i > 0; --i) print $i }

Print all lines between start/stop pairs:

/start/, /stop/

Print all lines whose first field is different from previous
one:

$1 != prev { print; prev = $1 }

Print a file, filling in page numbers starting at 5:

/Page/ { $2 = n++; }
{ print }

Assuming this program is in a file named prog, the following
command line prints the file input numbering its pages
starting at 5: awk -f prog n=5 input.

ENVIRONMENT 
See environ(5) for descriptions of the following environment
variables that affect the execution of awk: LC_CTYPE and
LC_MESSAGES.

ATTRIBUTES 
See attributes(5) for descriptions of the following attri-
butes:

/usr/bin/awk
__________________________________
| ATTRIBUTE TYPE| ATTRIBUTE VALUE|
|_______________|_________________|
| Availability | SUNWesu |
| CSI | Enabled |
|_______________|_________________|

/usr/xpg4/bin/awk
__________________________________
| ATTRIBUTE TYPE| ATTRIBUTE VALUE|



 - 10 - 

|_______________|_________________|
| Availability | SUNWxcu4 |
| CSI | Enabled |
|_______________|_________________|

SEE ALSO 
egrep(1), grep(1), nawk(1), sed(1), printf(3S), attri-
butes(5), environ(5), largefile(5), xpg4(5)

NOTES 
Input white space is not preserved on output if fields are
involved.

There are no explicit conversions between numbers and
strings. To force an expression to be treated as a number
add 0 to it; to force it to be treated as a string concaten-
ate the null string ("") to it.



 - 11 - 

bc 
bc - arbitrary precision arithmetic language

SYNOPSIS 
bc [ -c ] [ -l ] [ file...]

DESCRIPTION 
The bc utility implements an arbitrary precision calculator.
It takes input from any files given, then reads from the
standard input. If the standard input and standard output
to bc are attached to a terminal, the invocation of bc is
interactive , causing behavioural constraints described in
the following sections. bc processes a language that resem-
bles C and is a preprocessor for the desk calculator program
dc, which it invokes automatically unless the -c option is
specified. In this case the dc input is sent to the stan-
dard output instead.

USAGE 
The syntax for bc programs is as follows:

L means a letter a-z,

E means an expression: a (mathematical or logical)
value, an operand that takes a value, or a combina-
tion of operands and operators that evaluates to a
value,

S means a statement.

Comments
Enclosed in /* and */.

Names (Operands)
Simple variables: L.
Array elements: L [ E ] (up to BC_DIM_MAX dimen-
sions).
The words ibase, obase (limited to BC_BASE_MAX), and
scale (limited to BC_SCALE_MAX).

Other Operands
Arbitrarily long numbers with optional sign and
decimal point.



 - 12 - 

Strings of fewer than BC_STRING_MAX characters,
between double quotes (").
( E )

sqrt ( E ) Square root

length ( E ) Number of significant
decimal digits.

scale ( E ) Number of digits right
of decimal point.

L ( E , ... , E )

Operators
+ - * / % ^ (% is remainder; ^ is

power)

++ -- (prefix and postfix;
apply to names)

== <= >= != < >

= =+ =- =* =/ =% =^

Statements
E
{ S ;... ; S }
if ( E ) S
while ( E ) S
for ( E ; E ; E ) S
null statement
break
quit

.string

Function Definitions
define L ( L ,..., L ) {

auto L ,..., L
S ;... S
return ( E )

}

Functions in -l Math Library
s(x) sine
c(x) cosine
e(x) exponential



 - 13 - 

l(x) log
a(x) arctangent
j(n,x) Bessel function

All function arguments are passed by value.

The value of a statement that is an expression is printed
unless the main operator is an assignment. Either semi-
colons or new-lines may separate statements. Assignment to
scale influences the number of digits to be retained on
arithmetic operations in the manner of dc. Assignments to
ibase or obase set the input and output number radix respec-
tively.
The same letter may be used as an array, a function, and a
simple variable simultaneously. All variables are global to
the program. auto variables are stacked during function
calls. When using arrays as function arguments or defining
them as automatic variables, empty square brackets must fol-
low the array name.

OPTIONS 
-c Compile only. The output is dc commands that are

sent to the standard output.

-l Define the math functions and initialize scale to
20, instead of the default zero.

OPERANDS
The following operands are supported:

file A pathname of a text file containing bc program
statements. After all cases of file have been read,
bc will read the standard input.

EXAMPLES 
In the shell, the following assigns an approximation of the
first ten digits of -�n to the variable x :

x=$(printf "%s\n" 'scale = 10; 104348/33215' | bc)

Defines a function to compute an approximate value of the
exponential function:

scale = 20
define e(x){

auto a, b, c, i, s



 - 14 - 

a = 1
b = 1
s = 1
for(i=1; 1==1; i++){

a = a*x
b = b*i
c = a/b
if(c == 0) return(s)
s = s+c

}
}

Prints approximate values of the exponential function of the
first ten integers:

for(i=1; i<=10; i++) e(i)
or

for (i = 1; i <= 10; ++i) {
e(i) }

ENVIRONMENT 
See environ(5) for descriptions of the following environment
variables that affect the execution of bc: LC_CTYPE,
LC_MESSAGES, and NLSPATH.

EXIT STATUS
The following exit values are returned:
0 All input files were processed successfully.
unspecified An error occurred.

FILES
/usr/lib/lib.b mathematical library
/usr/include/limits.h to define BC_ parameters

ATTRIBUTES 
See attributes(5) for descriptions of the following attri-
butes:

__________________________________
| ATTRIBUTE TYPE| ATTRIBUTE VALUE|
|_______________|_________________|
| Availability | SUNWesu |
|_______________|_________________|



 - 15 - 

SEE ALSO 
dc(1), awk(1), attributes(5)

NOTES 
The bc command does not recognize the logical operators &&
and ||.

The for statement must have all three expressions (E's).



 - 16 - 

chgrp 
chgrp - change file group ownership

SYNOPSIS 
chgrp [ -fhR ] group file

DESCRIPTION 
The chgrp utility will set the group ID of the file named by
each file operand to the group ID specified by the group
operand.

For each file operand, it will perform actions equivalent to
the chown(2) function, called with the following arguments:

o The file operand will be used as the path argument.

o The user ID of the file will be used as the owner argu-
ment.

o The specified group ID will be used as the group argu-
ment.

Unless chgrp is invoked by a process with appropriate
privileges, the set-user-ID and set-group-ID bits of a regu-
lar file will be cleared upon successful completion; the
set-user-ID and set-group-ID bits of other file types may be
cleared.

The operating system has a configuration option
{_POSIX_CHOWN_RESTRICTED}, to restrict ownership changes.
When this option is in effect, the owner of the file may
change the group of the file only to a group to which the
owner belongs. Only the super-user can arbitrarily change
owner IDs, whether or not this option is in effect. To set
this configuration option, include the following line in
/etc/system:

set rstchown = 1
To disable this option, include the following line in
/etc/system:

set rstchown = 0
{_POSIX_CHOWN_RESTRICTED} is enabled by default. See sys-
tem(4) and fpathconf(2).



 - 17 - 

OPTIONS 
-f Force. Do not report errors.

-h If the file is a symbolic link, change the group
of the symbolic link. Without this option, the
group of the file referenced by the symbolic link
is changed.

-R Recursive. chgrp descends through the directory,
and any subdirectories, setting the specified
group ID as it proceeds. When a symbolic link is
encountered, the group of the target file is
changed (unless the -h option is specified), but
no recursion takes place.

OPERANDS
The following operands are supported:

group A group name from the group database or a numeric
group ID. Either specifies a group ID to be given
to each file named by one of the file operands. If
a numeric group operand exists in the group database
as a group name, the group ID number associated with
that group name is used as the group ID.

file A path name of a file whose group ID is to be modi-
fied.

USAGE 
See largefile(5) for the description of the behavior of
chgrp when encountering files greater than or equal to 2
Gbyte (2**31 bytes).

ENVIRONMENT 
See environ(5) for descriptions of the following environment
variables that affect the execution of chgrp: LC_CTYPE,
LC_MESSAGES, and NLSPATH.

EXIT STATUS
The following exit values are returned:

0 The utility executed successfully and all requested
changes were made.

>0 An error occurred.



 - 18 - 

FILES
/etc/group group file

ATTRIBUTES 
See attributes(5) for descriptions of the following attri-
butes:

______________________________________
| ATTRIBUTE TYPE| ATTRIBUTE VALUE |
|_______________|_____________________|
| Availability | SUNWcsu |
| CSI | Enabled (see NOTES)|
|_______________|_____________________|

SEE ALSO 
chmod(1), chown(1), id(1M), chown(2), fpathconf(2),
group(4), passwd(4), system(4), attributes(5), environ(5),
largefile(5)

NOTES 
chgrp is CSI-enabled except for the group name.



 - 19 - 

chmod 
chmod - change the permissions mode of a file

SYNOPSIS 
chmod [ -fR ] <absolute-mode> file...
chmod [ -fR ] <symbolic-mode-list> file...

DESCRIPTION 
chmod changes or assigns the mode of a file. The mode of a
file specifies its permissions and other attributes. The
mode may be absolute or symbolic.

Absolute mode
An absolute mode is specified using octal numbers:

chmod nnnn file ...

where:

n a number from 0 to 7. An absolute mode is
constructed from the OR of any of the follow-
ing modes:

4000 Set user ID on execution.
20#0 Set group ID on execution if # is

7, 5, 3, or 1.
Enable mandatory locking if # is 6,
4, 2, or 0.
For directories, files are created
with BSD semantics for propagation
of the group ID. With this option,
files and subdirectories created in
the directory inherit the group ID
of the directory, rather than of
the current process. It may be
cleared only by using symbolic
mode.

1000 Turn on sticky bit. See chmod(2).
0400 Allow read by owner.
0200 Allow write by owner.
0100 Allow execute (search in directory)

by owner.
0700 Allow read, write, and execute



 - 20 - 

(search) by owner.
0040 Allow read by group.
0020 Allow write by group.
0010 Allow execute (search in directory)

by group.
0070 Allow read, write, and execute

(search) by group.
0004 Allow read by others.
0002 Allow write by others.
0001 Allow execute (search in directory)

by others.
0007 Allow read, write, and execute

(search) by others.

Note that the setgid bit cannot be set (or cleared) in abso-
lute mode; it must be set (or cleared) in symbolic mode
using g+s (or g-s).

Symbolic mode
A symbolic mode specification has the following format:

chmod <symbolic-mode-list> file...

where: <symbolic-mode-list> is a comma-separated list (with
no intervening whitespace) of symbolic mode expressions of
the form:

[who] operator [permissions]

Operations are performed in the order given. Multiple per-
missions letters following a single operator cause the
corresponding operations to be performed simultaneously.

who zero or more of the characters u, g, o, and a
specifying whose permissions are to be
changed or assigned:

u user's permissions
g group's permissions
o others' permissions
a all permissions (user, group, and

other)

If who is omitted, it defaults to a, but the
setting of the file mode creation mask (see
umask in sh(1) or csh(1) for more informa-
tion) is taken into account. When who is
omitted, chmod will not override the restric-



 - 21 - 

tions of your user mask.

operator either +, -, or =, signifying how permissions
are to be changed:

+ Add permissions.

If permissions is omitted, nothing
is added.

If who is omitted, add the file
mode bits represented by permis-
sions, except for the those with
corresponding bits in the file mode
creation mask.

If who is present, add the file
mode bits represented by the per-
missions.

- Take away permissions.

If permissions is omitted, do noth-
ing.

If who is omitted, clear the file
mode bits represented by permis-
sions, except for those with
corresponding bits in the file mode
creation mask.

If who is present, clear the file
mode bits represented by permis-
sions.

= Assign permissions absolutely.

If who is omitted, clear all file
mode bits; if who is present, clear
the file mode bits represented by
who.

If permissions is omitted, do noth-
ing else.

If who is omitted, add the file
mode bits represented by permis-



 - 22 - 

sions, except for the those with
corresponding bits in the file mode
creation mask.

If who is present, add the file
mode bits represented by permis-
sions.

Unlike other symbolic operations, = has an
absolute effect in that it resets all other
bits represented by who. Omitting permis-
sions is useful only with = to take away all
permissions.

permission
any compatible combination of the following
letters:

r read permission
w write permission
x execute permission
l mandatory locking
s user or group set-ID
t sticky bit
u,g,o indicate that permission is to be

taken from the current user, group
or other mode respectively.

Permissions to a file may vary depending on
your user identification number (UID) or
group identification number (GID). Permis-
sions are described in three sequences each
having three characters:

User Group Other
rwx rwx rwx

This example (user, group, and others all
have permission to read, write, and execute a
given file) demonstrates two categories for
granting permissions: the access class and
the permissions themselves.

The letter s is only meaningful with u or g,
and t only works with u.

Mandatory file and record locking (l) refers



 - 23 - 

to a file's ability to have its reading or
writing permissions locked while a program is
accessing that file.

In a directory which has the set-group-ID bit
set (reflected as either -----s--- or -----
l--- in the output of 'ls -ld'), files and
subdirectories are created with the group-ID
of the parent directory-not that of current
process.

It is not possible to permit group execution
and enable a file to be locked on execution
at the same time. In addition, it is not
possible to turn on the set-group-ID bit and
enable a file to be locked on execution at
the same time. The following examples,
therefore, are invalid and elicit error mes-
sages:

chmod g+x,+l file
chmod g+s,+l file

Only the owner of a file or directory (or the
super-user) may change that file's or
directory's mode. Only the super-user may
set the sticky bit on a non-directory file.
If you are not super-user, chmod will mask
the sticky-bit but will not return an error.
In order to turn on a file's set-group-ID
bit, your own group ID must correspond to the
file's and group execution must be set.

OPTIONS 
The following options are supported:

-f Force. chmod will not complain if it fails to
change the mode of a file.

-R Recursively descend through directory arguments,
setting the mode for each file as described above.
When symbolic links are encountered, the mode of
the target file is changed, but no recursion takes
place.

OPERANDS



 - 24 - 

The following operands are supported:

mode Represents the change to be made to the file mode
bits of each file named by one of the file
operands; see DESCRIPTION.

file A path name of a file whose file mode bits are to
be modified.

USAGE 
See largefile(5) for the description of the behavior of
chmod when encountering files greater than or equal to 2
Gbyte (2**31 bytes).

EXAMPLES 
Deny execute permission to everyone:

example% chmod a-x file

Allow only read permission to everyone:

example% chmod 444 file

Make a file readable and writable by the group and others:

example% chmod go+rw file
example% chmod 066 file

Cause a file to be locked during access:
example% chmod +l file

Allow everyone to read, write, and execute the file and turn
on the set group-ID.

example% chmod a=rwx,g+s file
example% chmod 2777 file

ENVIRONMENT 
See environ(5) for descriptions of the following environment
variables that affect the execution of chmod: LC_CTYPE,
LC_MESSAGES, and NLSPATH.

EXIT STATUS
The following exit values are returned:



 - 25 - 

0 Successful completion.
>0 An error occurred.

ATTRIBUTES 
See attributes(5) for descriptions of the following attri-
butes:

__________________________________
| ATTRIBUTE TYPE| ATTRIBUTE VALUE|
|_______________|_________________|
| Availability | SUNWcsu |
| CSI | enabled |
|_______________|_________________|

SEE ALSO 
ls(1), chmod(2), attributes(5), environ(5), largefile(5)

NOTES 
Absolute changes don't work for the set-group-ID bit of a
directory. You must use g+s or g-s.

chmod permits you to produce useless modes so long as they
are not illegal (for instance, making a text file execut-
able). chmod does not check the file type to see if manda-
tory locking is meaningful.

If the filesystem is mounted with the nosuid option, setuid
execution is not allowed.



 - 26 - 

chown 
chown - change file ownership

SYNOPSIS 
chown [ -fhR ] owner[:group] file...

DESCRIPTION 
The chown utility will set the user ID of the file named by
each file to the user ID specified by owner, and, option-
ally, will set the group ID to that specified by group.

If chown is invoked by other than the super-user, the set-
user-ID bit is cleared.

Only the owner of a file (or the super-user) may change the
owner of that file.

The operating system has a configuration option
{_POSIX_CHOWN_RESTRICTED}, to restrict ownership changes.
When this option is in effect the owner of the file is
prevented from changing the owner ID of the file. Only the
super-user can arbitrarily change owner IDs whether or not
this option is in effect. To set this configuration option,
include the following line in /etc/system:

set rstchown = 1

To disable this option, include the following line in
/etc/system:

set rstchown = 0

{_POSIX_CHOWN_RESTRICTED} is enabled by default. See sys-
tem(4) and fpathconf(2).

OPTIONS 
The following options are supported:

-f Do not report errors.

-h If the file is a symbolic link, change the owner of the
symbolic link. Without this option, the owner of the



 - 27 - 

file referenced by the symbolic link is changed.

-R Recursive. chown descends through the directory, and
any subdirectories, setting the ownership ID as it
proceeds. When a symbolic link is encountered, the
owner of the target file is changed (unless the -h
option is specified), but no recursion takes place.

OPERANDS
The following operands are supported:
owner[:group] A user ID and optional group ID to be

assigned to file. The owner portion of this
operand must be a user name from the user
database or a numeric user ID. Either speci-
fies a user ID to be given to each file named
by file. If a numeric owner exists in the
user database as a user name, the user ID
number associated with that user name will be
used as the user ID. Similarly, if the group
portion of this operand is present, it must
be a group name from the group database or a
numeric group ID. Either specifies a group
ID to be given to each file. If a numeric
group operand exists in the group database as
a group name, the group ID number associated
with that group name will be used as the
group ID.

file A path name of a file whose user ID is to be
modified.

USAGE 
See largefile(5) for the description of the behavior of
chown when encountering files greater than or equal to 2
Gbyte (2**31 bytes).

ENVIRONMENT 
See environ(5) for descriptions of the following environment
variables that affect the execution of chown: LC_CTYPE,
LC_MESSAGES, and NLSPATH.

EXIT STATUS
The following exit values are returned:

0 The utility executed successfully and all requested



 - 28 - 

changes were made.

>0 An error occurred.

FILES
/etc/passwd system password file

ATTRIBUTES 
See attributes(5) for descriptions of the following attri-
butes:
______________________________________
| ATTRIBUTE TYPE| ATTRIBUTE VALUE |
|_______________|_____________________|
| Availability | SUNWcsu |
| CSI | Enabled (see NOTES)|
|_______________|_____________________|

SEE ALSO 
chgrp(1), chmod(1), chown(2), fpathconf(2), passwd(4), sys-
tem(4), attributes(5), environ(5), largefile(5)

NOTES 
chown is CSI-enabled except for the owner and group names.



 - 29 - 

cp 
cp - copy files

SYNOPSIS 
/usr/bin/cp [-fip] source_file target_file
/usr/bin/cp [-fip] source_file... target
/usr/bin/cp -r|-R [-fip] source_dir... target

/usr/xpg4/bin/cp [-fip] source_file target_file
/usr/xpg4/bin/cp [-fip] source_file... target
/usr/xpg4/bin/cp -r|-R [-fip] source_dir... target

DESCRIPTION 
In the first synopsis form, neither source_file nor
target_file are directory files, nor can they have the same
name. The cp utility will copy the contents of source_file
to the destination path named by target_file. If
target_file exists, cp will overwrite its contents, but the
mode (and ACL if applicable), owner, and group associated
with it are not changed. The last modification time of
target_file and the last access time of source_file are set
to the time the copy was made. If target_file does not
exist, cp creates a new file named target_file that has the
same mode as source_file except that the sticky bit is not
set unless the user is superuser; the owner and group of
target_file are those of the owner. If target_file is a
link to another file with links, the other links remain and
target_file becomes a new file.

In the second synopsis form, one or more source_files are
copied to the directory specified by target. For each
source_file specified, a new file with the same mode (and
ACL if applicable), is created in target; the owner and
group are those of the user making the copy. It is an error
if any source_file is a file of type directory, if target
either does not exist or is not a directory.

In the third synopsis form, one or more directories speci-
fied by source_dir are copied to the directory specified by
target. Either -r or -R must be specified. For each
source_dir, cp will copy all files and subdirectories.



 - 30 - 

OPTIONS 
The following options are supported for both /usr/bin/cp and
/usr/xpg4/bin/cp:

-f Unlink. If a file descriptor for a destination file
cannot be obtained, attempt to unlink the destina-
tion file and proceed.

-i Interactive. cp will prompt for confirmation when-
ever the copy would overwrite an existing target. A
y answer means that the copy should proceed. Any
other answer prevents cp from overwriting target.

-r Recursive. cp will copy the directory and all its
files, including any subdirectories and their files
to target.

-R Same as -r, except pipes are replicated, not read
from.

/usr/bin/cp
The following option is supported for /usr/bin/cp only:

-p Preserve. cp duplicates not only the contents of
source_file, but also preserves the owner and group id,
permissions modes, modification and access time, and
ACLs if applicable. Note that the command may fail if
ACLs are copied to a file system that does not support
ACLs. The command will not fail if unable to preserve
modification and access time or permission modes. If
unable to preserve owner and group id, cp will not
fail, and it will clear S_ISUID and S_ISGID bits in the
target. cp will print a diagnostic message to stderr
and return a non-zero exit status if unable to clear
these bits.

In order to preserve the owner and group id, permission
modes, and modification and access times, users must
have the appropriate file access permissions; this
includes being superuser or the same owner id as the
destination file.

/usr/xpg4/bin/cp
The following option is supported for /usr/xpg4/bin/cp only:

-p Preserve. cp duplicates not only the contents of
source_file, but also preserves the owner and group id,



 - 31 - 

permission modes, modification and access time, and
ACLs if applicable. Note that the command may fail if
ACLs are copied to a file system that does not support
ACLs. If unable to duplicate the modification and
access time or the permission modes, cp will print a
diagnostic message to stderr and return a non-zero exit
status. If unable to preserve owner and group id, cp
will not fail, and it will clear S_ISUID and S_ISGID
bits in the target. cp will print a diagnostic message
to stderr and return a non-zero exit status if unable
to clear these bits.

In order to preserve the owner and group id, permission
modes, and modification and access times, users must
have the appropriate file access permissions; this
includes being superuser or the same owner id as the
destination file.

OPERANDS
The following operands are supported:

source_file A path name of a regular file to be copied.

source_dir A path name of a directory to be copied.

target_file A pathname of an existing or non-existing
file, used for the output when a single file
is copied.

target A pathname of a directory to contain the
copied files.

USAGE 
See largefile(5) for the description of the behavior of cp
when encountering files greater than or equal to 2 Gbyte
(2**31 bytes).

EXAMPLES 
1. To copy a file:

example% cp goodies goodies.old
example% ls goodies*
goodies goodies.old

2. To copy a list of files to a destination directory:



 - 32 - 

example% cp ~/src/* /tmp

3. To copy a directory, first to a new, and then to an
existing destination directory:

example% ls ~/bkup
/usr/example/fred/bkup not found
example% cp -r ~/src ~/bkup
example% ls -R ~/bkup
x.c y.c z.sh
example% cp -r ~/src ~/bkup
example% ls -R ~/bkup
src x.c y.c z.sh

src:
x.c y.c z.sh

ENVIRONMENT 
See environ(5) for descriptions of the following environment
variables that affect the execution of cp: LC_COLLATE,
LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS
The following exit values are returned:

0 All files were copied successfully.

>0 An error occurred.

ATTRIBUTES 
See attributes(5) for descriptions of the following attri-
butes:

/usr/bin/cp
__________________________________
| ATTRIBUTE TYPE| ATTRIBUTE VALUE|
|_______________|_________________|
| Availability | SUNWcsu |
| CSI | enabled |
|_______________|_________________|

/usr/xpg4/bin/cp
__________________________________
| ATTRIBUTE TYPE| ATTRIBUTE VALUE|
|_______________|_________________|
| Availability | SUNWxcu4 |
| CSI | enabled |



 - 33 - 

|_______________|_________________|

SEE ALSO 
chmod(1), chown(1), setfacl(1), utime(2), attributes(5),
environ(5), largefile(5), xpg4(5)

NOTES 
The permission modes of the source file are preserved in the
copy.

A -- permits the user to mark the end of any command line
options explicitly, thus allowing cp to recognize filename
arguments that begin with a -.
If a -- and a - both appear on the same command line, the
second will be interpreted as a filename.



 - 34 - 

cron 
cron - clock daemon

SYNOPSIS 
/usr/sbin/cron

DESCRIPTION 
The cron command starts a process that executes commands at
specified dates and times. Regularly scheduled commands can
be specified according to instructions found in crontab
files in the directory /var/spool/cron/crontabs. Users can
submit their own crontab file using the crontab(1) command.
Commands which are to be executed only once may be submitted
using the at(1) command.

cron only examines crontab or at command files during its
own process initialization phase and when the crontab or at
command is run. This reduces the overhead of checking for
new or changed files at regularly scheduled intervals.

Since cron never exits, it should be executed only once.
This is done routinely through /etc/rc2.d/S75cron at system
boot time. The file /etc/cron.d/FIFO is used (among other
things) as a lock file to prevent the execution of more than
one instance of cron.

cron captures the output of the job's stdout and stderr
streams, and, if it is non-empty, mails the output to the
user. If the job does not produce output, no mail is sent
to the user (unless the job is an at(1) job and the -m
option was specified when the job was submitted).

Setting cron Defaults
To keep a log of all actions taken by cron, CRONLOG=YES (by
default) must be specified in the /etc/default/cron file.
If CRONLOG=NO is specified, no logging is done. Keeping the
log is a user configurable option since cron usually creates
huge log files.

The PATH for user cron jobs can be set using PATH= in
/etc/default/cron. The PATH for root cron jobs can be set
using SUPATH= in /etc/default/cron. The security implica-
tions of setting PATH and SUPATH should be carefully con-



 - 35 - 

sidered.

Example /etc/default/cron file:

CRONLOG=YES
PATH=/usr/bin:/usr/ucb:

This example enables logging and sets the default PATH used
by non-root jobs to /usr/bin:/usr/ucb:. Root jobs will
continue to use /usr/sbin:/usr/bin.

/etc/cron.d/logchecker is a script that checks to see if the
log file has exceeded the system ulimit. If so, the log
file is moved to /var/cron/olog.

FILES
/etc/cron.d main cron directory
/etc/cron.d/FIFO used as a lock file
/etc/default/cron contains cron default settings
/var/cron/log cron history information
/var/spool/cron spool area
/etc/cron.d/logchecker moves log file to /var/cron/olog if

log file exceeds system ulimit.
/etc/cron.d/queuedefs queue description file for at,

batch, and cron.

ATTRIBUTES 
See attributes(5) for descriptions of the following attri-
butes:

__________________________________
| ATTRIBUTE TYPE| ATTRIBUTE VALUE|
|_______________|_________________|
| Availability | SUNWcsu |
|_______________|_________________|

SEE ALSO 
at(1), crontab(1), sh(1), queuedefs(4), attributes(5)

DIAGNOSTICS
A history of all actions taken by cron is stored in
/var/cron/log and (possibly) /var/cron/olog.



 - 36 - 

csh 
csh - shell command interpreter with a C-like syntax

SYNOPSIS 
csh [ -bcefinstvVxX ] [ argument... ]

DESCRIPTION 
csh, the C shell, is a command interpreter with a syntax
reminiscent of the C language. It provides a number of con-
venient features for interactive use that are not available
with the Bourne shell, including filename completion, com-
mand aliasing, history substitution, job control, and a
number of built-in commands. As with the Bourne shell, the
C shell provides variable, command and filename substitu-
tion.

Initialization and Termination
When first started, the C shell normally performs commands
from the .cshrc file in your home directory, provided that
it is readable and you either own it or your real group ID
matches its group ID. If the shell is invoked with a name
that starts with `-', as when started by login(1), the shell
runs as a login shell.

If the shell is a login shell, this is the sequence of invo-
cations: First, commands in /etc/.login are executed.
Next, commands from the .cshrc file your home directory are
executed. Then the shell executes commands from the .login
file in your home directory; the same permission checks as
those for .cshrc are applied to this file. Typically, the
.login file contains commands to specify the terminal type
and environment. (For an explanation of file interpreters,
see below "Command Execution" and exec(2).)

As a login shell terminates, it performs commands from the
.logout file in your home directory; the same permission
checks as those for .cshrc are applied to this file.

Interactive Operation
After startup processing is complete, an interactive C shell
begins reading commands from the terminal, prompting with
hostname% (or hostname# for the privileged user). The shell
then repeatedly performs the following actions: a line of



 - 37 - 

command input is read and broken into words. This sequence
of words is placed on the history list and then parsed, as
described under USAGE, below. Finally, the shell executes
each command in the current line.

Noninteractive Operation
When running noninteractively, the shell does not prompt for
input from the terminal. A noninteractive C shell can exe-
cute a command supplied as an argument on its command line,
or interpret commands from a file, also known as a script.

OPTIONS 
-b Force a "break" from option processing. Subsequent

command line arguments are not interpreted as C

               shell options.  This allows the passing of OPTIONS 
to a script without confusion. The shell does not
run set-user-ID or set-group-ID scripts unless
this option is present.

-c Execute the first argument (which must be
present). Remaining arguments are placed in argv,
the argument-list variable, and passed directly to
csh.

-e Exit if a command terminates abnormally or yields
a nonzero exit status.

-f Fast start. Read neither the .cshrc file, nor the
.login file (if a login shell) upon startup.

-i Forced interactive. Prompt for command line input,
even if the standard input does not appear to be a
terminal (character-special device).

-n Parse (interpret), but do not execute commands.
This option can be used to check C shell scripts
for syntax errors.

-s Take commands from the standard input.

-t Read and execute a single command line. A `\'
(backslash) can be used to escape each newline for
continuation of the command line onto subsequent
input lines.



 - 38 - 

-v Verbose. Set the verbose predefined variable; com-
mand input is echoed after history substitution
(but before other substitutions) and before execu-
tion.

-V Set verbose before reading .cshrc.

-x Echo. Set the echo variable; echo commands after
all substitutions and just before execution.

-X Set echo before reading .cshrc.

Except with the options -c, -i, -s, or -t, the first nonop-
tion argument is taken to be the name of a command or
script. It is passed as argument zero, and subsequent argu-
ments are added to the argument list for that command or
script.

USAGE 
Filename Completion

When enabled by setting the variable filec, an interactive C
shell can complete a partially typed filename or user name.
When an unambiguous partial filename is followed by an ESC
character on the terminal input line, the shell fills in the
remaining characters of a matching filename from the working
directory.

If a partial filename is followed by the EOF character (usu-
ally typed as CTRL-d), the shell lists all filenames that
match. It then prompts once again, supplying the incomplete
command line typed in so far.

When the last (partial) word begins with a tilde (~), the
shell attempts completion with a user name, rather than a
file in the working directory.

The terminal bell signals errors or multiple matches; this
can be inhibited by setting the variable nobeep. You can
exclude files with certain suffixes by listing those suf-
fixes in the variable fignore. If, however, the only possi-
ble completion includes a suffix in the list, it is not
ignored. fignore does not affect the listing of filenames by
the EOF character.

Lexical Structure
The shell splits input lines into words at space and tab



 - 39 - 

characters, except as noted below. The characters &, |, ;,
<, >, (, and ) form separate words; if paired, the pairs
form single words. These shell metacharacters can be made
part of other words, and their special meaning can be
suppressed by preceding them with a `\' (backslash). A new-
line preceded by a \ is equivalent to a space character.

In addition, a string enclosed in matched pairs of single-
quotes ('), double-quotes ("), or backquotes (`), forms a
partial word; metacharacters in such a string, including any
space or tab characters, do not form separate words. Within
pairs of backquote (`) or double-quote (") characters, a
newline preceded by a `\' (backslash) gives a true newline
character. Additional functions of each type of quote are
described, below, under Variable Substitution, Command Sub-
stitution, and Filename Substitution.

When the shell's input is not a terminal, the character #
introduces a comment that continues to the end of the input
line. Its special meaning is suppressed when preceded by a
\ or enclosed in matching quotes.

Command Line Parsing
A simple command is composed of a sequence of words. The
first word (that is not part of an I/O redirection) speci-
fies the command to be executed. A simple command, or a set
of simple commands separated by | or |& characters, forms a
pipeline. With |, the standard output of the preceding com-
mand is redirected to the standard input of the command that
follows. With |&, both the standard error and the standard
output are redirected through the pipeline.

Pipelines can be separated by semicolons (;), in which case
they are executed sequentially. Pipelines that are separated
by && or || form conditional sequences in which the execu-
tion of pipelines on the right depends upon the success or
failure, respectively, of the pipeline on the left.

A pipeline or sequence can be enclosed within parentheses `(
)' to form a simple command that can be a component in a
pipeline or sequence.

A sequence of pipelines can be executed asynchronously or
"in the background" by appending an `&'; rather than waiting
for the sequence to finish before issuing a prompt, the
shell displays the job number (see Job Control, below) and
associated process IDs and prompts immediately.



 - 40 - 

History Substitution
History substitution allows you to use words from previous
command lines in the command line you are typing. This sim-
plifies spelling corrections and the repetition of compli-
cated commands or arguments. Command lines are saved in the
history list, the size of which is controlled by the history
variable. The most recent command is retained in any case.
A history substitution begins with a ! (although you can
change this with the histchars variable) and may occur any-
where on the command line; history substitutions do not
nest. The ! can be escaped with \ to suppress its special
meaning.

Input lines containing history substitutions are echoed on
the terminal after being expanded, but before any other sub-
stitutions take place or the command gets executed.

Event Designators
An event designator is a reference to a command line entry
in the history list.

! Start a history substitution, except when followed
by a space character, tab, newline, = or (.

!! Refer to the previous command. By itself, this
substitution repeats the previous command.

!n Refer to command line n.
!-n Refer to the current command line minus n.
!str Refer to the most recent command starting with

str.
!?str?

Refer to the most recent command containing str.
!?str? additional

Refer to the most recent command containing str
and append additional to that referenced command.

!{command} additional
Refer to the most recent command beginning with
command and append additional to that referenced
command.

^previous_word^replacement^
Repeat the previous command line replacing the
string previous_word with the string replacement.
This is equivalent to the history substitution:

!:s/previous_word/replacement/.

To re-execute a specific previous command AND make
such a substitution, say, re-executing command #6,

!:6s/previous_word/replacement/.



 - 41 - 

Word Designators
A `:' (colon) separates the event specification from the
word designator. It can be omitted if the word designator
begins with a ^, $, *, - or %. If the word is to be
selected from the previous command, the second ! character
can be omitted from the event specification. For instance,
!!:1 and !:1 both refer to the first word of the previous
command, while !!$ and !$ both refer to the last word in the
previous command. Word designators include:

# The entire command line typed so far.
0 The first input word (command).
n The n'th argument.
^ The first argument, that is, 1.
$ The last argument.
% The word matched by (the most recent) ?s search.
x-y A range of words; -y abbreviates 0-y.
* All the arguments, or a null value if there is

just one word in the event.
x* Abbreviates x-$.
x- Like x* but omitting word $.

Modifiers
After the optional word designator, you can add one of the
following modifiers, preceded by a :.

h Remove a trailing pathname component, leaving the
head.

r Remove a trailing suffix of the form `.xxx', leav-
ing the basename.

e Remove all but the suffix, leaving the Extension.
s/l/r/

Substitute r for l.
t Remove all leading pathname components, leaving

the tail.
& Repeat the previous substitution.
g Apply the change to the first occurrence of a

match in each word, by prefixing the above (for
example, g&).

p Print the new command but do not execute it.
q Quote the substituted words, escaping further sub-

stitutions.
x Like q, but break into words at each space charac-

ter, tab or newline.

Unless preceded by a g, the modification is applied only to
the first string that matches l; an error results if no



 - 42 - 

string matches.

The left-hand side of substitutions are not regular expres-
sions, but character strings. Any character can be used as
the delimiter in place of /. A backslash quotes the delim-
iter character. The character &, in the right hand side, is
replaced by the text from the left-hand-side. The & can be
quoted with a backslash. A null l uses the previous string
either from a l or from a contextual scan string s from !?s.
You can omit the rightmost delimiter if a newline immedi-
ately follows r; the rightmost ? in a context scan can
similarly be omitted.

Without an event specification, a history reference refers
either to the previous command, or to a previous history
reference on the command line (if any).

Quick Substitution
^l^r^

This is equivalent to the history substitution:
!:s/l/r/.

Aliases
The C shell maintains a list of aliases that you can create,
display, and modify using the alias and unalias commands.
The shell checks the first word in each command to see if it
matches the name of an existing alias. If it does, the com-
mand is reprocessed with the alias definition replacing its
name; the history substitution mechanism is made available
as though that command were the previous input line. This
allows history substitutions, escaped with a backslash in
the definition, to be replaced with actual command line
arguments when the alias is used. If no history substitu-
tion is called for, the arguments remain unchanged.
Aliases can be nested. That is, an alias definition can con-
tain the name of another alias. Nested aliases are expanded
before any history substitutions is applied. This is useful
in pipelines such as

alias lm 'ls -l \!* | more'

which when called, pipes the output of ls(1) through
more(1).

Except for the first word, the name of the alias may not
appear in its definition, nor in any alias referred to by
its definition. Such loops are detected, and cause an error



 - 43 - 

message.

I/O Redirection
The following metacharacters indicate that the subsequent
word is the name of a file to which the command's standard
input, standard output, or standard error is redirected;
this word is variable, command, and filename expanded
separately from the rest of the command.

< Redirect the standard input.

<<word Read the standard input, up to a line that is
identical with word, and place the resulting
lines in a temporary file. Unless word is
escaped or quoted, variable and command sub-
stitutions are performed on these lines.
Then, the pipeline is invoked with the tem-
porary file as its standard input. word is
not subjected to variable, filename, or com-
mand substitution, and each line is compared
to it before any substitutions are performed
by the shell.

> >! >& >&!
Redirect the standard output to a file. If
the file does not exist, it is created. If
it does exist, it is overwritten; its previ-
ous contents are lost.

When set, the variable noclobber prevents
destruction of existing files. It also
prevents redirection to terminals and
/dev/null, unless one of the ! forms is
used. The & forms redirect both standard
output and the standard error (diagnostic
output) to the file.

>> >>& >>! >>&!
Append the standard output. Like >, but
places output at the end of the file rather
than overwriting it. If noclobber is set, it
is an error for the file not to exist, unless
one of the ! forms is used. The & forms
append both the standard error and standard
output to the file.

Variable Substitution
The C shell maintains a set of variables, each of which is



 - 44 - 

composed of a name and a value. A variable name consists of
up to 20 letters and digits, and starts with a letter (the
underscore is considered a letter). A variable's value is a
space-separated list of zero or more words.

To refer to a variable's value, precede its name with a `$'.
Certain references (described below) can be used to select
specific words from the value, or to display other informa-
tion about the variable. Braces can be used to insulate the
reference from other characters in an input-line word.

Variable substitution takes place after the input line is
analyzed, aliases are resolved, and I/O redirections are
applied. Exceptions to this are variable references in I/O
redirections (substituted at the time the redirection is
made), and backquoted strings (see Command Substitution).

Variable substitution can be suppressed by preceding the $
with a \, except within double-quotes where it always
occurs. Variable substitution is suppressed inside of
single-quotes. A $ is escaped if followed by a space char-
acter, tab or newline.

Variables can be created, displayed, or destroyed using the
set and unset commands. Some variables are maintained or
used by the shell. For instance, the argv variable contains
an image of the shell's argument list. Of the variables
used by the shell, a number are toggles; the shell does not
care what their value is, only whether they are set or not.

Numerical values can be operated on as numbers (as with the
@ built-in command). With numeric operations, an empty
value is considered to be zero; the second and subsequent
words of multiword values are ignored. For instance, when
the verbose variable is set to any value (including an empty
value), command input is echoed on the terminal.

Command and filename substitution is subsequently applied to
the words that result from the variable substitution, except
when suppressed by double-quotes, when noglob is set
(suppressing filename substitution), or when the reference
is quoted with the :q modifier. Within double-quotes, a
reference is expanded to form (a portion of) a quoted
string; multiword values are expanded to a string with
embedded space characters. When the :q modifier is applied
to the reference, it is expanded to a list of space-
separated words, each of which is quoted to prevent subse-



 - 45 - 

quent command or filename substitutions.

Except as noted below, it is an error to refer to a variable
that is not set.

$var
${var} These are replaced by words from the value of

var, each separated by a space character. If
var is an environment variable, its value is
returned (but `:' modifiers and the other
forms given below are not available).

$var[index]
${var[index]} These select only the indicated words from

the value of var. Variable substitution is
applied to index, which may consist of (or
result in) a either single number, two
numbers separated by a `-', or an asterisk.
Words are indexed starting from 1; a `*'
selects all words. If the first number of a
range is omitted (as with $argv[-2]), it
defaults to 1. If the last number of a range
is omitted (as with $argv[1-]), it defaults
to $#var (the word count). It is not an
error for a range to be empty if the second
argument is omitted (or within range).

$#name
${#name} These give the number of words in the vari-

able.

$0 This substitutes the name of the file from
which command input is being read except for
setuid shell scripts. An error occurs if the
name is not known.

$n
${n} Equivalent to $argv[n].

$* Equivalent to $argv[*].

The modifiers :e, :h, :q, :r, :t, and :x can be applied (see
History Substitution), as can :gh, :gt, and :gr. If {}
(braces) are used, then the modifiers must appear within the
braces. The current implementation allows only one such
modifier per expansion.
The following references may not be modified with : modif-



 - 46 - 

iers.

$?var
${?var}

Substitutes the string 1 if var is set or 0 if it is
not set.

$?0 Substitutes 1 if the current input filename is known or
0 if it is not.

$$ Substitute the process number of the (parent) shell.

$< Substitutes a line from the standard input, with no
further interpretation thereafter. It can be used to
read from the keyboard in a C shell script.

Command and Filename Substitutions
Command and filename substitutions are applied selectively
to the arguments of built-in commands. Portions of expres-
sions that are not evaluated are not expanded. For non-
built-in commands, filename expansion of the command name is
done separately from that of the argument list; expansion
occurs in a subshell, after I/O redirection is performed.

Command Substitution
A command enclosed by backquotes (`...`) is performed by a
subshell. Its standard output is broken into separate words
at each space character, tab and newline; null words are
discarded. This text replaces the backquoted string on the
current command line. Within double-quotes, only newline
characters force new words; space and tab characters are
preserved. However, a final newline is ignored. It is
therefore possible for a command substitution to yield a
partial word.

Filename Substitution
Unquoted words containing any of the characters *, ?, [ or
{, or that begin with ~, are expanded (also known as glob-
bing) to an alphabetically sorted list of filenames, as fol-
lows:

* Match any (zero or more) characters.

? Match any single character.

[ ... ] Match any single character in the enclosed
list(s) or range(s). A list is a string of



 - 47 - 

characters. A range is two characters
separated by a dash (-), and includes all the
characters in between in the ASCII collating
sequence (see ascii(5)).

{ str, str, ... }
Expand to each string (or filename-matching
pattern) in the comma-separated list. Unlike
the pattern-matching expressions above, the
expansion of this construct is not sorted.
For instance, {b,a} expands to `b' `a', (not
`a' `b'). As special cases, the characters {
and }, along with the string {}, are passed
undisturbed.

~[user] Your home directory, as indicated by the
value of the variable home, or that of user,
as indicated by the password entry for user.

Only the patterns *, ? and [...] imply pattern matching;
an error results if no filename matches a pattern that con-
tains them. The `.' (dot character), when it is the first
character in a filename or pathname component, must be
matched explicitly. The / (slash) must also be matched
explicitly.

Expressions and Operators
A number of C shell built-in commands accept expressions, in
which the operators are similar to those of C and have the
same precedence. These expressions typically appear in the
@, exit, if, set and while commands, and are often used to
regulate the flow of control for executing commands. Com-
ponents of an expression are separated by white space.

Null or missing values are considered 0. The result of all
expressions is a string, which may represent decimal
numbers.

The following C shell operators are grouped in order of pre-
cedence:

(...) grouping
~ one's complement
! logical negation
* / % multiplication, division, remainder

(These are right associative, which
can lead to unexpected results.
Group combinations explicitly with



 - 48 - 

parentheses.)
+ - addition, subtraction (also right

associative)
<< >> bitwise shift left, bitwise shift

right
< > <= >= less than, greater than, less than

or equal to, greater than or equal
to

== != =~ !~ equal to, not equal to, filename-
substitution pattern match
(described below), filename-
substitution pattern mismatch

& bitwise AND
^ bitwise XOR (exclusive or)
| bitwise inclusive OR
&& logical AND
|| logical OR

The operators: ==, !=, =~, and !~ compare their arguments
as strings; other operators use numbers. The operators =~
and !~ each check whether or not a string to the left
matches a filename substitution pattern on the right. This
reduces the need for switch statements when pattern-matching
between strings is all that is required.

Also available are file inquiries:
-r filename Return true, or 1 if the user has read

access. Otherwise it returns false, or 0.
-w filename True if the user has write access.
-x filename True if the user has execute permission

(or search permission on a directory).
-e filename True if filename exists.
-o filename True if the user owns filename.
-z filename True if filename is of zero length

(empty).
-f filename True if filename is a plain file.
-d filename True if filename is a directory.

If filename does not exist or is inaccessible, then all
inquiries return false.

An inquiry as to the success of a command is also available:

{ command } If command runs successfully, the expres-
sion evaluates to true, 1. Otherwise, it
evaluates to false, 0. (Note: Con-
versely, command itself typically returns



 - 49 - 

0 when it runs successfully, or some other
value if it encounters a problem. If you
want to get at the status directly, use
the value of the status variable rather
than this expression).

Control Flow
The shell contains a number of commands to regulate the flow
of control in scripts and within limits, from the terminal.
These commands operate by forcing the shell either to reread
input (to loop), or to skip input under certain conditions
(to branch).
Each occurrence of a foreach, switch, while, if...then and
else built-in command must appear as the first word on its
own input line.

If the shell's input is not seekable and a loop is being
read, that input is buffered. The shell performs seeks
within the internal buffer to accomplish the rereading
implied by the loop. (To the extent that this allows, back-
ward goto commands will succeed on nonseekable inputs.)

Command Execution
If the command is a C shell built-in command, the shell exe-
cutes it directly. Otherwise, the shell searches for a file
by that name with execute access. If the command name con-
tains a /, the shell takes it as a pathname, and searches
for it. If the command name does not contain a /, the shell
attempts to resolve it to a pathname, searching each direc-
tory in the path variable for the command. To speed the
search, the shell uses its hash table (see the rehash
built-in command) to eliminate directories that have no
applicable files. This hashing can be disabled with the -c
or -t, options, or the unhash built-in command.

As a special case, if there is no / in the name of the
script and there is an alias for the word shell, the expan-
sion of the shell alias is prepended (without modification)
to the command line. The system attempts to execute the
first word of this special (late-occurring) alias, which
should be a full pathname. Remaining words of the alias's
definition, along with the text of the input line, are
treated as arguments.

When a pathname is found that has proper execute permis-
sions, the shell forks a new process and passes it, along
with its arguments, to the kernel using the execve() system



 - 50 - 

call (see exec(2)). The kernel then attempts to overlay the
new process with the desired program. If the file is an
executable binary (in a.out(4) format) the kernel succeeds
and begins executing the new process. If the file is a text
file and the first line begins with #!, the next word is
taken to be the pathname of a shell (or command) to inter-
pret that script. Subsequent words on the first line are
taken as options for that shell. The kernel invokes (over-
lays) the indicated shell, using the name of the script as
an argument.

If neither of the above conditions holds, the kernel cannot
overlay the file and the execve() call fails (see exec(2));
the C shell then attempts to execute the file by spawning a
new shell, as follows:

+ If the first character of the file is a #, a C shell
is invoked.
+ Otherwise, a Bourne shell is invoked.

Signal Handling
The shell normally ignores QUIT signals. Background jobs
are immune to signals generated from the keyboard, including
hangups (HUP). Other signals have the values that the C
shell inherited from its environment. The shell's handling
of interrupt and terminate signals within scripts can be
controlled by the onintr built-in command. Login shells
catch the TERM signal; otherwise, this signal is passed on
to child processes. In no case are interrupts allowed when
a login shell is reading the .logout file.

Job Control
The shell associates a numbered job with each command
sequence to keep track of those commands that are running in
the background or have been stopped with TSTP signals (typi-
cally CTRL-z). When a command or command sequence (semi-
colon separated list) is started in the background using the
& metacharacter, the shell displays a line with the job
number in brackets and a list of associated process numbers:

[1] 1234

To see the current list of jobs, use the jobs built-in com-
mand. The job most recently stopped (or put into the back-
ground if none are stopped) is referred to as the current
job and is indicated with a `+'. The previous job is indi-
cated with a `-'; when the current job is terminated or
moved to the foreground, this job takes its place (becomes



 - 51 - 

the new current job).

To manipulate jobs, refer to the bg, fg, kill, stop, and %
built-in commands.

A reference to a job begins with a `%'. By itself, the
percent-sign refers to the current job.

% %+ %% The current job.
%- The previous job.
%j Refer to job j as in: `kill -9 %j'. j can

be a job number, or a string that uniquely
specifies the command line by which it was
started; `fg %vi' might bring a stopped vi
job to the foreground, for instance.

%?string Specify the job for which the command line
uniquely contains string.

A job running in the background stops when it attempts to
read from the terminal. Background jobs can normally
produce output, but this can be suppressed using the `stty
tostop' command.

Status Reporting
While running interactively, the shell tracks the status of
each job and reports whenever the job finishes or becomes
blocked. It normally displays a message to this effect as
it issues a prompt, in order to avoid disturbing the appear-
ance of your input. When set, the notify variable indicates
that the shell is to report status changes immediately. By
default, the notify command marks the current process; after
starting a background job, type notify to mark it.

Built-In Commands
Built-in commands are executed within the C shell. If a
built-in command occurs as any component of a pipeline
except the last, it is executed in a subshell.

: Null command. This command is interpreted, but
performs no action.

alias [ name [ def ] ]
Assign def to the alias name. def is a list of
words that may contain escaped history-
substitution metasyntax. name is not allowed to
be alias or unalias. If def is omitted, the
current definition for the alias name is



 - 52 - 

displayed. If both name and def are omitted, all
aliases are displayed with their definitions.

bg [ %job ... ]
Run the current or specified jobs in the back-
ground.

break Resume execution after the end of the nearest
enclosing foreach or while loop. The remaining
commands on the current line are executed. This
allows multilevel breaks to be written as a list
of break commands, all on one line.

breaksw Break from a switch, resuming after the endsw.

case label:
A label in a switch statement.

cd [ dir ]
chdir [ dir ]

Change the shell's working directory to directory
dir. If no argument is given, change to the home
directory of the user. If dir is a relative path-
name not found in the current directory, check for
it in those directories listed in the cdpath
variable. If dir is the name of a shell variable
whose value starts with a /, change to the direc-
tory named by that value.

continue Continue execution of the next iteration of the
nearest enclosing while or foreach loop.

default: Labels the default case in a switch statement.
The default should come after all case labels.
Any remaining commands on the command line are
first executed.

dirs [ -l ]
Print the directory stack, most recent to the
left; the first directory shown is the current
directory. With the -l argument, produce an unab-
breviated printout; use of the ~ notation is
suppressed.

echo [ -n ] list
The words in list are written to the shell's stan-
dard output, separated by space characters. The



 - 53 - 

output is terminated with a newline unless the -n
option is used.
csh will, by default, invoke its built-in echo, if
echo is called without the full pathname of a Unix
command, regardless of the configuration of your
PATH (see echo(1)).

eval argument...
Reads the arguments as input to the shell and exe-
cutes the resulting command(s). This is usually
used to execute commands generated as the result
of command or variable substitution. See tset(1B)
for an example of how to use eval.

exec command
Execute command in place of the current shell,
which terminates.

exit [ (expr) ]
The calling shell or shell script exits, either
with the value of the status variable or with the
value specified by the expression expr.

fg [ %job ]
Bring the current or specified job into the fore-
ground.

foreach var (wordlist)
...

end The variable var is successively set to each
member of wordlist. The sequence of commands
between this command and the matching end is exe-
cuted for each new value of var. Both foreach and
end must appear alone on separate lines.

The built-in command continue may be used to ter-
minate the execution of the current iteration of
the loop and the built-in command break may be
used to terminate execution of the foreach com-
mand. When this command is read from the termi-
nal, the loop is read once prompting with ? before
any statements in the loop are executed.

glob wordlist
Perform filename expansion on wordlist. Like
echo, but no \ escapes are recognized. Words are
delimited by NULL characters in the output.



 - 54 - 

goto label
The specified label is a filename and a command
expanded to yield a label. The shell rewinds its
input as much as possible and searches for a line
of the form label: possibly preceded by space or
tab characters. Execution continues after the
indicated line. It is an error to jump to a label
that occurs between a while or for built-in com-
mand and its corresponding end.

hashstat Print a statistics line indicating how effective
the internal hash table for the path variable has
been at locating commands (and avoiding execs).
An exec is attempted for each component of the
path where the hash function indicates a possible
hit and in each component that does not begin with
a `/'. These statistics only reflect the effec-
tiveness of the path variable, not the cdpath
variable.

history [ -hr ] [ n ]
Display the history list; if n is given, display
only the n most recent events.

-r Reverse the order of printout to be most
recent first rather than oldest first.

-h Display the history list without leading
numbers. This is used to produce files suit-
able for sourcing using the -h option to
source.

if (expr) command
If the specified expression evaluates to true, the
single command with arguments is executed. Vari-
able substitution on command happens early, at the
same time it does for the rest of the if command.
command must be a simple command, not a pipeline,
a command list, or a parenthesized command list.
Note: I/O redirection occurs even if expr is
false, when command is not executed (this is a
bug).

if (expr) then
...
else if (expr2) then
...



 - 55 - 

else
...
endif If expr is true, commands up to the first else are

executed. Otherwise, if expr2 is true, the com-
mands between the else if and the second else are
executed. Otherwise, commands between the else
and the endif are executed. Any number of else if
pairs are allowed, but only one else. Only one
endif is needed, but it is required. The words
else and endif must be the first nonwhite charac-
ters on a line. The if must appear alone on its
input line or after an else.

jobs[-l] List the active jobs under job control.

-l List process IDs, in addition to the normal
information.

kill [ -sig ] [ pid ] [ %job ] ...
kill -l Send the TERM (terminate) signal, by default, or

the signal specified, to the specified process ID,
the job indicated, or the current job. Signals
are either given by number or by name. There is
no default. Typing kill does not send a signal to
the current job. If the signal being sent is TERM
(terminate) or HUP (hangup), then the job or pro-
cess is sent a CONT (continue) signal as well.

-l List the signal names that can be sent.

limit [ -h ] [ resource [ max-use ] ]
Limit the consumption by the current process or
any process it spawns, each not to exceed max-use
on the specified resource. If max-use is omitted,
print the current limit; if resource is omitted,
display all limits. (Run the sysdef(1M) command
to obtain the maximum possible limits for your
system. The values reported are in hexadecimal,
but can be translated into decimal numbers using
the bc(1) command).

-h Use hard limits instead of the current lim-
its. Hard limits impose a ceiling on the
values of the current limits. Only the
privileged user may raise the hard limits.

resource is one of:



 - 56 - 

cputime Maximum CPU seconds per pro-
cess.

filesize Largest single file allowed;
limited to the size of the
filesystem. (see df(1M)).

datasize (heapsize)
Maximum data size (including
stack) for the process. This
is the size of your virtual
memory See swap(1M).

stacksize Maximum stack size for the
process. See swap(1M).

coredumpsize Maximum size of a core dump
(file). This limited to the
size of the filesystem.

descriptors Maximum number of file
descriptors. Run sysdef().

memorysize Maximum size of virtual
memory.

max-use is a number, with an optional scaling fac-
tor, as follows:

nh Hours (for cputime).
nk n kilobytes. This is the default

for all but cputime.
nm n megabytes or minutes (for cpu-

time).
mm:ss Minutes and seconds (for cputime).

Example of limit: to limit the size of a core
file dump to 0 Megabytes, type the following:

limit coredumpsize 0M

login [ username| -p ]
Terminate a login shell and invoke login(1). The
.logout file is not processed. If username is
omitted, login prompts for the name of a user.

-p Preserve the current environment (variables).
logout Terminate a login shell.

nice [ +n | -n ] [ command ]
Increment the process priority value for the shell
or for command by n. The higher the priority
value, the lower the priority of a process, and



 - 57 - 

the slower it runs. When given, command is always
run in a subshell, and the restrictions placed on
commands in simple if commands apply. If command
is omitted, nice increments the value for the
current shell. If no increment is specified, nice
sets the process priority value to 4. The range
of process priority values is from -20 to 20.
Values of n outside this range set the value to
the lower, or to the higher boundary, respec-
tively.

+n Increment the process priority value by n.

-n Decrement by n. This argument can be used
only by the privileged user.

nohup [ command ]
Run command with HUPs ignored. With no arguments,
ignore HUPs throughout the remainder of a script.
When given, command is always run in a subshell,
and the restrictions placed on commands in simple
if statements apply. All processes detached with
& are effectively nohup'd.

notify [ %job ] ...
Notify the user asynchronously when the status of
the current job or specified jobs changes.

onintr [ -| label]
Control the action of the shell on interrupts.
With no arguments, onintr restores the default
action of the shell on interrupts. (The shell
terminates shell scripts and returns to the termi-
nal command input level). With the - argument,
the shell ignores all interrupts. With a label
argument, the shell executes a goto label when an
interrupt is received or a child process ter-
minates because it was interrupted.

popd [ +n ] Pop the directory stack and cd to the new top
directory. The elements of the directory stack
are numbered from 0 starting at the top.

+n Discard the n'th entry in the stack.
pushd [ +n | dir]

Push a directory onto the directory stack. With
no arguments, exchange the top two elements.



 - 58 - 

+n Rotate the n'th entry to the top of the stack
and cd to it.

dir Push the current working directory onto the
stack and change to dir.

rehash Recompute the internal hash table of the contents
of directories listed in the path variable to
account for new commands added. Recompute the
internal hash table of the contents of directories
listed in the cdpath variable to account for new
directories added.

repeat count command
Repeat command count times. command is subject to
the same restrictions as with the one-line if
statement.

set [var [ = value ] ]
set var[n] = word

With no arguments, set displays the values of all
shell variables. Multiword values are displayed
as a parenthesized list. With the var argument
alone, set assigns an empty (null) value to the
variable var. With arguments of the form var =
value set assigns value to var, where value is one
of:

word A single word (or quoted string).
(wordlist) A space-separated list of words

enclosed in parentheses.

Values are command and filename expanded before
being assigned. The form set var[n] = word
replaces the n'th word in a multiword value with
word.

setenv [ VAR [ word ] ]

               With no arguments, setenv displays all ENVIRONMENT 
variables. With the VAR argument, setenv sets the
environment variable VAR to have an empty (null)
value. (By convention, environment variables are
normally given upper-case names.) With both VAR



 - 59 - 

               and  word  arguments,  setenv sets the ENVIRONMENT 
variable NAME to the value word, which must be
either a single word or a quoted string. The most
commonly used environment variables, USER, TERM,
and PATH, are automatically imported to and
exported from the csh variables user, term, and
path; there is no need to use setenv for these.

               In addition, the shell sets  the  PWD  ENVIRONMENT 
variable from the csh variable cwd whenever the
latter changes.

The environment variables LC_CTYPE, LC_MESSAGES,
LC_TIME, LC_COLLATE, LC_NUMERIC, and LC_MONETARY
take immediate effect when changed within the C
shell.

If any of the LC_* variables ( LC_CTYPE,
LC_MESSAGES, LC_TIME, LC_COLLATE, LC_NUMERIC,
and LC_MONETARY ) (see environ(5)) are not
set in the environment, the operational
behavior of csh for each corresponding locale
category is determined by the value of the
LANG environment variable. If LC_ALL is set,
its contents are used to override both the
LANG and the other LC_* variables. If none
of the above variables is set in the environ-
ment, the "C" (U.S. style) locale determines
how csh behaves.

LC_CTYPE
Determines how csh handles characters.
When LC_CTYPE is set to a valid value,
csh can display and handle text and
filenames containing valid characters
for that locale.

LC_MESSAGES
Determines how diagnostic and informa-
tive messages are presented. This
includes the language and style of the
messages and the correct form of affir-
mative and negative responses. In the
"C" locale, the messages are presented
in the default form found in the program
itself (in most cases, U.S./English).



 - 60 - 

LC_NUMERIC
Determines the value of the radix char-
acter (decimal point (".") in the "C"
locale) and thousand separator (empty
string ("") in the "C" locale).

shift [ variable ]
The components of argv, or variable, if supplied,
are shifted to the left, discarding the first com-
ponent. It is an error for the variable not to be
set or to have a null value.

source [ -h ] name
Reads commands from name. source commands may be
nested, but if they are nested too deeply the
shell may run out of file descriptors. An error
in a sourced file at any level terminates all
nested source commands.

-h Place commands from the file name on the
history list without executing them.

stop %jobid ...
Stop the current or specified background job.

stop pid ...
Stop the specified process, pid. (see ps(1)).

suspend Stop the shell in its tracks, much as if it had
been sent a stop signal with ^Z. This is most
often used to stop shells started by su.

switch (string)
case label:
...
breaksw
...
default:
...
breaksw
endsw

Each label is successively matched, against the
specified string, which is first command and
filename expanded. The file metacharacters *, ?
and [...] may be used in the case labels, which
are variable expanded. If none of the labels
match before a "default" label is found, execution
begins after the default label. Each case state-



 - 61 - 

ment and the default statement must appear at the
beginning of a line. The command breaksw contin-
ues execution after the endsw. Otherwise control
falls through subsequent case and default state-
ments as with C. If no label matches and there is
no default, execution continues after the endsw.

time [ command ]
With no argument, print a summary of time used by
this C shell and its children. With an optional
command, execute command and print a summary of
the time it uses.

As of this writing, the time built-in command does
NOT compute the last 6 fields of output, rendering
the output to erroneously report the value "0" for
these fields.

example %time ls -R
9.0u 11.0s 3:32 10% 0+0k 0+0io 0pf+0w

(See below the "Environment Variables and Prede-
fined Shell Variables" sub-section on the time
variable.)

umask [ value ]
Display the file creation mask. With value, set
the file creation mask. With value given in
octal, the user can turn-off any bits, but cannot
turn-on bits to allow new permissions. Common
values include 077, restricting all permissions
from everyone else; 002, giving complete access to
the group, and read (and directory search) access
to others; or 022, giving read (and directory
search) but not write permission to the group and
others.

unalias pattern
Discard aliases that match (filename substitution)
pattern. All aliases are removed by `unalias *'.

unhash Disable the internal hash tables for the path and
cdpath variables.

unlimit [ -h ] [ resource ]
Remove a limitation on resource. If no resource
is specified, then all resource limitations are



 - 62 - 

removed. See the description of the limit command
for the list of resource names.

-h Remove corresponding hard limits. Only the
privileged user may do this.

unset pattern
Remove variables whose names match (filename sub-
stitution) pattern. All variables are removed by
`unset *'; this has noticeably distasteful side
effects.

unsetenv variable
Remove variable from the environment. As with
unset, pattern matching is not performed.

wait Wait for background jobs to finish (or for an
interrupt) before prompting.

while (expr)
...
end While expr is true (evaluates to nonzero), repeat

commands between the while and the matching end
statement. break and continue may be used to ter-
minate or continue the loop prematurely. The
while and end must appear alone on their input
lines. If the shell's input is a terminal, it
prompts for commands with a question-mark until
the end command is entered and then performs the
commands in the loop.

%[ job ] [ & ]
Bring the current or indicated job to the fore-
ground. With the ampersand, continue running job
in the background.

@ [ var =expr ]
@ [ var[n] =expr ]

With no arguments, display the values for all
shell variables. With arguments, set the variable
var, or the n'th word in the value of var, to the
value that expr evaluates to. (If [n] is sup-
plied, both var and its n'th component must
already exist.)

If the expression contains the characters >, <, &,
or |, then at least this part of expr must be
placed within parentheses.



 - 63 - 

The operators *=, +=, and so forth, are available
as in C. The space separating the name from the
assignment operator is optional. Spaces are, how-
ever, mandatory in separating components of expr
that would otherwise be single words.

Special postfix operators, ++ and --, increment or
decrement name, respectively.

Environment Variables and Predefined Shell Variables
Unlike the Bourne shell, the C shell maintains a distinction
between environment variables, which are automatically
exported to processes it invokes, and shell variables, which
are not. Both types of variables are treated similarly
under variable substitution. The shell sets the variables
argv, cwd, home, path, prompt, shell, and status upon ini-
tialization. The shell copies the environment variable USER
into the shell variable user, TERM into term, and HOME into
home, and copies each back into the respective environment

variable whenever the shell variables are reset. PATH and
path are similarly handled. You need only set path once in
the .cshrc or .login file. The environment variable PWD is
set from cwd whenever the latter changes. The following
shell variables have predefined meanings:

argv Argument list. Contains the list of com-
mand line arguments supplied to the
current invocation of the shell. This
variable determines the value of the posi-
tional parameters $1, $2, and so on.

cdpath Contains a list of directories to be
searched by the cd, chdir, and popd com-
mands, if the directory argument each
accepts is not a subdirectory of the
current directory.

cwd The full pathname of the current direc-
tory.

echo Echo commands (after substitutions) just
before execution.

fignore A list of filename suffixes to ignore when
attempting filename completion. Typically
the single word `.o'.



 - 64 - 

filec Enable filename completion, in which case
the CTRL-d character EOT and the ESC char-
acter have special significance when typed
in at the end of a terminal input line:

EOT Print a list of all filenames that
start with the preceding string.

ESC Replace the preceding string with the
longest unambiguous extension.

hardpaths If set, pathnames in the directory stack
are resolved to contain no symbolic-link
components.

histchars A two-character string. The first charac-
ter replaces ! as the history-
substitution character. The second
replaces the carat (^) for quick substitu-
tions.

history The number of lines saved in the history
list. A very large number may use up all
of the C shell's memory. If not set, the
C shell saves only the most recent com-
mand.

home The user's home directory. The filename
expansion of ~ refers to the value of this
variable.

ignoreeof If set, the shell ignores EOF from termi-
nals. This protects against accidentally
killing a C shell by typing a CTRL-d.

mail A list of files where the C shell checks
for mail. If the first word of the value
is a number, it specifies a mail checking
interval in seconds (default 5 minutes).

nobeep Suppress the bell during command comple-
tion when asking the C shell to extend an
ambiguous filename.

noclobber Restrict output redirection so that exist-
ing files are not destroyed by accident.
> redirections can only be made to new



 - 65 - 

files. >> redirections can only be made
to existing files.

noglob Inhibit filename substitution. This is
most useful in shell scripts once
filenames (if any) are obtained and no
further expansion is desired.

nonomatch Returns the filename substitution pattern,
rather than an error, if the pattern is
not matched. Malformed patterns still
result in errors.

notify If set, the shell notifies you immediately
as jobs are completed, rather than waiting
until just before issuing a prompt.

path The list of directories in which to search
for commands. path is initialized from
the environment variable PATH, which the C
shell updates whenever path changes. A
null word specifies the current directory.
The default is typically (/usr/bin .). If
path becomes unset only full pathnames
will execute. An interactive C shell will
normally hash the contents of the direc-
tories listed after reading .cshrc, and
whenever path is reset. If new commands
are added, use the rehash command to
update the table.

prompt The string an interactive C shell prompts
with. Noninteractive shells leave the
prompt variable unset. Aliases and other
commands in the .cshrc file that are only
useful interactively, can be placed after
the following test: `if ($?prompt == 0)
exit', to reduce startup time for nonin-
teractive shells. A ! in the prompt
string is replaced by the current event
number. The default prompt is hostname%
for mere mortals, or hostname# for the
privileged user.

The setting of $prompt has three meanings:

$prompt not set -- non-interactive



 - 66 - 

shell, test $?prompt.

$prompt set but == "" -- .cshrc called
by the which(1) command.

$prompt set and != "" -- normal interac-
tive shell.

savehist The number of lines from the history list
that are saved in ~/.history when the user
logs out. Large values for savehist slow
down the C shell during startup.

shell The file in which the C shell resides.
This is used in forking shells to inter-
pret files that have execute bits set, but
that are not executable by the system.

status The status returned by the most recent
command. If that command terminated
abnormally, 0200 is added to the status.
Built-in commands that fail return exit
status 1; all other built-in commands set
status to 0.

time Control automatic timing of commands. Can
be supplied with one or two values. The
first is the reporting threshold in CPU
seconds. The second is a string of tags
and text indicating which resources to
report on. A tag is a percent sign (%)
followed by a single upper-case letter
(unrecognized tags print as text):

%D Average amount of unshared
data space used in Kilobytes.

%E Elapsed (wallclock) time for
the command.

%F Page faults.
%I Number of block input opera-

tions.
%K Average amount of unshared

stack space used in Kilobytes.
%M Maximum real memory used dur-

ing execution of the process.
%O Number of block output opera-

tions.



 - 67 - 

%P Total CPU time - U (user) plus
S (system) - as a percentage
of E (elapsed) time.

%S Number of seconds of CPU time
consumed by the kernel on
behalf of the user's process.

%U Number of seconds of CPU time
devoted to the user's process.

%W Number of swaps.
%X Average amount of shared

memory used in Kilobytes.

The default summary display outputs from
the %U, %S, %E, %P, %X, %D, %I, %O, %F,
and %W tags, in that order.

verbose Display each command after history substi-
tution takes place.

Large File Behavior
See largefile(5) for the description of the behavior of csh
when encountering files greater than or equal to 2 Gbyte
(2**31 bytes).

FILES
~/.cshrc Read at beginning of execution by each

shell.
~/.login Read by login shells after .cshrc at

login.
~/.logout Read by login shells at logout.
~/.history Saved history for use at next login.
/usr/bin/sh The Bourne shell, for shell scripts not

starting with a `#'.
/tmp/sh* Temporary file for `<<'.
/etc/passwd Source of home directories for `~name'.

ATTRIBUTES 
See attributes(5) for descriptions of the following attri-
butes:

__________________________________
| ATTRIBUTE TYPE| ATTRIBUTE VALUE|
|_______________|_________________|
| Availability | SUNWcsu |
| CSI | Enabled |
|_______________|_________________|



 - 68 - 

SEE ALSO 
bc(1), echo(1), login(1), ls(1), more(1), ps(1), sh(1),
shell_builtins(1), tset(1B), which(1), df(1M), swap(1M),
sysdef(1M), access(2), exec(2), fork(2), pipe(2), a.out(4),
environ(4), ascii(5), attributes(5), environ(5), large-
file(5), termio(7I)

DIAGNOSTICS
You have stopped jobs.

You attempted to exit the C shell with stopped jobs
under job control. An immediate second attempt to exit
will succeed, terminating the stopped jobs.

WARNINGS
The use of setuid shell scripts is strongly discouraged.

NOTES 
Words can be no longer than 1024 bytes. The system limits
argument lists to 1,048,576 bytes. However, the maximum
number of arguments to a command for which filename expan-
sion applies is 1706. Command substitutions may expand to
no more characters than are allowed in the argument list.
To detect looping, the shell restricts the number of alias
substitutions on a single line to 20.

When a command is restarted from a stop, the shell prints
the directory it started in if this is different from the
current directory; this can be misleading (that is, wrong)
as the job may have changed directories internally.

Shell built-in functions are not stoppable/restartable.
Command sequences of the form
a ; b ; c are also not handled gracefully when stopping is
attempted. If you suspend b, the shell never executes c.
This is especially noticeable if the expansion results from
an alias. It can be avoided by placing the sequence in
parentheses to force it into a subshell.
Control over terminal output after processes are started is
primitive; use the Sun Window system if you need better out-
put control.

Commands within loops, prompted for by ?, are not placed in
the history list.



 - 69 - 

Control structures should be parsed rather than being recog-
nized as built-in commands. This would allow control com-
mands to be placed anywhere, to be combined with |, and to
be used with & and ; metasyntax.

It should be possible to use the : modifiers on the output
of command substitutions. There are two problems with :
modifier usage on variable substitutions: not all of the
modifiers are available, and only one modifier per substitu-
tion is allowed.

The g (global) flag in history substitutions applies only to
the first match in each word, rather than all matches in all
words. The common text editors consistently do the latter
when given the g flag in a substitution command.

Quoting conventions are confusing. Overriding the escape
character to force variable substitutions within double
quotes is counterintuitive and inconsistent with the Bourne
shell.

Symbolic links can fool the shell. Setting the hardpaths
variable alleviates this.

It is up to the user to manually remove all duplicate path-
names accrued from using built-in commands as

set path = pathnames
or

setenv PATH pathnames
more than once. These often occur because a shell script or
a .cshrc file does something like `set path=(/usr/local
/usr/hosts $path)' to ensure that the named directories are
in the pathname list.

The only way to direct the standard output and standard
error separately is by invoking a subshell, as follows:

example% (command > outfile) >& errorfile

Although robust enough for general use, adventures into the
esoteric periphery of the C shell may reveal unexpected
quirks.

If you start csh as a login shell and you do not have a
.login in your home directory, then the csh reads in the
/etc/.login.



 - 70 - 

When the shell executes a shell script that attempts to exe-
cute a non-existent command interpreter, the shell returns
an erroneous diagnostic message that the shell script file
does not exist.

BUGS
As of this writing, the time built-in command does NOT com-
pute the last 6 fields of output, rendering the output to
erroneously report the value "0" for these fields.

example %time ls -R
9.0u 11.0s 3:32 10% 0+0k 0+0io 0pf+0w



 - 71 - 

cut 
cut - cut out selected fields of each line of a file

SYNOPSIS 
cut -b list [ -n ] [ file ... ]
cut -c list [ file ... ]
cut -f list [ -d delim ] [ -s ] [ file ... ]

DESCRIPTION 
Use cut to cut out columns from a table or fields from each
line of a file; in data base parlance, it implements the
projection of a relation. The fields as specified by list
can be fixed length, that is, character positions as on a
punched card (-c option) or the length can vary from line to
line and be marked with a field delimiter character like TAB
(-f option). cut can be used as a filter.

Either the -b, -c, or -f option must be specified.

Use grep(1) to make horizontal ``cuts'' (by context) through
a file, or paste(1) to put files together column-wise (that
is, horizontally). To reorder columns in a table, use cut
and paste.

OPTIONS 
list A comma-separated or blank-character-separated

list of integer field numbers (in increasing
order), with optional - to indicate ranges (for
instance, 1,4,7; 1-3,8; -5,10 (short for 1-5,10);
or 3- (short for third through last field)).

-b list The list following -b specifies byte positions
(for instance, -b1-72 would pass the first 72
bytes of each line). When -b and -n are used
together, list is adjusted so that no multi-byte
character is split. If -b is used, the input line
should contain 1023 bytes or less.

-c list The list following -c specifies character posi-
tions (for instance, -c1-72 would pass the first
72 characters of each line).



 - 72 - 

-d delim The character following -d is the field delimiter
(-f option only). Default is tab. Space or other
characters with special meaning to the shell must
be quoted. delim can be a multi-byte character.

-f list The list following -f is a list of fields assumed
to be separated in the file by a delimiter charac-
ter (see -d ); for instance, -f1,7 copies the
first and seventh field only. Lines with no field
delimiters will be passed through intact (useful
for table subheadings), unless -s is specified.
If -f is used, the input line should contain 1023
characters or less.

-n Do not split characters. When -b list and -n are
used together, list is adjusted so that no multi-
byte character is split.

-s Suppresses lines with no delimiter characters in
case of -f option. Unless specified, lines with
no delimiters will be passed through untouched.

OPERANDS
The following operands are supported:

file A path name of an input file. If no file operands
are specified, or if a file operand is -, the
standard input will be used.

USAGE 
See largefile(5) for the description of the behavior of cut
when encountering files greater than or equal to 2 Gbyte
(2**31 bytes).

EXAMPLES 
A mapping of user IDs to names follows:

example% cut -d: -f1,5 /etc/passwd

To set name to current login name:

example$ name=`who am i | cut -f1 -d' '`



 - 73 - 

ENVIRONMENT 
See environ(5) for descriptions of the following environment
variables that affect the execution of cut: LC_CTYPE,
LC_MESSAGES, and NLSPATH.

EXIT STATUS
The following exit values are returned:

0 All input files were output successfully.

>0 An error occurred.

ATTRIBUTES 
See attributes(5) for descriptions of the following attri-
butes:

__________________________________
| ATTRIBUTE TYPE| ATTRIBUTE VALUE|
|_______________|_________________|
| Availability | SUNWcsu |
| CSI | Enabled |
|_______________|_________________|

SEE ALSO 
grep(1), paste(1), attributes(5), environ(5), largefile(5)

DIAGNOSTICS
cut: -n may only be used with -b

cut: -d may only be used with -f

cut: -s may only be used with -f

cut: cannot open <file>
Either file cannot be read or does not exist. If mul-
tiple files are present, processing continues.

cut: no delimiter specified
Missing delim on -d option.

cut: invalid delimiter

cut: no list specified
Missing list on -b, -c, or -f, option.

cut: invalid range specifier



 - 74 - 

cut: too many ranges specified

cut: range must be increasing

cut: invalid character in range

cut: internal error processing input

cut: invalid multibyte character

cut: unable to allocate enough memory



 - 75 - 

date 
date - write the date and time

SYNOPSIS 
/usr/bin/date [-u] [+format]
/usr/bin/date [-a [-]sss.fff]
/usr/bin/date [-u] [[mmdd]HHMM | mmddHHMM[cc]yy][.SS]

/usr/xpg4/bin/date [-u] [+format]
/usr/xpg4/bin/date [-a [-]sss.fff]
/usr/xpg4/bin/date [-u] [[mmdd]HHMM | mmddHHMM[cc]yy][.SS]

DESCRIPTION 
The date utility writes the date and time to standard output
or attempts to set the system date and time. By default,
the current date and time will be written.

Specifications of native language translations of month and
weekday names are supported. The month and weekday names
used for a language are based on the locale specified by the
environment variable LC_TIME; see environ(5).

The following is the default form for the "C" locale:

%a %b %e %T %Z %Y

for example,

Fri Dec 23 10:10:42 EST 1988

OPTIONS 
The following options are supported:

-a [-]sss.fff
Slowly adjust the time by sss.fff seconds (fff
represents fractions of a second). This adjust-
ment can be positive or negative. The system's
clock will be sped up or slowed down until it
has drifted by the number of seconds specified.

-u Display (or set) the date in Greenwich Mean Time
(GMT-universal time), bypassing the normal



 - 76 - 

conversion to (or from) local time.

OPERANDS
The following operands are supported:

+format If the argument begins with +, the output of
date is the result of passing format and the
current time to strftime(). date uses the
conversion specifications listed on the
strftime(3C) manual page, with the conversion
specification for %C determined by whether
/usr/bin/date or /usr/xpg4/bin/date is used:

/usr/bin/date Locale's date and time
representation. This is the
default output for date.

/usr/xpg4/bin/date
Century (a year divided by 100
and truncated to an integer)
as a decimal number [00-99].

The string is always terminated with a NEWLINE.
An argument containing blanks must be quoted;
see the EXAMPLES section.

mm Month number
dd Day number in the month
HH Hour number (24 hour system)
MM Minute number
SS Second number
cc Century minus one
yy Last 2 digits of the year number

The month, day, year, and century may be omit-
ted; the current values are applied as defaults.
For example:

date 10080045

sets the date to Oct 8, 12:45 a.m. The current
year is the default because no year is supplied.
The system operates in GMT. date takes care of
the conversion to and from local standard and
daylight time. Only the super-user may change
the date. After successfully setting the date
and time, date displays the new date according



 - 77 - 

to the default format. The date command uses TZ
to determine the correct time zone information;
see environ(5).

EXAMPLES 
The command

example% date '+DATE: %m/%d/%y%nTIME: %H:%M:%S'

generates as output:

DATE: 08/01/76
TIME: 14:45:05

The command
example# date 1234.56

sets the current time to 12:34:56.

ENVIRONMENT 
See environ(5) for descriptions of the following environment
variables that affect the execution of date: LC_CTYPE,
LC_TIME, LC_MESSAGES, and NLSPATH.

TZ Determine the timezone in which the time and
date are written, unless the -u option is speci-
fied. If the TZ variable is not set and the -u
is not specified, the system default timezone is
used.

EXIT STATUS
The following exit values are returned:
0 Successful completion.
>0 An error occurred.

ATTRIBUTES 
See attributes(5) for descriptions of the following attri-
butes:

/usr/bin/date
__________________________________
| ATTRIBUTE TYPE| ATTRIBUTE VALUE|
|_______________|_________________|
| Availability | SUNWcsu |
| CSI | enabled |
|_______________|_________________|



 - 78 - 

/usr/xpg4/bin/date
__________________________________
| ATTRIBUTE TYPE| ATTRIBUTE VALUE|
|_______________|_________________|
| Availability | SUNWxcu4 |
| CSI | enabled |
|_______________|_________________|

SEE ALSO 
strftime(3C), attributes(5), environ(5), xpg4(5)

DIAGNOSTICS
no permission You are not the super-user and you tried

to change the date.
bad conversion The date set is syntactically incorrect.

NOTES 
If you attempt to set the current date to one of the dates
that the standard and alternate time zones change (for
example, the date that daylight time is starting or ending),
and you attempt to set the time to a time in the interval
between the end of standard time and the beginning of the
alternate time (or the end of the alternate time and the
beginning of standard time), the results are unpredictable.



 - 79 - 

df 
df - report number of free disk blocks and files

SYNOPSIS 
/usr/bin/df [ -F FSType ] [ -abegklntV ]

[ -o FSType-specific_options ]
[ directory | block_device | resource ... ]

/usr/xpg4/bin/df [ -F FSType ] [ -abegklnPtV ]
[ -o FSType-specific_options ]
[ directory | block_device | resource ... ]

DESCRIPTION 
The df command displays the amount of disk space occupied by
mounted or unmounted file systems, directories, or mounted
resources, the amount of used and available space, and how
much of the file system's total capacity has been used.

directory represents a valid directory name. If directory
is specified, df reports on the file system that contains
directory. block_device represents a block special device
(for example, /dev/dsk/c1d0s7); if block_device is speci-
fied, the corresponding file system need not be mounted.
resource is an NFS resource name.

Used without operands or options, df reports on all mounted
file systems.

OPTIONS 
The following options are supported for both /usr/bin/df and
/usr/xpg4/bin/df:

-a Report on all filesystems including ones
whose entries in /etc/mnttab (see mnttab(4))
have the ignore option set.

-b Print the total number of kilobytes free.

-e Print only the number of files free.

-F FSType Specify the FSType on which to operate. This
is only needed if the file system is



 - 80 - 

unmounted. The FSType should be specified
here or be determinable from /etc/vfstab (see
vfstab(4)) have the by matching the direc-
tory, block_device, or resource with an entry
in the table, or by consulting
/etc/default/fs. See default_fs(4).

-g Print the entire statvfs(2) structure. This
option is used only for mounted file systems.
It cannot be used with the -o option. This
option will override the -b, -e, -k, -n, -P,
and -t options.

-k Print the allocation in kbytes. The output
consists of one line of information for each
specified file system. This information
includes the file system name, the total
space allocated in the file system, the
amount of space allocated to existing files,
the total amount of space available for the
creation of new files by unpriviledged users,
and the percentage of normally available
space that is currently allocated to all
files on the file system. This option will
override the -b, -e, -n, and -t options.

-l Report on local file systems only. This
option is used only for mounted file systems.
It cannot be used with the -o option.

-n Print only the FSType name. Invoked with no
operands, this option prints a list of
mounted file system types. This option is
used only for mounted file systems. It can-
not be used with the -o option.

-o FSType-specific_options
Specify FSType-specific options. These
options are comma-separated, with no inter-
vening spaces. See the manual page for the
FSType-specific command for details.

-t Print full listings with totals. This option
will override the -b, -e, and -n options.

-V Echo the complete set of file system specific
command lines, but do not execute them. The



 - 81 - 

command line is generated by using the
options and operands provided by the user and
adding to them information derived from
/etc/mnttab, /etc/vfstab, or /etc/default/fs.
This option may be used to verify and vali-
date the command line.

/usr/xpg4/bin/df
The following option is supported for /usr/xpg4/bin/df only:

-P Same as -k except in 512-byte units.
OPERANDS

The following operands are supported:

directory represents a valid directory name. df
reports on the file system that contains
directory.

block_device represents a block special device (for exam-
ple, /dev/dsk/c1d0s7); the corresponding file
system need not be mounted.

resource represents an NFS resource name.

USAGE 
See largefile(5) for the description of the behavior of df
when encountering files greater than or equal to 2 Gbyte
(2**31 bytes).

EXAMPLES 
The following example writes portable information about the
/usr file system:

example% /usr/xpg4/bin/df -P /usr

Assuming that /usr/src is part of the /usr file system, the
following will do the same as the previous example:

example% /usr/xpg4/bin/df -P /usr/src

ENVIRONMENT 
SYSV3 This variable is used to: override the

default behavior of df, provide compatibility
with INTERACTIVE UNIX System and SCO UNIX



 - 82 - 

installation scripts, and thus should not be
used in new scripts. (It is provided for com-
patibility only.)

When set, any header which normally displays "files" will
now display "nodes". See environ(5) for descriptions of the
following environment variables that affect the execution of
df: LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS
The following exit values are returned:
0 Successful completion.
>0 An error occurred.

FILES
/dev/dsk/* disk devices
/etc/default/fs

default local file system type. Default
values can be set for the following flags in
/etc/default/fs. For example: LOCAL=ufs
LOCAL: The default partition for a command

if no FSType is specified.
/etc/mnttab mount table
/etc/vfstab list of default parameters for each file sys-

tem

ATTRIBUTES 
See attributes(5) for descriptions of the following attri-
butes:

/usr/bin/df
__________________________________
| ATTRIBUTE TYPE| ATTRIBUTE VALUE|
|_______________|_________________|
| Availability | SUNWcsu |
|_______________|_________________|

/usr/xpg4/bin/df
__________________________________
| ATTRIBUTE TYPE| ATTRIBUTE VALUE|
|_______________|_________________|
| Availability | SUNWxcu4 |
|_______________|_________________|

SEE ALSO 
find(1), mount(1M), statvfs(2), default_fs(4), mnttab(4),
vfstab(4), attributes(5), environ(5), largefile(5), xpg4(5)



 - 83 - 

Manual pages for the FSType-specific modules of df.

NOTES 
The -F option is intended for use with unmounted file sys-
tems.

This command may not be supported for all FSTypes.



 - 84 - 

diff 
diff - display line-by-line differences between pairs of
text files

SYNOPSIS 
diff [ -bitw ] [ -c | -e | -f | -h | -n ] file1 file2
diff [ -bitw ] [ -C number ] file1 file2
diff [ -bitw ] [ -D string ] file1 file2
diff [ -bitw ] [ -c | -e | -f | -h | -n ] [ -l ] [ -r ]

[ -s ] [ -S name ] directory1 directory2

DESCRIPTION 
The diff utility will compare the contents of file1 and
file2 and write to standard output a list of changes neces-
sary to convert file1 into file2. This list should be
minimal. No output will be produced if the files are ident-
ical.

The normal output contains lines of these forms:

n1 a n3,n4
n1,n2 d n3
n1,n2 c n3,n4

where n1 and n2 represent lines file1 and n3 and n4
represent lines in file2 These lines resemble ed(1) commands
to convert file1 to file2. By exchanging a for d and read-
ing backward, file2 can be converted to file1. As in ed,
identical pairs, where n1=n2 or n3=n4, are abbreviated as a
single number.

Following each of these lines come all the lines that are
affected in the first file flagged by `<', then all the
lines that are affected in the second file flagged by `>'.

OPTIONS 
-b Ignores trailing blanks (spaces and tabs) and

treats other strings of blanks as equivalent.

-i Ignores the case of letters; for example, `A'
will compare equal to `a'.



 - 85 - 

-t Expands TAB characters in output lines. Nor-
mal or -c output adds character(s) to the
front of each line that may adversely affect
the indentation of the original source lines
and make the output lines difficult to inter-
pret. This option will preserve the original
source's indentation.

-w Ignores all blanks (SPACE and TAB characters)
and treats all other strings of blanks as
equivalent; for example, `if ( a == b )' will
compare equal to `if(a==b)'.

The following options are mutually exclusive:

-c Produces a listing of differences with three
lines of context. With this option output
format is modified slightly: output begins
with identification of the files involved and
their creation dates, then each change is
separated by a line with a dozen *'s. The
lines removed from file1 are marked with '-';
those added to file2 are marked '+'. Lines
that are changed from one file to the other
are marked in both files with '!'.

-C number Produces a listing of differences identical
to that produced by -c with number lines of
context.

-e Produces a script of only a, c, and d com-
mands for the editor ed, which will recreate
file2 from file1. In connection with -e, the
following shell program may help maintain
multiple versions of a file. Only an ances-
tral file ($1) and a chain of version-to-
version ed scripts ($2,$3,...) made by diff
need be on hand. A ``latest version''
appears on the standard output.

(shift; cat $*; echo '1,$p') | ed - $1

Except in rare circumstances, diff finds a smallest suffi-
cient set of file differences.

-f Produces a similar script, not useful with
ed, in the opposite order.



 - 86 - 

-h Does a fast, half-hearted job. It works only
when changed stretches are short and well
separated, but does work on files of unlim-
ited length. Options -c, -e, -f, and -n are
unavailable with -h. diff does not descend
into directories with this option.

-n Produces a script similar to -e, but in the
opposite order and with a count of changed
lines on each insert or delete command.

-D string Creates a merged version of file1 and file2
with C preprocessor controls included so that
a compilation of the result without defining
string is equivalent to compiling file1,
while defining string will yield file2.

The following options are used for comparing directories:

-l Produce output in long format. Before the
diff, each text file is piped through pr(1)
to paginate it. Other differences are remem-
bered and summarized after all text file
differences are reported.

-r Applies diff recursively to common subdirec-
tories encountered.

-s Reports files that are the identical; these
would not otherwise be mentioned.

-S name Starts a directory diff in the middle, begin-
ning with the file name.

OPERANDS
The following operands are supported:

file1
file2 A path name of a file or directory to be com-

pared. If either file1 or file2 is -, the stan-
dard input will be used in its place.

directory1
directory2 A path name of a directory to be compared.

If only one of file1 and file2 is a directory, diff will be



 - 87 - 

applied to the non-directory file and the file contained in
the directory file with a filename that is the same as the
last component of the non-directory file.

USAGE 
See largefile(5) for the description of the behavior of diff
when encountering files greater than or equal to 2 Gbyte
(2**31 bytes).

EXAMPLES 
If dir1 is a directory containing a directory named x, dir2
is a directory containing a directory named x, dir1/x and
dir2/x both contain files named date.out, and dir2/x con-
tains a file named y, the command:

example% diff -r dir1 dir2
could produce output similar to:

Common subdirectories: dir1/x and dir2/x
Only in dir2/x: y
diff -r dir1/x/date.out dir2/x/date.out
1c1
< Mon Jul 2 13:12:16 PDT 1990
---
> Tue Jun 19 21:41:39 PDT 1990

ENVIRONMENT 
See environ(5) for descriptions of the following environment
variables that affect the execution of diff: LC_CTYPE,
LC_MESSAGES, LC_TIME, and NLSPATH.

TZ Determine the locale for affecting the timezone
used for calculating file timestamps written with
the -C and -c options.

EXIT STATUS
The following exit values are returned:

0 No differences were found.

1 Differences were found.

>1 An error occurred.

FILES
/tmp/d????? temporary file used for comparison



 - 88 - 

/usr/lib/diffh executable file for -h option

ATTRIBUTES 
See attributes(5) for descriptions of the following attri-
butes:

__________________________________
| ATTRIBUTE TYPE| ATTRIBUTE VALUE|
|_______________|_________________|
| Availability | SUNWesu |
| CSI | Enabled |
|_______________|_________________|

SEE ALSO 
bdiff(1), cmp(1), comm(1), dircmp(1), ed(1), pr(1),
sdiff(1), attributes(5), environ(5), largefile(5)

NOTES 
Editing scripts produced under the -e or -f options are
naive about creating lines consisting of a single period
(.).

Missing NEWLINE at end of file indicates that the last line
of the file in question did not have a NEWLINE. If the lines
are different, they will be flagged and output; although the
output will seem to indicate they are the same.



 - 89 - 

env 
env - set environment for command invocation

SYNOPSIS 
/usr/bin/env [-i | -] [name=value] ... [utility [ arg ...]]

/usr/xpg4/bin/env [-i | -] [name=value] ...
[utility [ arg ...]]

DESCRIPTION 
The env utility obtains the current environment, modifies it
according to its arguments, then invokes the utility named
by the utility operand with the modified environment.

Optional arguments are passed to utility. If no utility
operand is specified, the resulting environment is written
to the standard output, with one name=value pair per line.

/usr/bin/env
If env executes commands with arguments, it uses the default
shell /usr/bin/sh (see sh(1)).

/usr/xpg4/bin/env
If env executes commands with arguments, it uses
/usr/xpg4/bin/sh, which is equivalent to /usr/bin/ksh (see
ksh(1)).

OPTIONS 
The following options are supported:

-i | - Ignore the environment that would otherwise
be inherited from the current shell. Res-
tricts the environment for utility to that
specified by the arguments.

OPERANDS
The following operands are supported:

name=value Arguments of the form name=value modify the
execution environment, and are placed into
the inherited environment before utility is
invoked.



 - 90 - 

utility The name of the utility to be invoked. If
utility names any of the special shell
built-in utilities, the results are unde-
fined.

arg A string to pass as an argument for the
invoked utility.

EXAMPLES 
The following utility:

example% env -i PATH=/mybin mygrep xyz myfile

invokes the utility mygrep with a new PATH value as the only
entry in its environment. In this case, PATH is used to
locate mygrep, which then must reside in /mybin.

ENVIRONMENT 
See environ(5) for descriptions of the following environment
variables that affect the execution of env: LC_CTYPE,
LC_MESSAGES, and NLSPATH.

EXIT STATUS
If utility is invoked, the exit status of env is the exit
status of utility; otherwise, the env utility is with one of
the following values:

0 Successful completion.

1-125 An error occurred.

126 utility was found but could not be invoked.

127 utility could not be found.

ATTRIBUTES 
See attributes(5) for descriptions of the following attri-
butes:

/usr/bin/env
__________________________________
| ATTRIBUTE TYPE| ATTRIBUTE VALUE|
|_______________|_________________|
| Availability | SUNWcsu |
| CSI | enabled |



 - 91 - 

|_______________|_________________|

/usr/xpg4/bin/env
__________________________________
| ATTRIBUTE TYPE| ATTRIBUTE VALUE|
|_______________|_________________|
| Availability | SUNWxcu4 |
| CSI | enabled |
|_______________|_________________|

SEE ALSO 
ksh(1), sh(1), exec(2), profile(4), attributes(5),
environ(5), xpg4(5)



 - 92 - 

expr 
expr - evaluate arguments as an expression

SYNOPSIS 
/usr/bin/expr argument...

/usr/xpg4/bin/expr argument...

DESCRIPTION 
The expr utility evaluates the expression and writes the
result to standard output. The character 0 is written to
indicate a zero value and nothing is written to indicate a
null string.

OPERANDS
The argument operand is evaluated as an expression. Terms
of the expression must be separated by blanks. Characters
special to the shell must be escaped (see sh(1)). Strings
containing blanks or other special characters should be
quoted. The length of the expression is limited to LINE_MAX
(2048 characters).

The operators and keywords are listed below. The list is in
order of increasing precedence, with equal precedence opera-
tors grouped within {} symbols. All of the operators are
left-associative.

expr \| expr Returns the first expr if it is neither NULL
or 0, otherwise returns the second expr.

expr \& expr Returns the first expr if neither expr is
NULL or 0, otherwise returns 0.

expr { =, \>, \>=, \<, \<=, != } expr
Returns the result of an integer comparison
if both arguments are integers, otherwise
returns the result of a string comparison
using the locale-specific coalition sequence.
The result of each comparison will be 1 if
the specified relationship is TRUE, 0 if the
relationship is FALSE.

expr { +, - } expr



 - 93 - 

Addition or subtraction of integer-valued
arguments.

expr { \*, /, % } expr
Multiplication, division, or remainder of the
integer-valued arguments.

expr : expr The matching operator : (colon) compares the
first argument with the second argument,
which must be an internationalized basic reg-
ular expression (BRE); see regex(5) and
NOTES. Normally, the /usr/bin/expr matching
operator returns the number of bytes matched
and the /usr/xpg4/bin/expr matching operator
returns the number of characters matched (0
on failure). If the second argument contains
at least one BRE sub-expression [\(...\)],
the matching operator returns the string
corresponding to \1.

integer An argument consisting only of an (optional)
unary minus followed by digits.

string A string argument that cannot be identified
as an integer argument or as one of the
expression operator symbols.

Compatibility Operators (x86 only)
The following operators are included for compatibility with
INTERACTIVE UNIX System only and are not intended to be used
by non-INTERACTIVE UNIX System scripts:

index string character-list
Report the first position in which any one of
the bytes in character-list matches a byte in
string.

length string Return the length (that is, the number of
bytes) of string.

substr string integer-1 integer-2
Extract the substring of string starting at
position integer-1 and of length integer-2
bytes. If integer-1 has a value greater than
the number of bytes in string, expr returns a
null string. If you try to extract more
bytes than there are in string, expr returns



 - 94 - 

all the remaining bytes from string. Results
are unspecified if either integer-1 or
integer-2 is a negative value.

EXAMPLES 
Add 1 to the shell variable a:

example$ a=`expr $a + 1`

The following example emulates basename(1) - it returns the
last segment of the path name $a. For $a equal to either
/usr/abc/file or just file, the example returns file.
(Watch out for / alone as an argument: expr takes it as the
division operator; see NOTES below.)

example$ expr $a : '.*/\(.*\)' \| $a

Here is a better version of the previous example. The addi-
tion of the // characters eliminates any ambiguity about the
division operator and simplifies the whole expression.

example$ expr //$a : '.*/\(.*\)'

/usr/bin/expr
Return the number of bytes in $VAR:

example$ expr "$VAR" : '.*'

/usr/xpg4/bin/expr
Return the number of characters in $VAR:

example$ expr "$VAR" : '.*'

ENVIRONMENT 
See environ(5) for descriptions of the following environment
variables that affect the execution of expr: LC_COLLATE,
LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS
As a side effect of expression evaluation, expr returns the
following exit values:

0 if the expression is neither NULL nor 0

1 if the expression is either NULL or 0



 - 95 - 

2 for invalid expressions.

>2 an error occurred.

ATTRIBUTES 
See attributes(5) for descriptions of the following attri-
butes:

__________________________________
| ATTRIBUTE TYPE| ATTRIBUTE VALUE|
|_______________|_________________|
| Availability | SUNWcsu |
| CSI | enabled |
|_______________|_________________|

SEE ALSO 
basename(1), ed(1), sh(1), Intro(3), attributes(5),
environ(5), regex(5), xpg4(5)

DIAGNOSTICS
syntax error Operator and operand errors.
non-numeric argument Arithmetic is attempted on such a

string.

NOTES 
After argument processing by the shell, expr cannot tell the
difference between an operator and an operand except by the
value. If $a is an =, the command:

example$ expr $a = '='

looks like:

example$ expr = = =

as the arguments are passed to expr (and they are all taken
as the = operator). The following works:

example$ expr X$a = X=

Regular Expressions
Unlike some previous versions, expr uses Internationalized
Basic Regular Expressions for all system-provided locales.
Internationalized Regular Expressions are explained on the
regex(5) manual page.



 - 96 - 

find 
find - find files

SYNOPSIS 
find path... expression

DESCRIPTION 
The find utility recursively descends the directory hierar-
chy for each path seeking files that match a Boolean expres-
sion written in the primaries given below.

find will be able to descend to arbitrary depths in a file
hierarchy and will not fail due to path length limitations
(unless a path operand specified by the application exceeds
PATH_MAX requirements).

OPERANDS
The following operands are supported:

path A path name of a starting point in the direc-
tory hierarchy.

expression The first argument that starts with a -, or
is a ! or a (, and all subsequent arguments
will be interpreted as an expression made up
of the following primaries and operators. In
the descriptions, wherever n is used as a
primary argument, it will be interpreted as a
decimal integer optionally preceded by a plus
(+) or minus (-) sign, as follows:

+n more than n
n exactly n
-n less than n

Expressions
Valid expressions are:

-atime n True if the file was accessed n days ago.
The access time of directories in path is
changed by find itself.

-cpio device Always true; write the current file on device



 - 97 - 

in cpio format (5120-byte records).

-ctime n True if the file's status was changed n days
ago.

-depth Always true; causes descent of the directory
hierarchy to be done so that all entries in a
directory are acted on before the directory
itself. This can be useful when find is used
with cpio(1) to transfer files that are con-
tained in directories without write permis-
sion.

-exec command True if the executed command returns a zero
value as exit status. The end of command
must be punctuated by an escaped semicolon.
A command argument {} is replaced by the
current path name.

-follow Always true; causes symbolic links to be fol-
lowed. When following symbolic links, find
keeps track of the directories visited so
that it can detect infinite loops; for exam-
ple, such a loop would occur if a symbolic
link pointed to an ancestor. This expression
should not be used with the -type l expres-
sion.

-fstype type True if the filesystem to which the file
belongs is of type type.

-group gname True if the file belongs to the group gname.
If gname is numeric and does not appear in
the /etc/group file, it is taken as a group
ID.

-inum n True if the file has inode number n.

-links n True if the file has n links.

-local True if the file system type is not a remote
file system type as defined in the
/etc/dfs/fstypes file. nfs is used as the
default remote filesystem type if the
/etc/dfs/fstypes file is not present.

-ls Always true; prints current path name



 - 98 - 

together with its associated statistics.
These include (respectively):

+ inode number
+ size in kilobytes (1024 bytes)
+ protection mode
+ number of hard links
+ user
+ group
+ size in bytes
+ modification time.

If the file is a special file the size field
will instead contain the major and minor
device numbers.

If the file is a symbolic link the pathname
of the linked-to file is printed preceded by
`->'. The format is identical to that of ls
-gilds (see ls(1)).

Note: Formatting is done internally, without
executing the ls program.

-mount Always true; restricts the search to the file
system containing the directory specified.
Does not list mount points to other file sys-
tems.

-mtime n True if the file's data was modified n days
ago.

-name pattern True if pattern matches the current file
name. Normal shell file name generation
characters (see sh(1)) may be used. A
backslash (\) is used as an escape character
within the pattern. The pattern should be
escaped or quoted when find is invoked from
the shell.

-ncpio device Always true; write the current file on device
in cpio -c format (5120 byte records).

-newer file True if the current file has been modified
more recently than the argument file.

-nogroup True if the file belongs to a group not in



 - 99 - 

the /etc/group file.

-nouser True if the file belongs to a user not in the
/etc/passwd file.

-ok command Like -exec except that the generated command
line is printed with a question mark first,
and is executed only if the user responds by
typing y.

-perm [-]mode The mode argument is used to represent file
mode bits. It will be identical in format to
the <symbolicmode> operand described in
chmod(1), and will be interpreted as follows.
To start, a template will be assumed with all
file mode bits cleared. An op symbol of:

+ will set the appropriate mode bits in
the template;

- will clear the appropriate bits;

= will set the appropriate mode bits,
without regard to the contents of pro-
cess' file mode creation mask.

The op symbol of - cannot be the first char-
acter of mode; this avoids ambiguity with the
optional leading hyphen. Since the initial
mode is all bits off, there are not any sym-
bolic modes that need to use - as the first
character.

If the hyphen is omitted, the primary will
evaluate as true when the file permission
bits exactly match the value of the resulting
template.

Otherwise, if mode is prefixed by a hyphen,
the primary will evaluate as true if at least
all the bits in the resulting template are
set in the file permission bits.

-perm [-]onum True if the file permission flags exactly
match the octal number onum (see chmod(1)).
If onum is prefixed by a minus sign (-), only
the bits that are set in onum are compared
with the file permission flags, and the



 - 100 - 

expression evaluates true if they match.

-print Always true; causes the current path name to
be printed.

-prune Always yields true. Do not examine any
directories or files in the directory struc-
ture below the pattern just matched. See the
examples, below.

-size n[c] True if the file is n blocks long (512 bytes
per block). If n is followed by a c, the
size is in bytes.

-type c True if the type of the file is c, where c is
b, c, d, l, p, s, or f for block special
file, character special file, directory, sym-
bolic link, fifo (named pipe), socket, or
plain file, respectively.

-user uname True if the file belongs to the user uname.
If uname is numeric and does not appear as a
login name in the /etc/passwd file, it is
taken as a user ID.

-xdev Same as the -mount primary.

Complex Expressions
The primaries may be combined using the following operators
(in order of decreasing precedence):

1) ( expression ) True if the parenthesized
expression is true
(parentheses are special to
the shell and must be
escaped).

2) ! expression The negation of a primary (!
is the unary not operator).

3) expression [-a] expression
Concatenation of primaries
(the and operation is implied
by the juxtaposition of two
primaries).

4) expression -o expression
Alternation of primaries (-o



 - 101 - 

is the or operator).

Note: When you use find in conjunction with cpio, if you
use the -L option with cpio then you must use the -follow
expression with find and vice versa. Otherwise there will
be undesirable results.

If no expression is present, -print will be used as the
expression. Otherwise, if the given expression does not
contain any of the primaries -exec, -ok or -print, the given
expression will be effectively replaced by:

( given_expression ) -print

The -user, -group, and -newer primaries each will evaluate
their respective arguments only once.

USAGE 
See largefile(5) for the description of the behavior of find
when encountering files greater than or equal to 2 Gbyte
(2**31 bytes).

EXAMPLES 
The following commands are equivalent:

example% find .
example% find . -print

They both write out the entire directory hierarchy from the
current directory.

Remove all files in your home directory named a.out or *.o
that have not been accessed for a week:

example% find $HOME \( -name a.out -o -name '*.o' \) \
-atime +7 -exec rm {} \;

Recursively print all file names in the current directory
and below, but skipping SCCS directories:

example% find . -name SCCS -prune -o -print

Recursively print all file names in the current directory
and below, skipping the contents of SCCS directories, but
printing out the SCCS directory name:



 - 102 - 

example% find . -print -name SCCS -prune

The following command is basically equivalent to the -nt
extension to test(1):

example$ if [ -n "$(find file1 -prune -newer file2)" ];
then

printf %s\\n "file1 is newer than file2"

The descriptions of -atime, -ctime, and -mtime use the ter-
minology n ``24-hour periods''. For example, a file
accessed at 23:59 will be selected by:

example% find . -atime -1 -print

at 00:01 the next day (less than 24 hours later, not more
than one day ago); the midnight boundary between days has no
effect on the 24-hour calculation.

Recursively print all file names whose permission mode
exactly matches read, write, and execute access for user,
and read and execute access for group and other.

example% find . -perm u=rwx,g=rx,o=rx

The above could alternatively be specified as follows:
example% find . -perm a=rwx,g-w,o-w

Recursively print all file names whose permission includes,
but is not limited to, write access for other.

example% find . -perm -o+w

ENVIRONMENT 
See environ(5) for descriptions of the following environment
variables that affect the execution of find: LC_COLLATE,
LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS
The following exit values are returned:
0 All path operands were traversed successfully.
>0 An error occurred.

FILES
/etc/passwd password file
/etc/group group file
/etc/dfs/fstypes file that registers distributed file

system packages



 - 103 - 

ATTRIBUTES 
See attributes(5) for descriptions of the following attri-
butes:

__________________________________
| ATTRIBUTE TYPE| ATTRIBUTE VALUE|
|_______________|_________________|
| Availability | SUNWcsu |
| CSI | enabled |
|_______________|_________________|

SEE ALSO 
chmod(1), cpio(1), ls(1), sh(1), test(1), stat(2), umask(2),
attributes(5), environ(5), largefile(5)

WARNINGS
The following options are obsolete and will not be supported
in future releases:

-cpio device Always true; write the current file on device
in cpio format (5120-byte records).

-ncpio device Always true; write the current file on device
in cpio -c format (5120 byte records).

NOTES 
When using find to determine files modified within a range
of time, one must use the ?time argument before the -print
argument otherwise find will give all files.



 - 104 - 

grep 
grep - search a file for a pattern

SYNOPSIS 
/usr/bin/grep [ -bchilnsvw ] limited-regular-expression

[ filename... ]

/usr/xpg4/bin/grep [ -E | -F ] [ -c | -l | -q ]
[ -bhinsvwx ] -e pattern_list
[ -f pattern_file ] ... [ file... ]

/usr/xpg4/bin/grep [ -E | -F ] [ -c | -l | -q ]
[ -bhinsvwx ] [ -e pattern_list
-f pattern_file [ file... ]

/usr/xpg4/bin/grep [ -E | -F ] [ -c | -l | -q ]
[ -bhinsvwx ] pattern [ file... ]

DESCRIPTION 
The grep utility searches files for a pattern and prints all
lines that contain that pattern. It uses a compact non-
deterministic algorithm.

Be careful using the characters $, *, [, ^, |, (, ), and \
in the pattern_list because they are also meaningful to the
shell. It is safest to enclose the entire pattern_list in
single quotes '...'.

If no files are specified, grep assumes standard input.
Normally, each line found is copied to standard output. The
file name is printed before each line found if there is more
than one input file.

/usr/bin/grep
The /usr/bin/grep utility uses limited regular expressions
like those described on the regexp(5) manual page to match
the patterns.

/usr/xpg4/bin/grep
The options -E and -F affect the way /usr/xpg4/bin/grep
interprets pattern_list. If -E is specified,
/usr/xpg4/bin/grep interprets pattern_list as a full regular
expression (see -E for description). If -F is specified,
grep interprets pattern_list as a fixed string. If neither
are specified, grep interprets pattern_list as a basic regu-



 - 105 - 

lar expression as described on regex(5) manual page.

OPTIONS 
The following options are supported for both /usr/bin/grep
and /usr/xpg4/bin/grep:

-b Precede each line by the block number on
which it was found. This can be useful in
locating block numbers by context (first
block is 0).

-c Print only a count of the lines that contain
the pattern.

-h Prevents the name of the file containing the
matching line from being appended to that
line. Used when searching multiple files.

-i Ignore upper/lower case distinction during
comparisons.

-l Print only the names of files with matching
lines, separated by NEWLINE characters. Does
not repeat the names of files when the pat-
tern is found more than once.

-n Precede each line by its line number in the
file (first line is 1).

-s Suppress error messages about nonexistent or
unreadable files.

-v Print all lines except those that contain the
pattern.

-w Search for the expression as a word as if
surrounded by \< and \>.

/usr/xpg4/bin/grep
The following options are supported for /usr/xpg4/bin/grep
only:

-e pattern_list
Specify one or more patterns to be used dur-
ing the search for input. Patterns in
pattern_list must be separated by a NEWLINE



 - 106 - 

character. A null pattern can be specified
by two adjacent newline characters in
pattern_list. Unless the -E or -F option is
also specified, each pattern will be treated
as a basic regular expression. Multiple -e
and -f options are accepted by grep. All of
the specified patterns are used when matching
lines, but the order of evaluation is
unspecified.

-E Match using full regular expressions. Treat
each pattern specified as a full regular
expression. If any entire full regular
expression pattern matches an input line, the
line will be matched. A null full regular
expression matches every line.

Each pattern will be interpreted as a full
regular expression as described on the
regex(5) manual page, except for \( and \),
and including:
1. A full regular expression followed by +

that matches one or more occurrences of
the full regular expression.

2. A full regular expression followed by ?
that matches 0 or 1 occurrences of the
full regular expression.

3. Full regular expressions separated by |
or by a new-line that match strings that
are matched by any of the expressions.

4. A full regular expression that may be
enclosed in parentheses () for grouping.

The order of precedence of operators is [],
then *?+, then concatenation, then | and
new-line.

-f pattern_file
Read one or more patterns from the file named
by the path name pattern_file. Patterns in
pattern_file are terminated by a NEWLINE
character. A null pattern can be specified
by an empty line in pattern_file. Unless the
-E or -F option is also specified, each pat-



 - 107 - 

tern will be treated as a basic regular
expression.

-F Match using fixed strings. Treat each pat-
tern specified as a string instead of a regu-
lar expression. If an input line contains
any of the patterns as a contiguous sequence
of bytes, the line will be matched. A null
string matches every line. See fgrep(1) for
more information.

-q Quiet. Do not write anything to the standard
output, regardless of matching lines. Exit
with zero status if an input line is
selected.

-x Consider only input lines that use all char-
acters in the line to match an entire fixed
string or regular expression to be matching
lines.

OPERANDS
The following operands are supported:

file A path name of a file to be searched for the
patterns. If no file operands are specified,
the standard input will be used.

/usr/bin/grep
pattern Specify a pattern to be used during the search

for input.

/usr/xpg4/bin/grep
pattern Specify one or more patterns to be used during

the search for input. This operand is treated
as if it were specified as -e pattern_list.

USAGE 
The -e pattern_list option has the same effect as the
pattern_list operand, but is useful when pattern_list begins
with the hyphen delimiter. It is also useful when it is
more convenient to provide multiple patterns as separate
arguments.

Multiple -e and -f options are accepted and grep will use
all of the patterns it is given while matching input text



 - 108 - 

lines. (Note that the order of evaluation is not specified.
If an implementation finds a null string as a pattern, it is
allowed to use that pattern first, matching every line, and
effectively ignore any other patterns.)

The -q option provides a means of easily determining whether
or not a pattern (or string) exists in a group of files.
When searching several files, it provides a performance
improvement (because it can quit as soon as it finds the
first match) and requires less care by the user in choosing
the set of files to supply as arguments (because it will
exit zero if it finds a match even if grep detected an
access or read error on earlier file operands).

Large File Behavior
See largefile(5) for the description of the behavior of grep
when encountering files greater than or equal to 2 Gbyte
(2**31 bytes).

EXAMPLES 
To find all uses of the word "Posix" (in any case) in the
file text.mm, and write with line numbers:

example% /usr/bin/grep -i -n posix text.mm

To find all empty lines in the standard input:

example% /usr/bin/grep ^$
or

example% /usr/bin/grep -v .

Both of the following commands print all lines containing
strings abc or def or both:

example% /usr/xpg4/bin/grep -E 'abc
def'

example% /usr/xpg4/bin/grep -F 'abc
def'

Both of the following commands print all lines matching
exactly abc or def:

example% /usr/xpg4/bin/grep -E '^abc$
^def$'

example% /usr/xpg4/bin/grep -F -x 'abc
def'



 - 109 - 

ENVIRONMENT 
See environ(5) for descriptions of the following environment
variables that affect the execution of grep: LC_COLLATE,
LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS
The following exit values are returned:

0 One or more matches were found.
1 No matches were found.
2 Syntax errors or inaccessible files (even if

matches were found).

ATTRIBUTES 
See attributes(5) for descriptions of the following attri-
butes:

/usr/bin/grep
__________________________________
| ATTRIBUTE TYPE| ATTRIBUTE VALUE|
|_______________|_________________|
| Availability | SUNWcsu |
| CSI | enabled |
|_______________|_________________|

/usr/xpg4/bin/grep
__________________________________
| ATTRIBUTE TYPE| ATTRIBUTE VALUE|
|_______________|_________________|
| Availability | SUNWxcu4 |
| CSI | enabled |
|_______________|_________________|

SEE ALSO 
egrep(1), fgrep(1), sed(1), sh(1), attributes(5),
environ(5), largefile(5), regex(5), regexp(5), xpg4(5)

NOTES 
/usr/bin/grep

Lines are limited only by the size of the available virtual
memory. If there is a line with embedded nulls, grep will
only match up to the first null; if it matches, it will
print the entire line.



 - 110 - 

/usr/xpg4/bin/grep
The results are unspecified if input files contain lines
longer than LINE_MAX bytes or contain binary data. LINE_MAX
is defined in /usr/include/limits.a.



 - 111 - 

kill 
kill - terminate or signal processes

SYNOPSIS 
/usr/bin/kill -s signal pid...
/usr/bin/kill -l [exit_status]
/usr/bin/kill [ -signal ] pid...

DESCRIPTION 
The kill utility sends a signal to the process or processes
specified by each pid operand.

For each pid operand, the kill utility will perform actions
equivalent to the kill(2) function called with the following
arguments:

1. The value of the pid operand will be used as the
pid argument.

2. The sig argument is the value specified by the -s
option, or by SIGTERM, if none of these options is
specified.

The signaled process must belong to the current user unless
the user is the super-user.

See NOTES for descriptions of the shell built-in versions of
kill.

OPTIONS 
The following options are supported:

-l (The letter ell.) Write all values of signal
supported by the implementation, if no
operand is given. If an exit_status operand
is given and it is a value of the ? shell
special parameter and wait corresponding to a
process that was terminated by a signal, the
signal corresponding to the signal that ter-
minated the process will be written. If an
exit_status operand is given and it is the
unsigned decimal integer value of a signal



 - 112 - 

number, the signal corresponding to that sig-
nal will be written. Otherwise, the results
are unspecified.

-s signal Specify the signal to send, using one of the
symbolic names defined in the <signal.h>
description. Values of signal will be recog-
nized in a case-independent fashion, without
the SIG prefix. In addition, the symbolic
name 0 will be recognized, representing the
signal value zero. The corresponding signal
will be sent instead of SIGTERM.

OPERANDS
The following operands are supported:

pid One of the following:

1. A decimal integer specifying a process or
process group to be signaled. The process or
processes selected by positive, negative and
zero values of the pid operand will be as
described for the kill function. If process
number 0 is specified, all processes in the
process group are signaled. If the first pid
operand is negative, it should be preceded by
-- to keep it from being interpreted as an
option.

2. A job control job ID that identifies a back-
ground process group to be signaled. The job
control job ID notation is applicable only
for invocations of kill in the current shell
execution environment.

Note the job control job ID type of pid is
available only on systems supporting the job
control option.

exit_status A decimal integer specifying a signal number or
the exit status of a process terminated by a
signal.

USAGE 
Process numbers can be found by using ps(1).



 - 113 - 

The job control job ID notation is not required to work as
expected when kill is operating in its own utility execution
environment. In either of the following examples:

nohup kill %1 &
system( "kill %1");

kill operates in a different environment and will not share
the shell's understanding of job numbers.

OUTPUT
When the -l option is not specified, the standard output
will not be used.

When the -l option is specified, the symbolic name of each
signal will be written in the following format:

"%s%c", <signal>, <separator>

where the <signal> is in upper-case, without the SIG prefix,
and the <separator> will be either a newline character or a
space character. For the last signal written, <separator>
will be a newline character.

When both the -l option and exit_status operand are speci-
fied, the symbolic name of the corresponding signal will be
written in the following format:

"%s\n", <signal>

EXAMPLES 
Any of the commands:

kill -9 100 -165

kill -s kill 100 -165

kill -s KILL 100 -165

sends the SIGKILL signal to the process whose process ID is
100 and to all processes whose process group ID is 165,
assuming the sending process has permission to send that
signal to the specified processes, and that they exist.

To avoid an ambiguity of an initial negative number argument
specifying either a signal number or a process group, the
former will always be the case. Therefore, to send the
default signal to a process group (for example, 123), an



 - 114 - 

application should use a command similar to one of the fol-
lowing:

kill -TERM -123

kill -- -123

ENVIRONMENT 
See environ(5) for descriptions of the following environment
variables that affect the execution of kill: LC_CTYPE,
LC_MESSAGES, and NLSPATH.

EXIT STATUS
The following exit values are returned:
0 At least one matching process was found for each

pid operand, and the specified signal was success-
fully processed for at least one matching process.

>0 An error occurred.

ATTRIBUTES 
See attributes(5) for descriptions of the following
attributes:

__________________________________
| ATTRIBUTE TYPE| ATTRIBUTE VALUE|
|_______________|_________________|
| Availability | SUNWcsu |
| CSI | enabled |
|_______________|_________________|

SEE ALSO 
csh(1), jobs(1), ksh(1), ps(1), sh(1), shell_builtins(1),
wait(1), kill(2), signal(3C), attributes(5), environ(5),
signal(5)

NOTES 
sh

The Bourne shell, sh, has a built-in version of kill to pro-
vide the functionality of the kill command for processes
identified with a jobid. The sh syntax is:

kill [ -sig ] [ pid ] [ %job ] ...
kill -l



 - 115 - 

csh
The C-shell, csh, also has a built-in kill command, whose
syntax is:

kill [ -sig ] [ pid ] [ %job ] ...
kill -l

The csh kill built-in sends the TERM (terminate) signal, by
default, or the signal specified, to the specified process
ID, the job indicated, or the current job. Signals are
either given by number or by name. There is no default.
Typing kill does not send a signal to the current job. If
the signal being sent is TERM (terminate) or HUP (hangup),
then the job or process is sent a CONT (continue) signal as
well.

-l List the signal names that can be sent.

ksh
The ksh kill's syntax is:

kill [ -sig ] [ pid ] [ %job ] ...
kill -l

The ksh kill sends either the TERM (terminate) signal or the
specified signal to the specified jobs or processes. Sig-
nals are either given by number or by names (as given in
signal(5) stripped of the prefix "SIG"). If the signal
being sent is TERM (terminate) or HUP (hangup), then the job
or process will be sent a CONT (continue) signal if it is
stopped. The argument job can be the process id of a pro-
cess that is not a member of one of the active jobs. In the
second form, kill -l, the signal numbers and names are
listed.



 - 116 - 

ksh 
ksh, rksh - KornShell, a standard/restricted command and
programming language

SYNOPSIS 
/usr/bin/ksh [ +-abCefhikmnoprstuvx ] [ +-o option ] ...

[ -c string ] [ arg... ]

/usr/xpg4/bin/sh [ +-abCefhikmnoprstuvx ] [ +-o option ] ...
[ -c string ] [ arg... ]

/usr/bin/rksh [ +-abCefhikmnoprstuvx ] [ +-o option ] ...
[ -c string ] [ arg... ]

DESCRIPTION 
/usr/xpg4/bin/sh is identical to /usr/bin/ksh, a command and
programming language that executes commands read from a ter-
minal or a file. rksh is a restricted version of the com-
mand interpreter ksh; it is used to set up login names and
execution environments whose capabilities are more con-
trolled than those of the standard shell. See Invocation
below for the meaning of arguments to the shell.

Definitions
A metacharacter is one of the following characters:

; & ( ) | < > NEWLINE SPACE TAB

A blank is a TAB or a SPACE. An identifier is a sequence of
letters, digits, or underscores starting with a letter or
underscore. Identifiers are used as names for functions and
variables. A word is a sequence of characters separated by
one or more non-quoted metacharacters.

A command is a sequence of characters in the syntax of the
shell language. The shell reads each command and carries
out the desired action either directly or by invoking
separate utilities. A special-command is a command that is
carried out by the shell without creating a separate pro-
cess. Except for documented side effects, most special com-
mands can be implemented as separate utilities.

Commands



 - 117 - 

A simple-command is a sequence of blank-separated words
which may be preceded by a variable assignment list. (See
Environment below.) The first word specifies the name of
the command to be executed. Except as specified below, the
remaining words are passed as arguments to the invoked com-
mand. The command name is passed as argument 0 (see
exec(2)). The value of a simple-command is its exit status
if it terminates normally, or (octal) 200+status if it ter-
minates abnormally (see signal(3C) for a list of status
values).

A pipeline is a sequence of one or more commands separated
by |. The standard output of each command but the last is
connected by a pipe(2) to the standard input of the next
command. Each command is run as a separate process; the
shell waits for the last command to terminate. The exit
status of a pipeline is the exit status of the last command.

A list is a sequence of one or more pipelines separated by
;, &, &&, or ||, and optionally terminated by ;, &, or |&.
Of these five symbols, ;, &, and |& have equal precedence,
which is lower than that of && and ||. The symbols && and
|| also have equal precedence. A semicolon (;) causes
sequential execution of the preceding pipeline; an ampersand
(&) causes asynchronous execution of the preceding pipeline
(that is, the shell does not wait for that pipeline to fin-
ish). The symbol |& causes asynchronous execution of the
preceding command or pipeline with a two-way pipe esta-
blished to the parent shell.

The standard input and output of the spawned command can be
written to and read from by the parent shell using the -p
option of the special commands read and print described in
Special Commands. The symbol && (||) causes the list fol-
lowing it to be executed only if the preceding pipeline
returns 0 (or a non-zero) value. An arbitrary number of
new-lines may appear in a list, instead of a semicolon, to
delimit a command.

A command is either a simple-command or one of the follow-
ing. Unless otherwise stated, the value returned by a com-
mand is that of the last simple-command executed in the com-
mand.

for identifier [ in word ... ] ; do list ; done
Each time a for command is executed, identifier is set
to the next word taken from the in word list. If in



 - 118 - 

word ... is omitted, then the for command executes the
do list once for each positional parameter that is set
(see Parameter Substitution below). Execution ends
when there are no more words in the list.

select identifier [ in word ... ] ; do list ; done
A select command prints to standard error (file
descriptor 2), the set of words, each preceded by a
number. If in word ... is omitted, then the posi-
tional parameters are used instead (see Parameter Sub-
stitution below). The PS3 prompt is printed and a line
is read from the standard input. If this line consists
of the number of one of the listed words, then the
value of the variable identifier is set to the word
corresponding to this number. If this line is empty
the selection list is printed again. Otherwise the
value of the variable identifier is set to NULL. (See
Blank Interpretation about NULL). The contents of the
line read from standard input is saved in the shell
variable REPLY. The list is executed for each selection
until a break or EOF is encountered. If the REPLY
variable is set to NULL by the execution of list, then
the selection list is printed before displaying the PS3
prompt for the next selection.

case word in [ pattern [ | pattern ] ) list ;; ] ... esac
A case command executes the list associated with the
first pattern that matches word. The form of the pat-
terns is the same as that used for file-name generation
(see File Name Generation below).

if list ; then list ;
[ elif list ; then list ; ... ] [ else list ; ] fi
The list following if is executed and, if it returns an
exit status of 0, the list following the first then is
executed. Otherwise, the list following elif is exe-
cuted and, if its value is 0, the list following the
next then is executed. Failing that, the else list is
executed. If no else list or then list is executed,
then the if command returns 0 exit status.

while list ; do list ; done
until list ; do list ; done

A while command repeatedly executes the while list and,
if the exit status of the last command in the list is
0, executes the do list; otherwise the loop terminates.
If no commands in the do list are executed, then the



 - 119 - 

while command returns 0 exit status; until may be used
in place of while to negate the loop termination test.

(list)
Execute list in a separate environment. Note, that if
two adjacent open parentheses are needed for nesting, a
space must be inserted to avoid arithmetic evaluation
as described below.

{list}
list is simply executed. Note that unlike the meta-
characters ( and ), { and } are reserved words and must
occur at the beginning of a line or after a ; in order
to be recognized.

[[expression]]
Evaluates expression and returns 0 exit status when
expression is true. See Conditional Expressions below,
for a description of expression.

function identifier { list ;}
identifier() { list ;}

Define a function which is referenced by identifier.
The body of the function is the list of commands
between { and }. (See Functions below).

time pipeline
The pipeline is executed and the elapsed time as well
as the user and system time are printed to standard
error.

The following reserved words are only recognized as the
first word of a command and when not quoted:

! if then else elif fi case esac for while until do done { }
function select time [[ ]]

Comments
A word beginning with # causes that word and all the follow-
ing characters up to a new-line to be ignored.

Aliasing
The first word of each command is replaced by the text of an
alias if an alias for this word has been defined. An alias
name consists of any number of characters excluding meta-
characters, quoting characters, file expansion characters,
parameter and command substitution characters, and =. The
replacement string can contain any valid shell script



 - 120 - 

including the metacharacters listed above. The first word
of each command in the replaced text, other than any that
are in the process of being replaced, will be tested for
aliases. If the last character of the alias value is a
blank then the word following the alias will also be checked
for alias substitution. Aliases can be used to redefine
special builtin commands but cannot be used to redefine the
reserved words listed above. Aliases can be created,
listed, and exported with the alias command and can be
removed with the unalias command. Exported aliases remain
in effect for scripts invoked by name, but must be reini-
tialized for separate invocations of the shell (see Invoca-
tion below). To prevent infinite loops in recursive alias-
ing, if the shell is not currently processing an alias of
the same name, the word will be replaced by the value of the
alias; otherwise, it will not be replaced.

Aliasing is performed when scripts are read, not while they
are executed. Therefore, for an alias to take effect the
alias definition command has to be executed before the com-
mand which references the alias is read.

Aliases are frequently used as a short hand for full path
names. An option to the aliasing facility allows the value
of the alias to be automatically set to the full pathname of
the corresponding command. These aliases are called tracked
aliases. The value of a tracked alias is defined the first
time the corresponding command is looked up and becomes
undefined each time the PATH variable is reset. These
aliases remain tracked so that the next subsequent reference
will redefine the value. Several tracked aliases are com-
piled into the shell. The -h option of the set command makes
each referenced command name into a tracked alias.

The following exported aliases are compiled into (and
built-in to) the shell but can be unset or redefined:

autoload='typeset -fu'
false='let 0'
functions='typeset -f'
hash='alias -t'
history='fc -l'
integer='typeset -i'
nohup='nohup '
r='fc -e -'
true=':'
type='whence -v'



 - 121 - 

An example concerning trailing blank characters and reserved
words follows. If the user types:

$ alias foo="/bin/ls "
$ alias while="/"

The effect of executing:

$ while true
> do
> echo "Hello, World"
> done

is a never-ending sequence of Hello, World strings to the
screen. However, if the user types:

$ foo while

the result will be an ls listing of /. Since the alias sub-
stitution for foo ends in a space character, the next word
is checked for alias substitution. The next word, while,
has also been aliased, so it is substituted as well. Since
it is not in the proper position as a command word, it is
not recognized as a reserved word.

If the user types:

$ foo; while
while retains its normal reserved-word properties.

Tilde Substitution
After alias substitution is performed, each word is checked
to see if it begins with an unquoted ~. If it does, then
the word up to a / is checked to see if it matches a user
name. If a match is found, the ~ and the matched login name
are replaced by the login directory of the matched user.
This is called a tilde substitution. If no match is found,
the original text is left unchanged. A ~ by itself, or in
front of a /, is replaced by $HOME. A ~ followed by a + or
- is replaced by $PWD and $OLDPWD respectively.

In addition, tilde substitution is attempted when the value
of a variable assignment begins with a ~.

Tilde Expansion
A tilde-prefix consists of an unquoted tilde character at
the beginning of a word, followed by all of the characters



 - 122 - 

preceding the first unquoted slash in the word, or all the
characters in the word if there is no slash. In an assign-
ment, multiple tilde-prefixes can be used: at the beginning
of the word (that is, following the equal sign of the
assignment), following any unquoted colon or both. A
tilde-prefix in an assignment is terminated by the first
unquoted colon or slash. If none of the characters in the
tilde-prefix are quoted, the characters in the tilde-prefix
following the tilde are treated as a possible login name
from the user database.

A portable login name cannot contain characters outside the
set given in the description of the LOGNAME ENVIRONMENT
variable. If the login name is null (that is, the tilde-
prefix contains only the tilde), the tilde-prefix will be
replaced by the value of the variable HOME. If HOME is
unset, the results are unspecified. Otherwise, the tilde-
prefix will be replaced by a pathname of the home directory
associated with the login name obtained using the getpwnam
function. If the system does not recognize the login name,
the results are undefined.

Tilde expansion generally occurs only at the beginning of
words, but an exception based on historical practice has
been included:

PATH=/posix/bin:~dgk/bin

is eligible for tilde expansion because tilde follows a
colon and none of the relevant characters is quoted. Con-
sideration was given to prohibiting this behavior because
any of the following are reasonable substitutes:

PATH=$(printf %s ~karels/bin : ~bostic/bin)
for Dir in ~maart/bin ~srb/bin ...
do

PATH=${PATH:+$PATH:}$Dir
done

With the first command, explicit colons are used for each
directory. In all cases, the shell performs tilde expansion
on each directory because all are separate words to the
shell.

Note that expressions in operands such as:

make -k mumble LIBDIR=~chet/lib



 - 123 - 

do not qualify as shell variable assignments and tilde
expansion is not performed (unless the command does so
itself, which make does not).

The special sequence $~ has been designated for future
implementations to evaluate as a means of forcing tilde
expansion in any word.

Because of the requirement that the word not be quoted, the
following are not equivalent; only the last will cause tilde
expansion:

\~hlj/ ~h\lj/ ~"hlj"/ ~hlj\/ ~hlj/

The results of giving tilde with an unknown login name are
undefined because the KornShell ~+ and ~- constructs make
use of this condition, but, in general it is an error to
give an incorrect login name with tilde. The results of
having HOME unset are unspecified because some historical
shells treat this as an error.

Command Substitution
The standard output from a command enclosed in parenthesis
preceded by a dollar sign ( $(command) ) or a pair of grave
accents (``) may be used as part or all of a word; trailing
new-lines are removed. In the second (archaic) form, the
string between the quotes is processed for special quoting
characters before the command is executed. (See Quoting
below.) The command substitution $(cat file) can be replaced
by the equivalent but faster (<file). Command substitution
of most special commands that do not perform input/output
redirection are carried out without creating a separate pro-
cess.

Command substitution allows the output of a command to be
substituted in place of the command name itself. Command
substitution occurs when the command is enclosed as follows:

$(command)

or (backquoted version):

`command`

The shell will expand the command substitution by executing
command in a subshell environment and replacing the command
substitution (the text of command plus the enclosing $( ) or
backquotes) with the standard output of the command, remov-



 - 124 - 

ing sequences of one or more newline characters at the end
of the substitution. Embedded newline characters before the
end of the output will not be removed; however, they may be
treated as field delimiters and eliminated during field
splitting, depending on the value of IFS and quoting that is
in effect.

Within the backquoted style of command substitution,
backslash shall retain its literal meaning, except when fol-
lowed by:

$ ` \

(dollar-sign, backquote, backslash). The search for the
matching backquote is satisfied by the first backquote found
without a preceding backslash; during this search, if a
non-escaped backquote is encountered within a shell comment,
a here-document, an embedded command substitution of the
$(command) form, or a quoted string, undefined results
occur. A single- or double-quoted string that begins, but
does not end, within the `...` sequence produces undefined
results.

With the $(command) form, all characters following the open
parenthesis to the matching closing parenthesis constitute
the command. Any valid shell script can be used for com-
mand, except:

+ A script consisting solely of redirections produces
unspecified results.

+ See the restriction on single subshells described below.

The results of command substitution will not be field split-
ting and pathname expansion processed for further tilde
expansion, parameter expansion, command substitution or
arithmetic expansion. If a command substitution occurs
inside double-quotes, it will not be performed on the
results of the substitution.

Command substitution can be nested. To specify nesting
within the backquoted version, the application must precede
the inner backquotes with backslashes; for example:

`\`command\``

The $( ) form of command substitution solves a problem of



 - 125 - 

inconsistent behavior when using backquotes. For example:

Command Output
___________________________
echo '\$x' \$x
echo `echo '\$x'` $x
echo $(echo '\$x') \$x

Additionally, the backquoted syntax has historical restric-
tions on the contents of the embedded command. While the
new $( ) form can process any kind of valid embedded script,
the backquoted form cannot handle some valid scripts that
include backquotes. For example, these otherwise valid
embedded scripts do not work in the left column, but do work
on the right:

echo ` echo $(
cat <<eeof cat <<eeof
a here-doc with ` a here-doc with )
eof eof
` )

echo ` echo $(
echo abc # a comment with ` echo abc # a comment with )
` )

echo ` echo $(
echo '`' echo ')'
` )

Because of these inconsistent behaviors, the backquoted
variety of command substitution is not recommended for new
applications that nest command substitutions or attempt to
embed complex scripts.

If the command substitution consists of a single subshell,
such as:

$( (command) )

a portable application must separate the $( and ( into two
tokens (that is, separate them with white space). This is
required to avoid any ambiguities with arithmetic expansion.

Arithmetic Expansion
An arithmetic expression enclosed in double parentheses pre-
ceded by a dollar sign ( $((arithmetic-expression)) ) is



 - 126 - 

replaced by the value of the arithmetic expression within
the double parenthesis. Arithmetic expansion provides a
mechanism for evaluating an arithmetic expression and sub-
stituting its value. The format for arithmetic expansion is
as follows:

$((expression))

The expression is treated as if it were in double-quotes,
except that a double-quote inside the expression is not
treated specially. The shell will expand all tokens in the
expression for parameter expansion, command substitution and
quote removal.

Next, the shell will treat this as an arithmetic expression
and substitute the value of the expression. The arithmetic
expression will be processed according to the rules of the
ISO C with the following exceptions:

+ Only integer arithmetic is required.

+ The sizeof() operator and the prefix and postfix ++ and
-- operators are not required.

+ Selection, iteration and jump statements are not sup-
ported.

As an extension, the shell may recognize arithmetic expres-
sions beyond those listed. If the expression is invalid,
the expansion will fail and the shell will write a message
to standard error indicating the failure.

A simple example using arithmetic expansion:

# repeat a command 100 times
x=100
while [ $x -gt 0 ]
do

command
x=$(($x-1))

done

Process Substitution
This feature is available in SunOS and only on versions of
the UNIX operating system that support the /dev/fd directory
for naming open files. Each command argument of the form
<(list) or >(list) will run process list asynchronously con-



 - 127 - 

nected to some file in /dev/fd. The name of this file will
become the argument to the command. If the form with > is
selected then writing on this file will provide input for
list. If < is used, then the file passed as an argument
will contain the output of the list process. For example,

paste <(cut -f1 file1) <(cut -f3 file2) |
tee >( process1) >( process2)

cuts fields 1 and 3 from the files file1 and file2 respec-
tively, pastes the results together, and sends it to the
processes process1 and process2, as well as putting it onto
the standard output. Note that the file, which is passed as
an argument to the command, is a UNIX pipe(2) so programs
that expect to lseek(2) on the file will not work.

Parameter Substitution
A parameter is an identifier, one or more digits, or any of
the characters *, @, #, ?, -, $, and !. A variable (a
parameter denoted by an identifier) has a value and zero or
more attributes. variables can be assigned values and
attributes by using the typeset special command. The attri-
butes supported by the shell are described later with the
typeset special command. Exported variables pass values and
attributes to the environment.

The shell supports a one-dimensional array facility. An
element of an array variable is referenced by a subscript.
A subscript is denoted by a [, followed by an arithmetic
expression (see Arithmetic Evaluation below) followed by a
]. To assign values to an array, use set -A name value ....
The value of all subscripts must be in the range of 0
through 1023. Arrays need not be declared. Any reference
to a variable with a valid subscript is legal and an array
will be created if necessary. Referencing an array without
a subscript is equivalent to referencing the element 0. If
an array identifier with subscript * or @ is used, then the
value for each of the elements is substituted (separated by
a field separator character).

The value of a variable may be assigned by writing:

name=value [ name=value ] ...

If the integer attribute, -i, is set for name, the value is
subject to arithmetic evaluation as described below.

Positional parameters, parameters denoted by a number, may



 - 128 - 

be assigned values with the set special command. Parameter
$0 is set from argument zero when the shell is invoked. If
parameter is one or more digits then it is a positional
parameter. A positional parameter of more than one digit
must be enclosed in braces.

Parameter Expansion
The format for parameter expansion is as follows:

${expression}

where expression consists of all characters until the match-
ing }. Any } escaped by a backslash or within a quoted
string, and characters in embedded arithmetic expansions,
command substitutions and variable expansions, are not exam-
ined in determining the matching }.

The simplest form for parameter expansion is:

${parameter}

The value, if any, of parameter will be substituted.

The parameter name or symbol can be enclosed in braces,
which are optional except for positional parameters with
more than one digit or when parameter is followed by a char-
acter that could be interpreted as part of the name. The
matching closing brace will be determined by counting brace
levels, skipping over enclosed quoted strings and command
substitutions.

If the parameter name or symbol is not enclosed in braces,
the expansion will use the longest valid name whether or not
the symbol represented by that name exists. When the shell
is scanning its input to determine the boundaries of a name,
it is not bound by its knowledge of what names are already
defined. For example, if F is a defined shell variable, the
command:

echo $Fred

does not echo the value of $F followed by red; it selects
the longest possible valid name, Fred, which in this case
might be unset.

If a parameter expansion occurs inside double-quotes:

+ Pathname expansion will not be performed on the results



 - 129 - 

of the expansion.

+ Field splitting will not be performed on the results of
the expansion, with the exception of @.

In addition, a parameter expansion can be modified by using
one of the following formats. In each case that a value of
word is needed (based on the state of parameter, as
described below), word will be subjected to tilde expansion,
parameter expansion, command substitution and arithmetic
expansion. If word is not needed, it will not be expanded.
The } character that delimits the following parameter expan-
sion modifications is determined as described previously in
this section and in dquote. (For example, ${foo-bar}xyz}
would result in the expansion of foo followed by the string
xyz} if foo is set, else the string barxyz}).

${parameter:-word} Use Default Values. If parameter is
unset or null, the expansion of word
will be substituted; otherwise, the
value of parameter will be substituted.

${parameter:=word} Assign Default Values. If parameter is
unset or null, the expansion of word
will be assigned to parameter. In all
cases, the final value of parameter will
be substituted. Only variables, not
positional parameters or special parame-
ters, can be assigned in this way.

${parameter:?[word]}
Indicate Error if Null or Unset. If
parameter is unset or null, the expan-
sion of word (or a message indicating it
is unset if word is omitted) will be
written to standard error and the shell
will exit with a non-zero exit status.
Otherwise, the value of parameter will
be substituted. An interactive shell
need not exit.

${parameter:+[word]}
Use Alternative Value. If parameter is
unset or null, null will be substituted;
otherwise, the expansion of word will be
substituted.



 - 130 - 

In the parameter expansions shown previously, use of the
colon in the format results in a test for a parameter that
is unset or null; omission of the colon results in a test
for a parameter that is only unset. The following table
summarizes the effect of the colon:

_________________________________________________________________
set and not null set but null unset

_________________________________________________________________
substitute substitute

substitute
${parameter:-word} parameter word word

substitute substitute
substitute

${parameter-word} parameter null word

substitute assign assign
${parameter:=word} parameter word word

substitute substitute assign
${parameter=word} parameter parameter null

substitute error, error,
${parameter:?word} parameter exit exit

substitute substitute error,
${parameter?word} parameter null exit

substitute substitute
substitute

${parameter:+word} word null null

substitute substitute
substitute

${parameter+word} word word null
In all cases shown with "substitute", the expression is
replaced with the value shown. In all cases shown with
"assign" parameter is assigned that value, which also
replaces the expression.

${#parameter} String Length. The length in characters
of the value of parameter. If parameter
is * or @, then all the positional parame-
ters, starting with $1, are substituted
(separated by a field separator charac-



 - 131 - 

ter).

The following four varieties of parameter expansion provide
for substring processing. In each case, pattern matching
notation (see patmat), rather than regular expression nota-
tion, will be used to evaluate the patterns. If parameter
is * or @, then all the positional parameters, starting with
$1, are substituted (separated by a field separator charac-
ter). Enclosing the full parameter expansion string in
double-quotes will not cause the following four varieties of
pattern characters to be quoted, whereas quoting characters
within the braces will have this effect.

${parameter%word} Remove Smallest Suffix Pattern. The
word will be expanded to produce a pat-
tern. The parameter expansion then will
result in parameter, with the smallest
portion of the suffix matched by the
pattern deleted.

${parameter%%word} Remove Largest Suffix Pattern. The word
will be expanded to produce a pattern.
The parameter expansion then will result
in parameter, with the largest portion
of the suffix matched by the pattern
deleted.

${parameter#word} Remove Smallest Prefix Pattern. The
word will be expanded to produce a pat-
tern. The parameter expansion then will
result in parameter, with the smallest
portion of the prefix matched by the
pattern deleted.

${parameter##word} Remove Largest Prefix Pattern. The word
will be expanded to produce a pattern.
The parameter expansion then will result
in parameter, with the largest portion
of the prefix matched by the pattern
deleted.

Examples:

${parameter:-word}

In this example, ls is executed only if x is null or
unset. (The $(ls) command substitution notation is
explained in Command Substitution above.)



 - 132 - 

${x:-$(ls)}

${parameter:=word}

unset X
echo ${X:=abc}
abc

${parameter:?word}

unset posix
echo ${posix:?}
sh: posix: parameter null or not set

${parameter:+word}

set a b c
echo ${3:+posix}
posix

${#parameter}

HOME=/usr/posix
echo ${#HOME}
10

${parameter%word}

x=file.c
echo ${x%.c}.o
file.o

${parameter%%word}
x=posix/src/std
echo ${x%%/*}
posix

${parameter#word}

x=$HOME/src/cmd
echo ${x#$HOME}
/src/cmd

${parameter##word}

x=/one/two/three



 - 133 - 

echo ${x##*/}
three

Parameters Set by Shell
The following parameters are automatically set by the shell:

# The number of positional parameters in
decimal.

- Flags supplied to the shell on invocation or
by the set command.

? The decimal value returned by the last exe-
cuted command.

$ The process number of this shell.

_ Initially, the value of _ is an absolute
pathname of the shell or script being exe-
cuted as passed in the environment. Subse-
quently it is assigned the last argument of
the previous command. This parameter is not
set for commands which are asynchronous.
This parameter is also used to hold the name
of the matching MAIL file when checking for
mail.

! The process number of the last background
command invoked.

ERRNO The value of errno as set by the most
recently failed system call. This value is
system dependent and is intended for debug-
ging purposes.

LINENO The line number of the current line within
the script or function being executed.

OLDPWD The previous working directory set by the cd
command.

OPTARG The value of the last option argument pro-
cessed by the getopts special command.

OPTIND The index of the last option argument pro-
cessed by the getopts special command.



 - 134 - 

PPID The process number of the parent of the
shell.

PWD The present working directory set by the cd
command.

RANDOM Each time this variable is referenced, a ran-
dom integer, uniformly distributed between 0
and 32767, is generated. The sequence of
random numbers can be initialized by assign-
ing a numeric value to RANDOM.

REPLY This variable is set by the select statement
and by the read special command when no argu-
ments are supplied.

SECONDS Each time this variable is referenced, the
number of seconds since shell invocation is
returned. If this variable is assigned a
value, then the value returned upon reference
will be the value that was assigned plus the
number of seconds since the assignment.

Variables Used by Shell
The following variables are used by the shell:

CDPATH The search path for the cd command.

COLUMNS If this variable is set, the value is used to
define the width of the edit window for the
shell edit modes and for printing select
lists.

EDITOR If the value of this variable ends in emacs,
gmacs, or vi and the VISUAL variable is not
set, then the corresponding option (see the
set special command below) will be turned on.

ENV This variable, when the shell is invoked, is
subjected to parameter expansion by the shell
and the resulting value is used as a pathname
of a file containing shell commands to exe-
cute in the current environment. The file
need not be executable. If the expanded
value of ENV is not an absolute pathname, the
results are unspecified. ENV will be ignored
if the user's real and effective user IDs or



 - 135 - 

real and effective group IDs are different.

This variable can be used to set aliases and
other items local to the invocation of a
shell. The file referred to by ENV differs
from $HOME/.profile in that .profile is typi-
cally executed at session startup, whereas
the ENV file is executed at the beginning of
each shell invocation. The ENV value is
interpreted in a manner similar to a dot
script, in that the commands are executed in
the current environment and the file needs to
be readable, but not executable. However,
unlike dot scripts, no PATH searching is per-
formed. This is used as a guard against Tro-
jan Horse security breaches.

FCEDIT The default editor name for the fc command.

FPATH The search path for function definitions. By
default the FPATH directories are searched
after the PATH variable. If an executable
file is found, then it is read and executed
in the current environment. FPATH is
searched before PATH when a function with the
-u attribute is referenced. The preset alias
autoload preset alias causes a function with
the -u attribute to be created.

IFS Internal field separators, normally space,
tab, and new-line that are used to separate
command words which result from command or
parameter substitution and for separating
words with the special command read. The
first character of the IFS variable is used
to separate arguments for the $* substitution
(See Quoting below).

HISTFILE If this variable is set when the shell is
invoked, then the value is the pathname of
the file that will be used to store the com-
mand history. (See Command re-entry below.)

HISTSIZE If this variable is set when the shell is
invoked, then the number of previously
entered commands that are accessible by this
shell will be greater than or equal to this



 - 136 - 

number. The default is 128.

HOME The default argument (home directory) for the
cd command.

LC_ALL This variable provides a default value for
the LC_* variables.

LC_COLLATE
This variable determines the behavior of
range expressions, equivalence classes and
multi-byte character collating elements
within pattern matching.

LC_CTYPE Determines how the shell handles characters.
When LC_CTYPE is set to a valid value, the
shell can display and handle text and
filenames containing valid characters for
that locale. If LC_CTYPE (see environ(5)) is
not set in the environment, the operational
behavior of the shell is determined by the
value of the LANG environment variable. If
LC_ALL is set, its contents are used to over-
ride both the LANG and the other LC_* vari-
ables.

LC_MESSAGES
This variable determines the language in
which messages should be written.

LANG Provide a default value for the internation-
alization variables that are unset or null.
If any of the internationalization variables
contains an invalid setting, the utility will
behave as if none of the variables had been
defined.

LINENO This variable is set by the shell to a
decimal number representing the current
sequential line number (numbered starting
with 1) within a script or function before it
executes each command. If the user unsets or
resets LINENO, the variable may lose its spe-
cial meaning for the life of the shell. If
the shell is not currently executing a script
or function, the value of LINENO is unspeci-
fied.



 - 137 - 

LINES If this variable is set, the value is used to
determine the column length for printing
select lists. Select lists will print
vertically until about two-thirds of LINES
lines are filled.

MAIL If this variable is set to the name of a mail
file and the MAILPATH variable is not set,
then the shell informs the user of arrival of
mail in the specified file.

MAILCHECK This variable specifies how often (in
seconds) the shell will check for changes in
the modification time of any of the files
specified by the MAILPATH or MAIL variables.
The default value is 600 seconds. When the
time has elapsed the shell will check before
issuing the next prompt.

MAILPATH A colon (:) separated list of file names.
If this variable is set, then the shell
informs the user of any modifications to the
specified files that have occurred within the
last MAILCHECK seconds. Each file name can
be followed by a ? and a message that will be
printed. The message will undergo parameter
substitution with the variable $_ defined as
the name of the file that has changed. The
default message is you have mail in $_.

NLSPATH Determine the location of message catalogues
for the processing of LC_MESSAGES.

PATH The search path for commands (see Execution
below). The user may not change PATH if exe-
cuting under rksh (except in .profile).

PPID This variable is set by the shell to the
decimal process ID of the process that
invoked the shell. In a subshell, PPID will
be set to the same value as that of the
parent of the current shell. For example,
echo $PPID and (echo $PPID) would produce the
same value.

PS1 The value of this variable is expanded for



 - 138 - 

parameter substitution to define the primary
prompt string which by default is ``$ ''.
The character ! in the primary prompt string
is replaced by the command number (see Com-
mand Re-entry below). Two successive
occurrences of ! will produce a single ! when
the prompt string is printed.

PS2 Secondary prompt string, by default ``> ''.
PS3 Selection prompt string used within a select

loop, by default ``#? ''.

PS4 The value of this variable is expanded for
parameter substitution and precedes each line
of an execution trace. If omitted, the exe-
cution trace prompt is ``+ ''.

SHELL The pathname of the shell is kept in the
environment. At invocation, if the basename
of this variable is rsh, rksh, or krsh, then
the shell becomes restricted.

TMOUT If set to a value greater than zero, the
shell will terminate if a command is not
entered within the prescribed number of
seconds after issuing the PS1 prompt. (Note
that the shell can be compiled with a maximum
bound for this value which cannot be
exceeded.)

VISUAL If the value of this variable ends in emacs,
gmacs, or vi then the corresponding option
(see Special Command set below) will be
turned on.

The shell gives default values to PATH, PS1, PS2, PS3, PS4,
MAILCHECK, FCEDIT, TMOUT and IFS, while HOME, SHELL ENV and
MAIL are not set at all by the shell (although HOME is set
by login(1)). On some systems MAIL and SHELL are also set
by login.

Blank Interpretation
After parameter and command substitution, the results of
substitutions are scanned for the field separator characters
(those found in IFS) and split into distinct arguments where
such characters are found. Explicit null arguments ( "" )
or ('') are retained. Implicit null arguments (those



 - 139 - 

resulting from parameters that have no values) are removed.

File Name Generation
Following substitution, each command word is scanned for the
characters *, ?, and [ unless the -f option has been set.
If one of these characters appears then the word is regarded
as a pattern. The word is replaced with lexicographically
sorted file names that match the pattern. If no file name
is found that matches the pattern, then the word is left
unchanged. When a pattern is used for file name generation,
the character period (.) at the start of a file name or
immediately following a /, as well as the character /
itself, must be matched explicitly. A file name beginning
with a period will not be matched with a pattern with the
period inside parentheses; that is

ls .@(r*)

would locate a file named .restore, but ls @(.r*) would not.
In other instances of pattern matching the / and . are not
treated specially.

* Matches any string, including the null string.
? Matches any single character.
[...]

Matches any one of the enclosed characters. A
pair of characters separated by - matches any
character lexically between the pair, inclusive.
If the first character following the opening "[ "
is a "! ", then any character not enclosed is
matched. A - can be included in the character set
by putting it as the first or last character.

A pattern-list is a list of one or more patterns separated
from each other with a |. Composite patterns can be formed
with one or more of the following:

?(pattern-list) Optionally matches any one of the
given patterns.

*(pattern-list) Matches zero or more occurrences of
the given patterns.

+(pattern-list) Matches one or more occurrences of the
given patterns.

@(pattern-list) Matches exactly one of the given pat-
terns.

!(pattern-list) Matches anything, except one of the
given patterns.



 - 140 - 

Quoting
Each of the metacharacters listed above (See Definitions)
has a special meaning to the shell and causes termination of
a word unless quoted. A character may be quoted (that is,
made to stand for itself) by preceding it with a \. The
pair \NEWLINE is removed. All characters enclosed between a
pair of single quote marks ('') are quoted. A single quote
cannot appear within single quotes. Inside double quote
marks (""), parameter and command substitution occur and \
quotes the characters \, `, ", and $. The meaning of $* and
$@ is identical when not quoted or when used as a parameter
assignment value or as a file name. However, when used as a
command argument, $* is equivalent to ``$1d$2d...'', where d
is the first character of the IFS variable, whereas $@ is
equivalent to $1 $2 .... Inside grave quote marks (``), \
quotes the characters \, `, and $. If the grave quotes
occur within double quotes, then \ also quotes the character
".
The special meaning of reserved words or aliases can be
removed by quoting any character of the reserved word. The
recognition of function names or special command names
listed below cannot be altered by quoting them.

Arithmetic Evaluation
An ability to perform integer arithmetic is provided with
the special command let. Evaluations are performed using
long arithmetic. Constants are of the form [ base# ] n
where base is a decimal number between two and thirty-six
representing the arithmetic base and n is a number in that
base. If base is omitted then base 10 is used.

An arithmetic expression uses the same syntax, precedence,
and associativity of expression as the C language. All the
integral operators, other than ++, --, ?:, and , are sup-
ported. Variables can be referenced by name within an
arithmetic expression without using the parameter substitu-
tion syntax. When a variable is referenced, its value is
evaluated as an arithmetic expression.

An internal integer representation of a variable can be
specified with the -i option of the typeset special command.
Arithmetic evaluation is performed on the value of each
assignment to a variable with the -i attribute. If you do
not specify an arithmetic base, the first assignment to the
variable determines the arithmetic base. This base is used
when parameter substitution occurs.



 - 141 - 

Since many of the arithmetic operators require quoting, an
alternative form of the let command is provided. For any
command which begins with a ((, all the characters until a
matching )) are treated as a quoted expression. More pre-
cisely, ((...)) is equivalent to let "...".

Prompting
When used interactively, the shell prompts with the parame-
ter expanded value of PS1 before reading a command. If at
any time a new-line is typed and further input is needed to
complete a command, then the secondary prompt (that is, the
value of PS2) is issued.

Conditional Expressions
A conditional expression is used with the [[ compound com-
mand to test attributes of files and to compare strings.
Word splitting and file name generation are not performed on
the words between [[ and ]]. Each expression can be con-
structed from one or more of the following unary or binary
expressions:

-a file True, if file exists.
-b file True, if file exists and is a block

special file.
-c file True, if file exists and is a character

special file.
-d file True, if file exists and is a directory.
-e file True, if file exists.
-f file True, if file exists and is an ordinary

file.
-g file True, if file exists and is has its set-

gid bit set.
-k file True, if file exists and is has its

sticky bit set.
-n string True, if length of string is non-zero.
-o option True, if option named option is on.
-p file True, if file exists and is a fifo spe-

cial file or a pipe.
-r file True, if file exists and is readable by

current process.
-s file True, if file exists and has size

greater than zero.
-t fildes True, if file descriptor number fildes

is open and associated with a terminal
device.

-u file True, if file exists and has its setuid



 - 142 - 

bit set.
-w file True, if file exists and is writable by

current process.
-x file True, if file exists and is executable

by current process. If file exists and
is a directory, then the current process
has permission to search in the direc-
tory.

-z string True, if length of string is zero.
-L file True, if file exists and is a symbolic

link.
-O file True, if file exists and is owned by the

effective user id of this process.
-G file True, if file exists and its group

matches the effective group id of this
process.

-S file True, if file exists and is a socket.
file1 -nt file2 True, if file1 exists and is newer than

file2.
file1 -ot file2 True, if file1 exists and is older than

file2.
file1 -ef file2 True, if file1 and file2 exist and refer

to the same file.
string True if the string string is not the

null string.
string = pattern True, if string matches pattern.
string != pattern True, if string does not match pattern.
string1 = string2 True if the strings string1 and string2

are identical.
string1 ! = string2 True if the strings string1 and string2

are not identical.
string1 < string2 True, if string1 comes before string2

based on strings interpreted as
appropriate to the locale setting for
category LC_COLLATE.

string1 > string2 True, if string1 comes after string2
based on strings interpreted as
appropriate to the locale setting for
category LC_COLLATE.

exp1 -eq exp2 True, if exp1 is equal to exp2.
exp1 -ne exp2 True, if exp1 is not equal to exp2.
exp1 -lt exp2 True, if exp1 is less than exp2.
exp1 -gt exp2 True, if exp1 is greater than exp2.
exp1 -le exp2 True, if exp1 is less than or equal to

exp2.
exp1 -ge exp2 True, if exp1 is greater than or equal

to exp2.



 - 143 - 

In each of the above expressions, if file is of the form
/dev/fd/n, where n is an integer, then the test is applied
to the open file whose descriptor number is n.

A compound expression can be constructed from these primi-
tives by using any of the following, listed in decreasing
order of precedence.

(expression) True, if expression is true.
Used to group expressions.

! expression True if expression is false.
expression1 && expression2 True, if expression1 and

expression2 are both true.
expression1 || expression2 True, if either expression1 or

expression2 is true.

Input/Output
Before a command is executed, its input and output may be
redirected using a special notation interpreted by the
shell. The following may appear anywhere in a simple-
command or may precede or follow a command and are not
passed on to the invoked command. Command and parameter
substitution occur before word or digit is used except as
noted below. File name generation occurs only if the pat-
tern matches a single file, and blank interpretation is not
performed.

<word Use file word as standard input (file
descriptor 0).

>word Use file word as standard output (file
descriptor 1). If the file does not exist
then it is created. If the file exists, and
the noclobber option is on, this causes an
error; otherwise, it is truncated to zero
length.

>|word Sames as >, except that it overrides the
noclobber option.

>>word Use file word as standard output. If the
file exists then output is appended to it (by
first seeking to the EOF); otherwise, the
file is created.

<>word Open file word for reading and writing as



 - 144 - 

standard input.

<< [-]word The shell input is read up to a line that is
the same as word, or to an EOF. No parameter
substitution, command substitution or file
name generation is performed on word. The
resulting document, called a here-document,
becomes the standard input. If any character
of word is quoted, then no interpretation is
placed upon the characters of the document;
otherwise, parameter and command substitution
occur, \NEWLINE is ignored, and \ must be
used to quote the characters \, $, `, and the
first character of word. If - is appended to
<<, then all leading tabs are stripped from
word and from the document.

<&digit The standard input is duplicated from file
descriptor digit (see dup(2)). Similarly for
the standard output using >&digit.

<&- The standard input is closed. Similarly for
the standard output using >&-.

<&p The input from the co-process is moved to
standard input.

>&p The output to the co-process is moved to
standard output.

If one of the above is preceded by a digit, then the file
descriptor number referred to is that specified by the digit
(instead of the default 0 or 1). For example:

... 2>&1

means file descriptor 2 is to be opened for writing as a
duplicate of file descriptor 1.
The order in which redirections are specified is signifi-
cant. The shell evaluates each redirection in terms of the
(file descriptor, file) association at the time of evalua-
tion. For example:

... 1>fname 2>&1

first associates file descriptor 1 with file fname. It then
associates file descriptor 2 with the file associated with



 - 145 - 

file descriptor 1 (that is fname). If the order of redirec-
tions were reversed, file descriptor 2 would be associated
with the terminal (assuming file descriptor 1 had been) and
then file descriptor 1 would be associated with file fname.

If a command is followed by & and job control is not active,
then the default standard input for the command is the empty
file /dev/null. Otherwise, the environment for the execu-
tion of a command contains the file descriptors of the
invoking shell as modified by input/output specifications.

  ENVIRONMENT 
The environment (see environ(5)) is a list of name-value
pairs that is passed to an executed program in the same way
as a normal argument list. The names must be identifiers
and the values are character strings. The shell interacts
with the environment in several ways. On invocation, the
shell scans the environment and creates a variable for each
name found, giving it the corresponding value and marking it
export. Executed commands inherit the environment. If the
user modifies the values of these variables or creates new
ones, using the export or typeset -x commands they become
part of the environment. The environment seen by any exe-
cuted command is thus composed of any name-value pairs ori-
ginally inherited by the shell, whose values may be modified
by the current shell, plus any additions which must be noted
in export or typeset -x commands.

The environment for any simple-command or function may be
augmented by prefixing it with one or more variable assign-
ments. A variable assignment argument is a word of the form
identifier=value. Thus:

TERM=450 cmd args
and
(export TERM; TERM=450; cmd args)

are equivalent (as far as the above execution of cmd is con-
cerned except for special commands listed below that are
preceded with a dagger).

If the -k flag is set, all variable assignment arguments are
placed in the environment, even if they occur after the
command name. The following first prints a=b c and then c:

echo a=b c



 - 146 - 

set -k
echo a=b c

This feature is intended for use with scripts written for
early versions of the shell and its use in new scripts is
strongly discouraged. It is likely to disappear someday.

Functions
The function reserved word, described in the Commands sec-
tion above, is used to define shell functions. Shell func-
tions are read in and stored internally. Alias names are
resolved when the function is read. Functions are executed
like commands with the arguments passed as positional param-
eters. (See Execution below.)

Functions execute in the same process as the caller and
share all files and present working directory with the
caller. Traps caught by the caller are reset to their
default action inside the function. A trap condition that
is not caught or ignored by the function causes the function
to terminate and the condition to be passed on to the
caller. A trap on EXIT set inside a function is executed
after the function completes in the environment of the
caller. Ordinarily, variables are shared between the cal-
ling program and the function. However, the typeset special
command used within a function defines local variables whose
scope includes the current function and all functions it
calls.

The special command return is used to return from function
calls. Errors within functions return control to the
caller.

The names of all functions can be listed with typeset +f.
typeset -f lists all function names as well as the text of
all functions. typeset -f function-names lists the text of
the named functions only. Functions can be undefined with
the -f option of the unset special command.

Ordinarily, functions are unset when the shell executes a
shell script. The -xf option of the typeset command allows
a function to be exported to scripts that are executed
without a separate invocation of the shell. Functions that
need to be defined across separate invocations of the shell
should be specified in the ENV file with the -xf option of
typeset.



 - 147 - 

Function Definition Command
A function is a user-defined name that is used as a simple
command to call a compound command with new positional
parameters. A function is defined with a function defini-
tion command.

The format of a function definition command is as follows:

fname() compound-command[io-redirect ...]

The function is named fname; it must be a name. An imple-
mentation may allow other characters in a function name as
an extension. The implementation will maintain separate
name spaces for functions and variables.

The () in the function definition command consists of two
operators. Therefore, intermixing blank characters with the
fname, (, and ) is allowed, but unnecessary.

The argument compound-command represents a compound command.

When the function is declared, none of the expansions in
wordexp will be performed on the text in compound-command or
io-redirect; all expansions will be performed as normal each
time the function is called. Similarly, the optional io-
redirect redirections and any variable assignments within
compound-command will be performed during the execution of
the function itself, not the function definition.

When a function is executed, it will have the syntax-error
and variable-assignment properties described for the special
built-in utilities.

The compound-command will be executed whenever the function
name is specified as the name of a simple command The
operands to the command temporarily will become the posi-
tional parameters during the execution of the compound-
command; the special parameter # will also be changed to
reflect the number of operands. The special parameter 0
will be unchanged. When the function completes, the values
of the positional parameters and the special parameter #
will be restored to the values they had before the function
was executed. If the special built-in return is executed in
the compound-command, the function will complete and execu-
tion will resume with the next command after the function
call.



 - 148 - 

An example of how a function definition can be used wherever
a simple command is allowed:

# If variable i is equal to "yes",
# define function foo to be ls -l
#
[ "$i" = yes ] && foo() {

ls -l
}

The exit status of a function definition will be 0 if the
function was declared successfully; otherwise, it will be
greater than zero. The exit status of a function invocation
will be the exit status of the last command executed by the
function.

Jobs
If the monitor option of the set command is turned on, an
interactive shell associates a job with each pipeline. It
keeps a table of current jobs, printed by the jobs command,
and assigns them small integer numbers. When a job is
started asynchronously with &, the shell prints a line which
looks like:

[1] 1234

indicating that the job, which was started asynchronously,
was job number 1 and had one (top-level) process, whose pro-
cess id was 1234.

If you are running a job and wish to do something else you
may hit the key ^Z (CTRL-Z) which sends a STOP signal to the
current job. The shell will then normally indicate that the
job has been `Stopped', and print another prompt. You can
then manipulate the state of this job, putting it in the
background with the bg command, or run some other commands
and then eventually bring the job back into the foreground
with the foreground command fg. A ^Z takes effect immedi-
ately and is like an interrupt in that pending output and
unread input are discarded when it is typed.

A job being run in the background will stop if it tries to
read from the terminal. Background jobs are normally
allowed to produce output, but this can be disabled by giv-
ing the command If you set this tty option, then background
jobs will stop when they try to produce output like they do
when they try to read input.



 - 149 - 

There are several ways to refer to jobs in the shell. A job
can be referred to by the process id of any process of the
job or by one of the following:

%number The job with the given number.
%string Any job whose command line begins with

string.
%?string Any job whose command line contains string.
%% Current job.
%+ Equivalent to %%.
%- Previous job.
The shell learns immediately whenever a process changes
state. It normally informs you whenever a job becomes
blocked so that no further progress is possible, but only
just before it prints a prompt. This is done so that it
does not otherwise disturb your work.

When the monitor mode is on, each background job that com-
pletes triggers any trap set for CHLD.

When you try to leave the shell while jobs are running or
stopped, you will be warned that `You have stopped(running)
jobs.' You may use the jobs command to see what they are.
If you do this or immediately try to exit again, the shell
will not warn you a second time, and the stopped jobs will
be terminated. If you have nohup'ed jobs running when you
attempt to logout, you will be warned with the message

You have jobs running.

You will then need to logout a second time to actually
logout; however, your background jobs will continue to run.

Signals
The INT and QUIT signals for an invoked command are ignored
if the command is followed by & and the monitor option is
not active. Otherwise, signals have the values inherited by
the shell from its parent (but see also the trap special
command below).

Execution
Each time a command is executed, the above substitutions are
carried out. If the command name matches one of the Special
Commands listed below, it is executed within the current
shell process. Next, the command name is checked to see if
it matches one of the user defined functions. If it does,



 - 150 - 

the positional parameters are saved and then reset to the
arguments of the function call. When the function completes
or issues a return, the positional parameter list is
restored and any trap set on EXIT within the function is
executed. The value of a function is the value of the last
command executed. A function is also executed in the
current shell process. If a command name is not a special
command or a user defined function, a process is created and
an attempt is made to execute the command via exec(2).

The shell variable PATH defines the search path for the
directory containing the command. Alternative directory
names are separated by a colon (:). The default path is
/bin:/usr/bin: (specifying /bin, /usr/bin, and the current
directory in that order). The current directory can be
specified by two or more adjacent colons, or by a colon at
the beginning or end of the path list. If the command name
contains a / then the search path is not used. Otherwise,
each directory in the path is searched for an executable
file. If the file has execute permission but is not a
directory or an a.out file, it is assumed to be a file con-
taining shell commands. A sub-shell is spawned to read it.
All non-exported aliases, functions, and variables are
removed in this case. A parenthesized command is executed
in a sub-shell without removing non-exported quantities.

Command Re-entry
The text of the last HISTSIZE (default 128) commands entered
from a terminal device is saved in a history file. The file
$HOME/.sh_history is used if the HISTFILE variable is not
set or if the file it names is not writable. A shell can
access the commands of all interactive shells which use the
same named HISTFILE. The special command fc is used to list
or edit a portion of this file. The portion of the file to
be edited or listed can be selected by number or by giving
the first character or characters of the command. A single
command or range of commands can be specified. If you do
not specify an editor program as an argument to fc then the
value of the variable FCEDIT is used. If FCEDIT is not
defined then /bin/ed is used. The edited command(s) is
printed and re-executed upon leaving the editor. The editor
name - is used to skip the editing phase and to re-execute
the command. In this case a substitution parameter of the
form old=new can be used to modify the command before execu-
tion. For example, if r is aliased to 'fc -e -' then typing
`r bad=good c' will re-execute the most recent command which
starts with the letter c, replacing the first occurrence of



 - 151 - 

the string bad with the string good.

In-line Editing Option
Normally, each command line entered from a terminal device
is simply typed followed by a new-line (RETURN or LINEFEED).
If either the emacs, gmacs, or vi option is active, the user
can edit the command line. To be in either of these edit
modes set the corresponding option. An editing option is
automatically selected each time the VISUAL or EDITOR vari-
able is assigned a value ending in either of these option
names.

The editing features require that the user's terminal accept
RETURN as carriage return without line feed and that a space
must overwrite the current character on the screen.

The editing modes implement a concept where the user is
looking through a window at the current line. The window
width is the value of COLUMNS if it is defined, otherwise
80. If the window width is too small to display the prompt
and leave at least 8 columns to enter input, the prompt is
truncated from the left. If the line is longer than the
window width minus two, a mark is displayed at the end of
the window to notify the user. As the cursor moves and
reaches the window boundaries the window will be centered
about the cursor. The mark is a > if the line extends on
the right side of the window, < if the line extends on the
left, and * if the line extends on both sides of the window.

The search commands in each edit mode provide access to the
history file. Only strings are matched, not patterns,
although a leading ^ in the string restricts the match to
begin at the first character in the line.

emacs Editing Mode
This mode is entered by enabling either the emacs or gmacs
option. The only difference between these two modes is the
way they handle ^T. To edit, the user moves the cursor to
the point needing correction and then inserts or deletes
characters or words as needed. All the editing commands are
control characters or escape sequences. The notation for
control characters is caret ( ^ ) followed by the character.
For example, ^F is the notation for control F. This is
entered by depressing `f' while holding down the CTRL (con-
trol) key. The SHIFT key is not depressed. (The notation
^? indicates the DEL (delete) key.)



 - 152 - 

The notation for escape sequences is M- followed by a char-
acter. For example, M-f (pronounced Meta f) is entered by
depressing ESC (ascii 033) followed by `f'. (M-F would be
the notation for ESC followed by SHIFT (capital) `F'.)

All edit commands operate from any place on the line (not
just at the beginning). Neither the RETURN nor the LINEFEED
key is entered after edit commands except when noted.

^F Move cursor forward (right) one character.
M-f Move cursor forward one word. (The emacs

editor's idea of a word is a string of char-
acters consisting of only letters, digits and
underscores.)

^B Move cursor backward (left) one character.
M-b Move cursor backward one word.
^A Move cursor to start of line.
^E Move cursor to end of line.
^]char Move cursor forward to character char on

current line.
M-^]char Move cursor backward to character char on

current line.
^X^X Interchange the cursor and mark.
erase (User defined erase character as defined by

the stty(1) command, usually ^H or #.)
Delete previous character.

^D Delete current character.
M-d Delete current word.
M-^H (Meta-backspace) Delete previous word.
M-h Delete previous word.
M-^? (Meta-DEL) Delete previous word (if your

interrupt character is ^? (DEL, the default)
then this command will not work).

^T Transpose current character with next charac-
ter in emacs mode. Transpose two previous
characters in gmacs mode.

^C Capitalize current character.
M-c Capitalize current word.
M-l Change the current word to lower case.
^K Delete from the cursor to the end of the

line. If preceded by a numerical parameter
whose value is less than the current cursor
position, then delete from given position up
to the cursor. If preceded by a numerical
parameter whose value is greater than the
current cursor position, then delete from
cursor up to given cursor position.



 - 153 - 

^W Kill from the cursor to the mark.
M-p Push the region from the cursor to the mark

on the stack.
kill (User defined kill character as defined by

the stty(1) command, usually ^G or @.) Kill
the entire current line. If two kill charac-
ters are entered in succession, all kill
characters from then on cause a line feed
(useful when using paper terminals).

^Y Restore last item removed from line. (Yank
item back to the line.)

^L Line feed and print current line.
^@ (null character) Set mark.
M-space (Meta space) Set mark.
J (New line) Execute the current line.
M (Return) Execute the current line.
eof End-of-file character, normally ^D, is pro-

cessed as an End-of-file only if the current
line is null.

^P Fetch previous command. Each time ^P is
entered the previous command back in time is
accessed. Moves back one line when not on
the first line of a multi-line command.

M-< Fetch the least recent (oldest) history line.
M-> Fetch the most recent (youngest) history

line.
^N Fetch next command line. Each time ^N is

entered the next command line forward in time
is accessed.

^Rstring Reverse search history for a previous command
line containing string. If a parameter of
zero is given, the search is forward. string
is terminated by a RETURN or NEW LINE. If
string is preceded by a ^, the matched line
must begin with string. If string is omit-
ted, then the next command line containing
the most recent string is accessed. In this
case a parameter of zero reverses the direc-
tion of the search.

^O Operate. Execute the current line and fetch
the next line relative to current line from
the history file.

M-digits (Escape) Define numeric parameter, the digits
are taken as a parameter to the next command.
The commands that accept a parameter are ^F,
^B, erase, ^C, ^D, ^K, ^R, ^P, ^N, ^], M-.,
M-^], M-_, M-b, M-c, M-d, M-f, M-h, M-l and



 - 154 - 

M-^H.
M-letter Soft-key. Your alias list is searched for an

alias by the name _letter and if an alias of
this name is defined, its value will be
inserted on the input queue. The letter must
not be one of the above meta-functions.

M-[letter Soft-key. Your alias list is searched for an
alias by the name __letter and if an alias of
this name is defined, its value will be
inserted on the input queue. The can be used
to program functions keys on many terminals.

M-. The last word of the previous command is
inserted on the line. If preceded by a
numeric parameter, the value of this parame-
ter determines which word to insert rather
than the last word.

M-_ Same as M-..
M-* An asterisk is appended to the end of the

word and a file name expansion is attempted.
M-ESC File name completion. Replaces the current

word with the longest common prefix of all
filenames matching the current word with an
asterisk appended. If the match is unique, a
/ is appended if the file is a directory and
a space is appended if the file is not a
directory.

M-= List files matching current word pattern if
an asterisk were appended.

^U Multiply parameter of next command by 4.
\ Escape next character. Editing characters,

the user's erase, kill and interrupt (nor-
mally ^?) characters may be entered in a
command line or in a search string if pre-
ceded by a \. The \ removes the next
character's editing features (if any).

^V Display version of the shell.
M-# Insert a # at the beginning of the line and

execute it. This causes a comment to be
inserted in the history file.

vi Editing Mode
There are two typing modes. Initially, when you enter a
command you are in the input mode. To edit, the user enters
control mode by typing ESC (033) and moves the cursor to the
point needing correction and then inserts or deletes charac-
ters or words as needed. Most control commands accept an
optional repeat count prior to the command.



 - 155 - 

When in vi mode on most systems, canonical processing is
initially enabled and the command will be echoed again if
the speed is 1200 baud or greater and it contains any con-
trol characters or less than one second has elapsed since
the prompt was printed. The ESC character terminates canon-
ical processing for the remainder of the command and the
user can then modify the command line. This scheme has the
advantages of canonical processing with the type-ahead echo-
ing of raw mode.

If the option viraw is also set, the terminal will always
have canonical processing disabled. This mode is implicit
for systems that do not support two alternate end of line
delimiters, and may be helpful for certain terminals.

Input Edit Commands
By default the editor is in input mode.

erase (User defined erase character as defined by
the stty(1) command, usually ^H or #.)
Delete previous character.

^W Delete the previous blank separated word.

^D Terminate the shell.

^V Escape next character. Editing characters
and the user's erase or kill characters may
be entered in a command line or in a search
string if preceded by a ^V. The ^V removes
the next character's editing features (if
any).

\ Escape the next erase or kill character.

Motion Edit Commands
These commands will move the cursor.

[count]l Cursor forward (right) one character.

[count]w Cursor forward one alpha-numeric word.
[count]W Cursor to the beginning of the next word that

follows a blank.

[count]e Cursor to end of word.



 - 156 - 

[count]E Cursor to end of the current blank delimited
word.

[count]h Cursor backward (left) one character.

[count]b Cursor backward one word.

[count]B Cursor to preceding blank separated word.

[count]| Cursor to column count.

[count]fc Find the next character c in the current
line.

[count]Fc Find the previous character c in the current
line.

[count]tc Equivalent to f followed by h.

[count]Tc Equivalent to F followed by l.

[count]; Repeats count times, the last single charac-
ter find command, f, F, t, or T.

[count], Reverses the last single character find com-
mand count times.

0 Cursor to start of line.

^ Cursor to first non-blank character in line.

$ Cursor to end of line.

% Moves to balancing (, ), {, }, [, or ]. If
cursor is not on one of the above characters,
the remainder of the line is searched for the
first occurrence of one of the above charac-
ters first.

Search Edit Commands
These commands access your command history.

[count]k Fetch previous command. Each time k is
entered the previous command back in time is
accessed.

[count]- Equivalent to k.



 - 157 - 

[count]j Fetch next command. Each time j is entered
the next command forward in time is accessed.

[count]+ Equivalent to j.

[count]G The command number count is fetched. The
default is the least recent history command.

/string Search backward through history for a previ-
ous command containing string. string is
terminated by a RETURN or NEWLINE. If string
is preceded by a ^, the matched line must
begin with string. If string is NULL, the
previous string will be used.

?string Same as / except that search will be in the
forward direction.

n Search for next match of the last pattern to
/ or ? commands.

N Search for next match of the last pattern to
/ or ?, but in reverse direction. Search
history for the string entered by the previ-
ous / command.

Text Modification Edit Commands
These commands will modify the line.

a Enter input mode and enter text after the
current character.

A Append text to the end of the line.
Equivalent to $a.

[count]cmotion
c[count]motion

Delete current character through the charac-
ter that motion would move the cursor to and
enter input mode. If motion is c, the entire
line will be deleted and input mode entered.

C Delete the current character through the end
of line and enter input mode. Equivalent to
c$.

[count]s Delete count characters and enter input mode.



 - 158 - 

S Equivalent to cc.

D Delete the current character through the end
of line. Equivalent to d$.

[count]dmotion
d[count]motion

Delete current character through the charac-
ter that motion would move to. If motion is
d, the entire line will be deleted.

i Enter input mode and insert text before the
current character.

I Insert text before the beginning of the line.
Equivalent to 0i.

[count]P Place the previous text modification before
the cursor.

[count]p Place the previous text modification after
the cursor.

R Enter input mode and replace characters on
the screen with characters you type overlay
fashion.

[count]rc Replace the count character(s) starting at
the current cursor position with c, and
advance the cursor.

[count]x Delete current character.

[count]X Delete preceding character.

[count]. Repeat the previous text modification com-
mand.

[count]~ Invert the case of the count character(s)
starting at the current cursor position and
advance the cursor.

[count]_ Causes the count word of the previous command
to be appended and input mode entered. The
last word is used if count is omitted.

* Causes an * to be appended to the current



 - 159 - 

word and file name generation attempted. If
no match is found, it rings the bell. Other-
wise, the word is replaced by the matching
pattern and input mode is entered.

\ Filename completion. Replaces the current
word with the longest common prefix of all
filenames matching the current word with an
asterisk appended. If the match is unique, a
/ is appended if the file is a directory and
a space is appended if the file is not a
directory.

Other Edit Commands
Miscellaneous commands.

[count]ymotion
y[count]motion

Yank current character through character that
motion would move the cursor to and puts them into
the delete buffer. The text and cursor are
unchanged.

Y Yanks from current position to end of line.
Equivalent to y$.

u Undo the last text modifying command.

U Undo all the text modifying commands performed on
the line.

[count]v
Returns the command fc -e ${VISUAL:-${EDITOR:-vi}}
count in the input buffer. If count is omitted,
then the current line is used.

^L Line feed and print current line. Has effect only
in control mode.

J (New line) Execute the current line, regardless of
mode.

M (Return) Execute the current line, regardless of
mode.

# If the first character of the command is a #, then
this command deletes this # and each # that fol-
lows a newline. Otherwise, sends the line after



 - 160 - 

inserting a # in front of each line in the com-
mand. Useful for causing the current line to be
inserted in the history as a comment and removing
comments from previous comment commands in the
history file.

= List the file names that match the current word if
an asterisk were appended it.

@letter
Your alias list is searched for an alias by the
name _letter and if an alias of this name is
defined, its value will be inserted on the input
queue for processing.

Special Commands
The following simple-commands are executed in the shell pro-
cess. Input/Output redirection is permitted. Unless other-
wise indicated, the output is written on file descriptor 1
and the exit status, when there is no syntax error, is 0.
Commands that are preceded by one or two * (asterisks) are
treated specially in the following ways:

1. Variable assignment lists preceding the command
remain in effect when the command completes.

2. I/O redirections are processed after variable
assignments.

3. Errors cause a script that contains them to abort.
4. Words, following a command preceded by ** that are

in the format of a variable assignment, are expanded
with the same rules as a variable assignment. This
means that tilde substitution is performed after the
= sign and word splitting and file name generation
are not performed.

* : [ arg ... ]
The command only expands parameters.

* . file [ arg ... ]
Read the complete file then execute the commands. The
commands are executed in the current shell environment.
The search path specified by PATH is used to find the
directory containing file. If any arguments arg are
given, they become the positional parameters. Other-
wise the positional parameters are unchanged. The exit
status is the exit status of the last command executed.

** alias [ -tx ] [ name[ =value ] ] ...



 - 161 - 

alias with no arguments prints the list of aliases in
the form name=value on standard output. An alias is
defined for each name whose value is given. A trailing
space in value causes the next word to be checked for
alias substitution. The -t flag is used to set and
list tracked aliases. The value of a tracked alias is
the full pathname corresponding to the given name. The
value becomes undefined when the value of PATH is reset
but the aliases remained tracked. Without the -t flag,
for each name in the argument list for which no value
is given, the name and value of the alias is printed.
The -x flag is used to set or print exported aliases.
An exported alias is defined for scripts invoked by
name. The exit status is non-zero if a name is given,
but no value, and no alias has been defined for the
name.

bg [ %job... ]
This command is only on systems that support job
control. Puts each specified job into the background.
The current job is put in the background if job is not
specified. See "Jobs" section above for a description
of the format of job.

* break [ n ]
Exit from the enclosed for, while, until, or select
loop, if any. If n is specified then break n levels.

* continue [ n ]
Resume the next iteration of the enclosed for, while,
until, or select loop. If n is specified then resume
at the n-th enclosed loop.

cd [ arg ]
cd old new

This command can be in either of two forms. In the
first form it changes the current directory to arg. If
arg is - the directory is changed to the previous
directory. The shell variable HOME is the default arg.
The variable PWD is set to the current directory. The
shell variable CDPATH defines the search path for the
directory containing arg. Alternative directory names
are separated by a colon (:). The default path is null
(specifying the current directory). Note that the
current directory is specified by a null path name,
which can appear immediately after the equal sign or
between the colon delimiters anywhere else in the path



 - 162 - 

list. If arg begins with a / then the search path is
not used. Otherwise, each directory in the path is
searched for arg.

The second form of cd substitutes the string new for
the string old in the current directory name, PWD and
tries to change to this new directory.

The cd command may not be executed by rksh.
command [-p] [command_name] [argument ...]
command [-v -V] command_name

The command utility causes the shell to treat the argu-
ments as a simple command, suppressing the shell func-
tion lookup. The -p flag performs the command search
using a default value for PATH that is guaranteed to
find all of the standard utilities. The -v flag writes
a string to standard output that indicates the pathname
or command that will be used by the shell, in the
current shell execution environment, to invoke
command_name. The -V flag writes a string to standard
output that indicates how the name given in the
command_name operand will be interpreted by the shell,
in the current shell execution environment.

* eval [ arg ... ]
The arguments are read as input to the shell and the
resulting command(s) executed.

* exec [ arg ... ]
If arg is given, the command specified by the arguments
is executed in place of this shell without creating a
new process. Input/output arguments may appear and
affect the current process. If no arguments are given
the effect of this command is to modify file descrip-
tors as prescribed by the input/output redirection
list. In this case, any file descriptor numbers
greater than 2 that are opened with this mechanism are
closed when invoking another program.

* exit [ n ]
Causes the calling shell or shell script to exit with
the exit status specified by n. The value will be the
least significant 8 bits of the specified status. If n
is omitted then the exit status is that of the last
command executed. When exit occurs when executing a
trap, the last command refers to the command that exe-
cuted before the trap was invoked. An EOF will also
cause the shell to exit except for a shell which has



 - 163 - 

the ignoreeof option (See set below) turned on.

** export [ name[=value] ] ...
The given names are marked for automatic export to the
environment of subsequently-executed commands.

fc [ -e ename ] [ -nlr ] [ first [ last ] ]
fc -e - [ old=new ] [ command ]

In the first form, a range of commands from first to
last is selected from the last HISTSIZE commands that
were typed at the terminal. The arguments first and
last may be specified as a number or as a string. A
string is used to locate the most recent command start-
ing with the given string. A negative number is used
as an offset to the current command number. If the -l
flag is selected, the commands are listed on standard
output. Otherwise, the editor program ename is invoked
on a file containing these keyboard commands. If ename
is not supplied, then the value of the variable FCEDIT
(default /bin/ed) is used as the editor. When editing
is complete, the edited command(s) is executed. If
last is not specified then it will be set to first. If
first is not specified the default is the previous com-
mand for editing and -16 for listing. The flag -r rev-
erses the order of the commands and the flag -n
suppresses command numbers when listing. In the second
form the command is re-executed after the substitution
old=new is performed. If there is not a command
argument, the most recent command typed at this termi-
nal is executed.

fg [ %job... ]
This command is only on systems that support job con-
trol. Each job specified is brought to the foreground.
Otherwise, the current job is brought into the fore-
ground. See "Jobs" section above for a description of
the format of job.

getopts optstring name [ arg ... ]
Checks arg for legal options. If arg is omitted, the
positional parameters are used. An option argument
begins with a + or a -. An option not beginning with +
or - or the argument -- ends the options. optstring
contains the letters that getopts recognizes. If a
letter is followed by a :, that option is expected to
have an argument. The options can be separated from
the argument by blanks.



 - 164 - 

getopts places the next option letter it finds inside
variable name each time it is invoked with a +
prepended when arg begins with a +. The index of the
next arg is stored in OPTIND. The option argument, if
any, gets stored in OPTARG.

A leading : in optstring causes getopts to store the
letter of an invalid option in OPTARG, and to set name
to ? for an unknown option and to : when a required
option is missing. Otherwise, getopts prints an error
message. The exit status is non-zero when there are no
more options. See getoptcvt(1) for usage and descrip-
tion.

hash [ name ... ]
For each name, the location in the search path of the
command specified by name is determined and remembered
by the shell. The -r option causes the shell to forget
all remembered locations. If no arguments are given,
information about remembered commands is presented.
Hits is the number of times a command has been invoked
by the shell process. Cost is a measure of the work
required to locate a command in the search path. If a
command is found in a "relative" directory in the
search path, after changing to that directory, the
stored location of that command is recalculated. Com-
mands for which this will be done are indicated by an
asterisk (*) adjacent to the hits information. Cost
will be incremented when the recalculation is done.

jobs [ -lnp ] [ %job ... ]
Lists information about each given job; or all active
jobs if job is omitted. The -l flag lists process ids
in addition to the normal information. The -n flag
displays only jobs that have stopped or exited since
last notified. The -p flag causes only the process
group to be listed. See "Jobs" section above and
jobs(1) for a description of the format of job.

kill [ -sig ] %job ...
kill [ -sig ] pid ...
kill -l

Sends either the TERM (terminate) signal or the speci-
fied signal to the specified jobs or processes. Sig-
nals are either given by number or by names (as given
in signal(5) stripped of the prefix ``SIG'' with the



 - 165 - 

exception that SIGCHD is named CHLD). If the signal
being sent is TERM (terminate) or HUP (hangup), then
the job or process will be sent a CONT (continue) sig-
nal if it is stopped. The argument job can be the pro-
cess id of a process that is not a member of one of the
active jobs. See Jobs for a description of the format
of job. In the second form, kill -l, the signal
numbers and names are listed.

let arg...
Each arg is a separate arithmetic expression to be
evaluated. See the Arithmetic Evaluation section
above, for a description of arithmetic expression
evaluation.

The exit status is 0 if the value of the last expres-
sion is non-zero, and 1 otherwise.

login argument ...
Equivalent to `exec login argument....' See login(1)
for usage and description.

* newgrp [ arg ... ]
Equivalent to exec /bin/newgrp arg ....

print [ -Rnprsu[n ] ] [ arg ... ]
The shell output mechanism. With no flags or with flag
- or --, the arguments are printed on standard output
as described by echo(1). The exit status is 0, unless
the output file is not open for writing.

-n Suppress NEWLINE from being added to the out-
put.

-R | -r Raw mode. Ignore the escape conventions of
echo. The -R option will print all subse-
quent arguments and options other than -n.

-p Write the arguments to the pipe of the pro-
cess spawned with |& instead of standard out-
put.

-s Write the arguments to the history file
instead of standard output.

-u [ n ] Specify a one digit file descriptor unit
number n on which the output will be placed.
The default is 1.



 - 166 - 

pwd Equivalent to print -r - $PWD.

mechanism. One line is read and
read [ -prsu[ n ] ] [ name?prompt ] [ name ... ] The shell

input
is broken up into fields using the characters in IFS as
separators. The escape character, (\), is used to
remove any special meaning for the next character and
for line continuation. In raw mode, -r, the \ charac-
ter is not treated specially. The first field is
assigned to the first name, the second field to the
second name, etc., with leftover fields assigned to the
last name. The -p option causes the input line to be
taken from the input pipe of a process spawned by the
shell using |&. If the -s flag is present, the input
will be saved as a command in the history file. The
flag -u can be used to specify a one digit file
descriptor unit n to read from. The file descriptor
can be opened with the exec special command. The
default value of n is 0. If name is omitted then REPLY
is used as the default name. The exit status is 0
unless the input file is not open for reading or an EOF
is encountered. An EOF with the -p option causes
cleanup for this process so that another can be
spawned. If the first argument contains a ?, the
remainder of this word is used as a prompt on standard
error when the shell is interactive. The exit status
is 0 unless an EOF is encountered.

** readonly [ name[=value] ] ...
The given names are marked readonly and these names
cannot be changed by subsequent assignment.

* return [ n ]
Causes a shell function or '.' script to return to the
invoking script with the return status specified by n.
The value will be the least significant 8 bits of the
specified status. If n is omitted then the return
status is that of the last command executed. If return
is invoked while not in a function or a '.' script,
then it is the same as an exit.

set [ +-abCefhkmnopstuvx ] [ +-o option ]...
[ +-A name ] [ arg ... ]

The flags for this command have meaning as follows:

-A Array assignment. Unset the variable name and



 - 167 - 

assign values sequentially from the list arg. If
+A is used, the variable name is not unset first.

-a All subsequent variables that are defined are
automatically exported.

-b Causes the shell to notify the user asynchronously
of background job completions. The following mes-
sage will be written to standard error:

"[%d]%c %s%s\n", <job-number>, <current>,
<status>, <job-name>

where the fields are as follows:

<current> The character + identifies the job
that would be used as a default
for the fg or bg utilities; this
job can also be specified using
the job_id %+ or %%. The charac-
ter - identifies the job that
would become the default if the
current default job were to exit;
this job can also be specified
using the job_id %-. For other
jobs, this field is a space char-
acter. At most one job can be
identified with + and at most one
job can be identified with -. If
there is any suspended job, then
the current job will be a
suspended job. If there are at
least two suspended jobs, then the
previous job will also be a
suspended job.

<job-number> A number that can be used to iden-
tify the process group to the
wait, fg, bg, and kill utilities.
Using these utilities, the job can
be identified by prefixing the job
number with %.

<status> Unspecified.

<job-name> Unspecified.
When the shell notifies the user a job has been



 - 168 - 

completed, it may remove the job's process ID from
the list of those known in the current shell exe-
cution environment. Asynchronous notification
will not be enabled by default.

-C Prevent existing files from being overwritten by
the shell's > redirection operator; the >|
redirection operator will override this noclobber
option for an individual file.

-e If a command has a non-zero exit status, execute
the ERR trap, if set, and exit. This mode is dis-
abled while reading profiles.

-f Disables file name generation.

-h Each command becomes a tracked alias when first
encountered.

-k All variable assignment arguments are placed in
the environment for a command, not just those that
precede the command name.

-m Background jobs will run in a separate process
group and a line will print upon completion. The
exit status of background jobs is reported in a
completion message. On systems with job control,
this flag is turned on automatically for interac-
tive shells.

-n Read commands and check them for syntax errors,
but do not execute them. Ignored for interactive
shells.

-o The following argument can be one of the following
option names:
allexport Same as -a.
errexit Same as -e.
bgnice All background jobs are run at a lower

priority. This is the default mode.
emacs Puts you in an emacs style in-line

editor for command entry.
gmacs Puts you in a gmacs style in-line edi-

tor for command entry.
ignoreeof The shell will not exit on EOF. The

command exit must be used.
keyword Same as -k.



 - 169 - 

markdirs All directory names resulting from
file name generation have a trailing /
appended.

monitor Same as -m.
noclobber Prevents redirection > from truncating

existing files. Require >| to truncate
a file when turned on. Equivalent to
-C.

noexec Same as -n.
noglob Same as -f.
nolog Do not save function definitions in

history file.
notify Equivalent to -b.
nounset Same as -u.
privileged Same as -p.
verbose Same as -v.
trackall Same as -h.
vi Puts you in insert mode of a vi style

in-line editor until you hit escape
character 033. This puts you in con-
trol mode. A return sends the line.

viraw Each character is processed as it is
typed in vi mode.

xtrace Same as -x.

If no option name is supplied then the current
option settings are printed.

-p Disables processing of the $HOME/.profile file and
uses the file /etc/suid_profile instead of the ENV
file. This mode is on whenever the effective uid
is not equal to the real uid, or when the effec-
tive gid is not equal to the real gid. Turning
this off causes the effective uid and gid to be
set to the real uid and gid.

-s Sort the positional parameters lexicographically.

-t Exit after reading and executing one command.

-u Treat unset parameters as an error when substitut-
ing.

-v Print shell input lines as they are read.

-x Print commands and their arguments as they are
executed.



 - 170 - 

- Turns off -x and -v flags and stops examining
arguments for flags.

-- Do not change any of the flags; useful in setting
$1 to a value beginning with -. If no arguments
follow this flag then the positional parameters
are unset.

Using + rather than - causes these flags to be turned
off. These flags can also be used upon invocation of
the shell. The current set of flags may be found in
$-. Unless -A is specified, the remaining arguments
are positional parameters and are assigned, in order,
to $1 $2 .... If no arguments are given then the names
and values of all variables are printed on the standard
output.

* shift [ n ]
The positional parameters from $n+1 $n+1 ... are
renamed $1 ..., default n is 1. The parameter n can be
any arithmetic expression that evaluates to a non-
negative number less than or equal to $#.

stop %jobid ...
stop pid ...

stop stops the execution of a background job(s) by
using its jobid, or of any process by using its pid.
(see ps(1)).

suspend
Stops the execution of the current shell (but not if it
is the login shell).

test expression
Evaluate conditional expressions. See Conditional
Expressions section above and test(1) for usage and
description.

* times
Print the accumulated user and system times for the
shell and for processes run from the shell.

* trap [ arg sig ... ]
arg is a command to be read and executed when the shell
receives signal(s) sig. arg is scanned once when the
trap is set and once when the trap is taken. sig can be
specified as a signal number or signal name. trap com-



 - 171 - 

mands are executed in order of signal number. Any
attempt to set a trap on a signal number that was
ignored on entry to the current shell is ineffective.

If arg is -, the shell will reset each sig to the
default value. If arg is null (''), the shell will
ignore each specified sig if it arises. Otherwise,
arg will be read and executed by the shell when one
of the corresponding sigs arises. The action of the
trap will override a previous action (either default
action or one explicitly set). The value of $? after
the trap action completes will be the value it had
before the trap was invoked.
sig can be EXIT, 0 (equivalent to EXIT) or a signal
specified using a symbolic name, without the SIG pre-
fix, for example, HUP, INT, QUIT, TERM. If sig is 0
or EXIT and the trap statement is executed inside the
body of a function, then the command arg is executed
after the function completes. If sig is 0 or EXIT for
a trap set outside any function then the command arg
is executed on exit from the shell. If sig is ERR
then arg will be executed whenever a command has a
non-zero exit status. If sig is DEBUG then arg will
be executed after each command.

The environment in which the shell executes a trap on
EXIT will be identical to the environment immediately
after the last command executed before the trap on
EXIT was taken.

Each time the trap is invoked, arg will be processed
in a manner equivalent to:

eval "$arg"

Signals that were ignored on entry to a non-
interactive shell cannot be trapped or reset,
although no error need be reported when attempting to
do so. An interactive shell may reset or catch sig-
nals ignored on entry. Traps will remain in place
for a given shell until explicitly changed with
another trap command.

When a subshell is entered, traps are set to the
default args. This does not imply that the trap com-
mand cannot be used within the subshell to set new
traps.



 - 172 - 

The trap command with no arguments will write to
standard output a list of commands associated with
each sig. The format is:

trap -- %s %s ... <arg>, <sig> ...

The shell will format the output, including the
proper use of quoting, so that it is suitable for
reinput to the shell as commands that achieve the
same trapping results. For example:

save_traps=$(trap)
...
eval "$save_traps"

If the trap name or number is invalid, a non-zero
exit status will be returned; otherwise, 0 will be
returned. For both interactive and non-interactive
shells, invalid signal names or numbers will not be
considered a syntax error and will not cause the
shell to abort.

Traps are not processed while a job is waiting for a
foreground process. Thus, a trap on CHLD won't be
executed until the foreground job terminates.

type name ...
For each name, indicate how it would be interpreted if
used as a command name.

** typeset [ +HLRZfilrtux[n] ] [ name[=value ] ] ...
Sets attributes and values for shell variables and
functions. When typeset is invoked inside a function,
a new instance of the variables name is created. The
variables value and type are restored when the function
completes. The following list of attributes may be
specified:
-H This flag provides UNIX to host-name file mapping

on non-UNIX machines.
-L Left justify and remove leading blanks from value.

If n is non-zero it defines the width of the
field; otherwise, it is determined by the width of
the value of first assignment. When the variable
is assigned to, it is filled on the right with
blanks or truncated, if necessary, to fit into the
field. Leading zeros are removed if the -Z flag
is also set. The -R flag is turned off.



 - 173 - 

-R Right justify and fill with leading blanks. If n
is non-zero it defines the width of the field,
otherwise it is determined by the width of the
value of first assignment. The field is left
filled with blanks or truncated from the end if
the variable is reassigned. The -L flag is turned
off.

-Z Right justify and fill with leading zeros if the
first non-blank character is a digit and the -L
flag has not been set. If n is non-zero it
defines the width of the field; otherwise, it is
determined by the width of the value of first
assignment.

-f The names refer to function names rather than
variable names. No assignments can be made and
the only other valid flags are -t, -u and -x. The
flag -t turns on execution tracing for this func-
tion. The flag -u causes this function to be
marked undefined. The FPATH variable will be
searched to find the function definition when the
function is referenced. The flag -x allows the
function definition to remain in effect across
shell procedures invoked by name.

-i Parameter is an integer. This makes arithmetic
faster. If n is non-zero it defines the output
arithmetic base; otherwise, the first assignment
determines the output base.

-l All upper-case characters are converted to lower-
case. The upper-case flag, -u is turned off.

-r The given names are marked readonly and these
names cannot be changed by subsequent assignment.

-t Tags the variables. Tags are user definable and
have no special meaning to the shell.

-u All lower-case characters are converted to upper-
case characters. The lower-case flag, -l is
turned off.

-x The given names are marked for automatic export to
the environment of subsequently-executed commands.

The -i attribute can not be specified along with -R,
-L, -Z, or -f.

Using + rather than - causes these flags to be turned
off. If no name arguments are given but flags are
specified, a list of names (and optionally the values)
of the variables which have these flags set is printed.
(Using + rather than - keeps the values from being



 - 174 - 

printed.) If no names and flags are given, the names
and attributes of all variables are printed.

ulimit [ -HSacdfnstv ] [ limit ]
Set or display a resource limit. The available
resources limits are listed below. Many systems do not
contain one or more of these limits. The limit for a
specified resource is set when limit is specified. The
value of limit can be a number in the unit specified
below with each resource, or the value unlimited. The
H and S flags specify whether the hard limit or the
soft limit for the given resource is set. A hard limit
cannot be increased once it is set. A soft limit can
be increased up to the value of the hard limit. If
neither the H or S options is specified, the limit
applies to both. The current resource limit is printed
when limit is omitted. In this case the soft limit is
printed unless H is specified. When more that one
resource is specified, then the limit name and unit is
printed before the value.
-a Lists all of the current resource limits.
-c The number of 512-byte blocks on the size of core

dumps.
-d The number of K-bytes on the size of the data

area.
-f The number of 512-byte blocks on files written by

child processes (files of any size may be read).
-n The number of file descriptors plus 1.
-s The number of K-bytes on the size of the stack

area.
-t The number of seconds to be used by each process.
-v The number of K-bytes for virtual memory.

If no option is given, -f is assumed.

umask [-S] [ mask ]
The user file-creation mask is set to mask (see
umask(2)). mask can either be an octal number or a
symbolic value as described in chmod(1). If a symbolic
value is given, the new umask value is the complement
of the result of applying mask to the complement of the
previous umask value. If mask is omitted, the current
value of the mask is printed. The -S flag produces
symbolic output.

unalias name...
The aliases given by the list of names are removed from



 - 175 - 

the alias list.

unset [ -f ] name ...
The variables given by the list of names are unas-
signed, that is, their values and attributes are
erased. readonly variables cannot be unset. If the
-f, flag is set, then the names refer to function
names. Unsetting ERRNO, LINENO, MAILCHECK, OPTARG,
OPTIND, RANDOM, SECONDS, TMOUT, and _ removes their
special meaning even if they are subsequently assigned
to.

* wait [ job ]
Wait for the specified job and report its termination
status. If job is not given then all currently active
child processes are waited for. The exit status from
this command is that of the process waited for. See
Jobs for a description of the format of job.

whence [ -pv ] name ...
For each name, indicate how it would be interpreted if
used as a command name.

The -v flag produces a more verbose report.

The -p flag does a path search for name even if name is
an alias, a function, or a reserved word.

Invocation
If the shell is invoked by exec(2), and the first character
of argument zero ($0) is -, then the shell is assumed to be
a login shell and commands are read from /etc/profile and
then from either .profile in the current directory or
$HOME/.profile, if either file exists. Next, commands are
read from the file named by performing parameter substitu-
tion on the value of the environment variable ENV if the
file exists. If the -s flag is not present and arg is, then
a path search is performed on the first arg to determine the
name of the script to execute. The script arg must have
read permission and any setuid and setgid settings will be
ignored. If the script is not found on the path, arg is
processed as if it named a builtin command or function.
Commands are then read as described below; the following
flags are interpreted by the shell when it is invoked:

-c string If the -c flag is present then commands are read
from string.



 - 176 - 

-s If the -s flag is present or if no arguments
remain then commands are read from the standard
input. Shell output, except for the output of the
Special Commands listed above, is written to file
descriptor 2.

-i If the -i flag is present or if the shell input
and output are attached to a terminal (as told by
ioctl(2)) then this shell is interactive. In this
case TERM is ignored (so that kill 0 does not kill
an interactive shell) and INTR is caught and
ignored (so that wait is interruptible). In all
cases, QUIT is ignored by the shell.

-r If the -r flag is present the shell is a res-
tricted shell.

The remaining flags and arguments are described under the
set command above.

rksh Only
rksh is used to set up login names and execution environ-
ments whose capabilities are more controlled than those of
the standard shell. The actions of rksh are identical to
those of ksh, except that the following are disallowed:

+ changing directory (see cd(1))
+ setting the value of SHELL, ENV, or PATH
+ specifying path or command names containing /
+ redirecting output (>, >|, <>, and >>)
+ changing group (see newgrp(1)).

The restrictions above are enforced after .profile and the
ENV files are interpreted.

When a command to be executed is found to be a shell pro-
cedure, rksh invokes ksh to execute it. Thus, it is possi-
ble to provide to the end-user shell procedures that have
access to the full power of the standard shell, while impos-
ing a limited menu of commands; this scheme assumes that the
end-user does not have write and execute permissions in the
same directory.

The net effect of these rules is that the writer of the
.profile has complete control over user actions, by perform-
ing guaranteed setup actions and leaving the user in an
appropriate directory (probably not the login directory).

The system administrator often sets up a directory of com-
mands (that is, /usr/rbin) that can be safely invoked by



 - 177 - 

rksh.

ERRORS
Errors detected by the shell, such as syntax errors, cause
the shell to return a non-zero exit status. Otherwise, the
shell returns the exit status of the last command executed
(see also the exit command above). If the shell is being
used non-interactively then execution of the shell file is
abandoned. Run time errors detected by the shell are
reported by printing the command or function name and the
error condition. If the line number that the error occurred
on is greater than one, then the line number is also printed
in square brackets ([]) after the command or function name.

For a non-interactive shell, an error condition encountered
by a special built-in or other type of utility will cause
the shell to write a diagnostic message to standard error
and exit as shown in the following table:

________________________________________________________________
Error Special Built-in Other

Utilities

________________________________________________________________
Shell language syntax error will exit will exit
Utility syntax error

(option or operand error) will exit will not
exit

Redirection error will exit will not
exit

Variable assignment error will exit will not
exit

Expansion error will exit will exit
Command not found n/a may exit
Dot script not found will exit n/a

An expansion error is one that occurs when the shell expan-
sions are carried out (for example, ${x!y}, because ! is not
a valid operator); an implementation may treat these as syn-
tax errors if it is able to detect them during tokenization,
rather than during expansion.

If any of the errors shown as "will (may) exit" occur in a
subshell, the subshell will (may) exit with a non-zero
status, but the script containing the subshell will not exit
because of the error.



 - 178 - 

In all of the cases shown in the table, an interactive shell
will write a diagnostic message to standard error without
exiting.

USAGE 
See largefile(5) for the description of the behavior of ksh
and rksh when encountering files greater than or equal to 2
Gbyte (2**31 bytes).

EXIT STATUS
Each command has an exit status that can influence the
behavior of other shell commands. The exit status of com-
mands that are not utilities is documented in this section.
The exit status of the standard utilities is documented in
their respective sections.

If a command is not found, the exit status will be 127. If
the command name is found, but it is not an executable util-
ity, the exit status will be 126. Applications that invoke
utilities without using the shell should use these exit
status values to report similar errors.

If a command fails during word expansion or redirection, its
exit status will be greater than zero.

When reporting the exit status with the special parameter ?,
the shell will report the full eight bits of exit status
available. The exit status of a command that terminated
because it received a signal will be reported as greater
than 128.

FILES
/etc/profile
/etc/suid_profile
$HOME/.profile
/tmp/sh*
/dev/null

ATTRIBUTES 
See attributes(5) for descriptions of the following attri-
butes:

/usr/bin/ksh
/usr/bin/rksh

__________________________________
| ATTRIBUTE TYPE| ATTRIBUTE VALUE|



 - 179 - 

|_______________|_________________|
| Availability | SUNWcsu |
| CSI | Enabled |
|_______________|_________________|

/usr/xpg4/bin/ksh
__________________________________
| ATTRIBUTE TYPE| ATTRIBUTE VALUE|
|_______________|_________________|
| Availability | SUNWxcu4 |
| CSI | Enabled |
|_______________|_________________|

SEE ALSO 
cat(1), cd(1), chmod(1), cut(1), echo(1), env(1),
getoptcvt(1), jobs(1), login(1), newgrp(1), paste(1), ps(1),
shell_builtins(1), stty(1), test(1), vi(1), dup(2), exec(2),
fork(2), ioctl(2), lseek(2), pipe(2), ulimit(2), umask(2),
wait(2), rand(3C), signal(3C), a.out(4), profile(4), attri-
butes(5), environ(5), largefile(5), signal(5), xpg4(5)

Morris I. Bolsky and David G. Korn, The KornShell Command
and Programming Language, Prentice Hall, 1989.

WARNINGS
The use of setuid shell scripts is strongly discouraged.

NOTES 
If a command which is a tracked alias is executed, and then
a command with the same name is installed in a directory in
the search path before the directory where the original com-
mand was found, the shell will continue to exec the original
command. Use the -t option of the alias command to correct
this situation.

Some very old shell scripts contain a ^ as a synonym for the
pipe character |.

Using the fc built-in command within a compound command will
cause the whole command to disappear from the history file.

The built-in command . file reads the whole file before any
commands are executed. Therefore, alias and unalias com-
mands in the file will not apply to any functions defined in
the file.



 - 180 - 

When the shell executes a shell script that attempts to exe-
cute a non-existent command interpreter, the shell returns
an erroneous diagnostic message that the shell script file
does not exist.



 - 181 - 

ln 
ln - make hard or symbolic links to files

SYNOPSIS 
/usr/bin/ln [-fns] source_file [target]
/usr/bin/ln [-fns] source_file... target

/usr/xpg4/bin/ln [-fs] source_file [target]
/usr/xpg/bin/ln [-fs] source_file... target

DESCRIPTION 
In the first synopsis form, the ln utility creates a new
directory entry (link) for the file specified by
source_file, at the destination path specified by target.
If target is not specified, the link is made in the current
directory. This first synopsis form is assumed when the
final operand does not name an existing directory; if more
than two operands are specified and the final is not an
existing directory, an error will result.

In the second synopsis form, the ln utility creates a new
directory entry for each file specified by a source_file
operand, at a destination path in the existing directory
named by target.

The ln utility may be used to create both hard links and
symbolic links. A hard link is a pointer to a file and is
indistinguishable from the original directory entry. Any
changes to a file are effective independent of the name used
to reference the file. Hard links may not span file systems
and may not refer to directories.

ln by default creates hard links. source_file is linked to
target. If target is a directory, another file named
source_file is created in target and linked to the original
source_file.

/usr/bin/ln
If target is a file, its contents are overwritten. If
/usr/bin/ln determines that the mode of target forbids writ-
ing, it will print the mode (see chmod(1)), ask for a
response, and read the standard input for one line. If the
response is affirmative, the link occurs, if permissible;



 - 182 - 

otherwise, the command exits.

/usr/xpg4/bin/ln
If target is a file and the -f option is not specified,
/usr/xpg4/bin/ln will write a diagnostic message to standard
error, do nothing more with the current source_file, and go
on to any remaining source_files.
A symbolic link is an indirect pointer to a file; its direc-
tory entry contains the name of the file to which it is
linked. Symbolic links may span file systems and may refer
to directories.

File permissions for target may be different from those
displayed with a -l listing of the ls(1) command. To
display the permissions of target use ls -lL. See stat(2)
for more information.

OPTIONS 
The following options are supported for both /usr/bin/ln and
/usr/xpg4/bin/ln:

-f Link files without questioning the user, even if
the mode of target forbids writing. This is the
default if the standard input is not a terminal.

-s Create a symbolic link.

If the -s option is used with two arguments, tar-
get may be an existing directory or a non-existent
file. If target already exists and is not a
directory, an error is returned. source_file may
be any path name and need not exist. If it
exists, it may be a file or directory and may
reside on a different file system from target. If
target is an existing directory, a file is created
in directory target whose name is source_file or
the last component of source_file. This file is a
symbolic link that references source_file. If
target
does not exist, a file with name target is created
and it is a symbolic link that references
source_file.

If the -s option is used with more than two argu-
ments, target must be an existing directory or an
error will be returned. For each source_file, a



 - 183 - 

link is created in target whose name is the last
component of source_file; each new source_file is
a symbolic link to the original source_file. The
files and target may reside on different file sys-
tems.

/usr/bin/ln
The following options are supported for /usr/bin/ln only:

-n If the link is an existing file, do not overwrite
the contents of the file. The -f option overrides
this option. This is the default behavior for
/usr/xpg4/bin/ln, and is silently ignored.

OPERANDS
The following operands are supported:

source_file A path name of a file to be linked. This can
be either a regular or special file. If the
-s option is specified, source_file can also
be a directory.

target The path name of the new directory entry to
be created, or of an existing directory in
which the new directory entries are to be
created.

USAGE 
See largefile(5) for the description of the behavior of ln
when encountering files greater than or equal to 2 Gbyte
(2**31 bytes).

ENVIRONMENT 
See environ(5) for descriptions of the following environment
variables that affect the execution of ln: LC_CTYPE,
LC_MESSAGES, and NLSPATH.

EXIT STATUS
The following exit values are returned:

0 All the specified files were linked successfully

>0 An error occurred.



 - 184 - 

ATTRIBUTES 
See attributes(5) for descriptions of the following attri-
butes:

/usr/bin/ln
__________________________________
| ATTRIBUTE TYPE| ATTRIBUTE VALUE|
|_______________|_________________|
| Availability | SUNWcsu |
| CSI | Enabled |
|_______________|_________________|

/usr/xpg4/bin/ln
__________________________________
| ATTRIBUTE TYPE| ATTRIBUTE VALUE|
|_______________|_________________|
| Availability | SUNWxcu4 |
| CSI | Enabled |
|_______________|_________________|

SEE ALSO 
chmod(1), ls(1), stat(2), attributes(5), environ(5), large-
file(5), xpg4(5)

NOTES 
A symbolic link to a directory behaves differently than you
might expect in certain cases. While an ls(1) on such a
link displays the files in the pointed-to directory,
an `ls -l' displays information about the link itself:

example% ln -s dir link
example% ls link
file1 file2 file3 file4
example% ls -l link
lrwxrwxrwx 1 user 7 Jan 11 23:27 link -> dir

When you cd(1) to a directory through a symbolic link, you
wind up in the pointed-to location within the file system.
This means that the parent of the new working directory is
not the parent of the symbolic link, but rather, the parent
of the pointed-to directory. For instance, in the following
case the final working directory is /usr and not
/home/user/linktest.

example% pwd
/home/user/linktest
example% ln -s /usr/tmp symlink
example% cd symlink
example% cd ..



 - 185 - 

example% pwd
/usr

C shell user's can avoid any resulting navigation problems
by using the pushd and popd built-in commands instead of cd.



 - 186 - 

ls 
ls - list contents of directory

SYNOPSIS 
/usr/bin/ls [ -aAbcCdfFgilLmnopqrRstux1 ] [ file... ]
/usr/xpg4/bin/ls [ -aAbcCdfFgilLmnopqrRstux1 ] [ file... ]

DESCRIPTION 
For each file that is a directory, ls lists the contents of
the directory; for each file that is an ordinary file, ls
repeats its name and any other information requested. The
output is sorted alphabetically by default. When no argu-
ment is given, the current directory is listed. When
several arguments are given, the arguments are first sorted
appropriately, but file arguments appear before directories
and their contents.

There are three major listing formats. The default format
for output directed to a terminal is multi-column with
entries sorted down the columns. The -1 option allows sin-
gle column output and -m enables stream output format. In
order to determine output formats for the -C, -x, and -m
options, ls uses an environment variable, COLUMNS, to deter-
mine the number of character positions available on one out-
put line. If this variable is not set, the terminfo(4)
database is used to determine the number of columns, based
on the environment variable TERM. If this information cannot
be obtained, 80 columns are assumed.

The mode printed under the -l option consists of ten charac-
ters. The first character may be one of the following:

d the entry is a directory;
D the entry is a door;
l the entry is a symbolic link;
b the entry is a block special file;
c the entry is a character special file;
p the entry is a fifo (or "named pipe") special file;
s the entry is an AF_UNIX address family socket;
- the entry is an ordinary file;

The next 9 characters are interpreted as three sets of three
bits each. The first set refers to the owner's permissions;



 - 187 - 

the next to permissions of others in the user-group of the
file; and the last to all others. Within each set, the
three characters indicate permission to read, to write, and
to execute the file as a program, respectively. For a
directory, ``execute'' permission is interpreted to mean
permission to search the directory for a specified file.
The character after permissions is ACL indication. A plus
sign is displayed if there is an ACL associated with the
file. Nothing is displayed if there are just permissions.
ls -l (the long list) prints its output as follows for the
POSIX locale:

-rwxrwxrwx+ 1 smith dev 10876 May 16 9:42 part2

Reading from right to left, you see that the current direc-
tory holds one file, named part2. Next, the last time that
file's contents were modified was 9:42 A.M. on May 16. The
file contains 10,876 characters, or bytes. The owner of the
file, or the user, belongs to the group dev (perhaps indi-
cating ``development''), and his or her login name is smith.
The number, in this case 1, indicates the number of links to
file part2; see cp(1). The plus sign indicates that there
is an ACL associated with the file. Finally, the dash and
letters tell you that user, group, and others have permis-
sions to read, write, and execute part2.

The execute (x) symbol here occupies the third position of
the three-character sequence. A - in the third position
would have indicated a denial of execution permissions.

The permissions are indicated as follows:

r the file is readable
w the file is writable
x the file is executable
- the indicated permission is not granted
s the set-user-ID or set-group-ID bit is on, and the

corresponding user or group execution bit is also
on

S undefined bit-state (the set-user-ID bit is on and
the user execution bit is off)

t the 1000 (octal) bit, or sticky bit, is on (see
chmod(1)), and execution is on

T the 1000 bit is turned on, and execution is off
(undefined bit-state)

/usr/bin/ls
l mandatory locking occurs during access (the set-



 - 188 - 

group-ID bit is on and the group execution bit is
off)

/usr/xpg4/bin/ls
L mandatory locking occurs during access (the set-

group-ID bit is on and the group execution bit is
off)

For user and group permissions, the third position is some-
times occupied by a character other than x or -. s also may
occupy this position, referring to the state of the set-ID
bit, whether it be the user's or the group's. The ability
to assume the same ID as the user during execution is, for
example, used during login when you begin as root but need
to assume the identity of the user you login as.
In the case of the sequence of group permissions, l may
occupy the third position. l refers to mandatory file and
record locking. This permission describes a file's ability
to allow other files to lock its reading or writing permis-
sions during access.

For others permissions, the third position may be occupied
by t or T. These refer to the state of the sticky bit and
execution permissions.

OPTIONS 
The following options are supported:

-a List all entries, including those that begin with a dot
(.), which are normally not listed.

-A List all entries, including those that begin with a dot
(.), with the exception of the working directory (.)
and the parent directory (..).

-b Force printing of non-printable characters to be in the
octal \ddd notation.

-c Use time of last modification of the i-node (file
created, mode changed, and so forth) for sorting (-t)
or printing (-l or -n).

-C Multi-column output with entries sorted down the
columns. This is the default output format.

-d If an argument is a directory, list only its name (not
its contents); often used with -l to get the status of



 - 189 - 

a directory.

-f Force each argument to be interpreted as a directory
and list the name found in each slot. This option
turns off -l, -t, -s, and -r, and turns on -a; the
order is the order in which entries appear in the
directory.

-F Mark directories with a trailing slash (/), doors with
a trailing greater-than sign (>), executable files with
a trailing asterisk (*), FIFOs with a trailing vertical
bar (|), symbolic links with a trailing at-sign (@),
and AF_UNIX address family sockets with a trailing
equals sign (=).

-g The same as -l, except that the owner is not printed.

-i For each file, print the i-node number in the first
column of the report.

-l List in long format, giving mode, ACL indication,
number of links, owner, group, size in bytes, and time
of last modification for each file (see above). If the
file is a special file, the size field instead contains
the major and minor device numbers. If the time of
last modification is greater than six months ago, it is
shown in the format `month date year' for the POSIX
locale. When the LC_TIME locale category is not set to
the POSIX locale, a different format of the time field
may be used. Files modified within six months show
`month date time'. If the file is a symbolic link, the
filename is printed followed by "->" and the path name
of the referenced file.

-L If an argument is a symbolic link, list the file or
directory the link references rather than the link
itself.

-m Stream output format; files are listed across the page,
separated by commas.

-n The same as -l, except that the owner's UID and group's
GID numbers are printed, rather than the associated
character strings.

-o The same as -l, except that the group is not printed.

-p Put a slash (/) after each filename if the file is a



 - 190 - 

directory.

-q Force printing of non-printable characters in file
names as the character question mark (?).

-r Reverse the order of sort to get reverse alphabetic or
oldest first as appropriate.

-R Recursively list subdirectories encountered.

-s Give size in blocks, including indirect blocks, for
each entry.

-t Sort by time stamp (latest first) instead of by name.
The default is the last modification time. (See -u and
-c.)

-u Use time of last access instead of last modification
for sorting (with the -t option) or printing (with the
-l option).

-x Multi-column output with entries sorted across rather
than down the page.

-1 Print one entry per line of output.

Specifying more than one of the options in the following
mutually exclusive pairs is not considered an error: -C and
-1 (one), -c and -u. The last option specified in each pair
determines the output format.

/usr/bin/ls
Specifying more than one of the options in the following
mutually exclusive pairs is not considered an error: -C and
-l (ell), -m and -l (ell), -x and -l (ell). The -l option
overrides the other option specified in each pair.

/usr/xpg4/bin/ls
Specifying more than one of the options in the following
mutually exclusive pairs is not considered an error: -C and
-l (ell), -m and -l (ell), -x and -l (ell). The last option
specified in each pair determines the output format.

OPERANDS
The following operand is supported:

file A path name of a file to be written. If the
file specified is not found, a diagnostic



 - 191 - 

message will be output on standard error.

USAGE 
See largefile(5) for the description of the behavior of ls
when encountering files greater than or equal to 2 Gbyte
(2**31 bytes).

EXAMPLES 
An example of a file's permissions is:

-rwxr--r--

This describes a file that is readable, writable, and exe-
cutable by the user and readable by the group and others.

Another example of a file's permissions is:

-rwsr-xr-x

This describes a file that is readable, writable, and exe-
cutable by the user, readable and executable by the group
and others, and allows its user-ID to be assumed, during
execution, by the user presently executing it.

Another example of a file's permissions is:

-rw-rwl---
This describes a file that is readable and writable only by
the user and the group and can be locked during access.

An example of a command line:

example% ls -a

This command prints the names of all files in the current
directory, including those that begin with a dot (.), which
normally do not print.

Another example of a command line:

example% ls -aisn

This command provides information on all files, including
those that begin with a dot (a), the i-number-the memory
address of the i-node associated with the file-printed in



 - 192 - 

the left-hand column (i); the size (in blocks) of the files,
printed in the column to the right of the i-numbers (s);
finally, the report is displayed in the numeric version of
the long list, printing the UID (instead of user name) and
GID (instead of group name) numbers associated with the
files.

When the sizes of the files in a directory are listed, a
total count of blocks, including indirect blocks, is
printed.

ENVIRONMENT 
See environ(5) for descriptions of the following environment
variables that affect the execution of ls: LC_COLLATE,
LC_CTYPE, LC_TIME, LC_MESSAGES, NLSPATH, and TZ.

COLUMNS Determine the user's preferred column posi-
tion width for writing multiple text-column
output. If this variable contains a string
representing a decimal integer, the ls util-
ity calculates how many path name text
columns to write (see -C) based on the width
provided. If COLUMNS is not set or invalid,
80 is used. The column width chosen to write
the names of files in any given directory
will be constant. File names will not be
truncated to fit into the multiple text-
column output.

EXIT STATUS
0 All information was written successfully.

>0 An error occurred.
FILES

/etc/group group IDs for ls -l and
ls -g

/etc/passwd user IDs for ls -l and ls
-o

/usr/share/lib/terminfo/?/* terminal information
database

ATTRIBUTES 
See attributes(5) for descriptions of the following attri-
butes:

/usr/bin/ls



 - 193 - 

__________________________________
| ATTRIBUTE TYPE| ATTRIBUTE VALUE|
|_______________|_________________|
| Availability | SUNWcsu |
| CSI | Enabled |
|_______________|_________________|

/usr/xpg4/bin/ls
__________________________________
| ATTRIBUTE TYPE| ATTRIBUTE VALUE|
|_______________|_________________|
| Availability | SUNWxcu4 |
| CSI | Enabled |
|_______________|_________________|

SEE ALSO 
chmod(1), cp(1), setfacl(1), terminfo(4), attributes(5),
environ(5), largefile(5), xpg4(5)

NOTES 
Unprintable characters in file names may confuse the colum-
nar output options.

The total block count will be incorrect if if there are hard
links among the files.



 - 194 - 

make 
make - maintain, update, and regenerate related programs and
files

SYNOPSIS 
/usr/ccs/bin/make [ -d ] [ -dd ] [ -D ] [ -DD ] [ -e ]

[ -i ] [ -k ] [ -n ] [ -p ] [ -P ] [ -q ] [ -r ]
[ -s ] [ -S ] [ -t ] [ -V ] [ -f makefile ] ...
[ -K statefile ] ... [ target ] [ macro=value ]

/usr/xpg4/bin/make [ -d ] [ -dd ] [ -D ] [ -DD ] [ -e ]
[ -i ] [ -k ] [ -n ] [ -p ] [ -P ] [ -q ] [ -r ]
[ -s ] [ -S ] [ -t ] [ -V ] [ -f makefile ] ...
[ target ] [ macro=value ]

DESCRIPTION 
The make utility executes a list of shell commands associ-
ated with each target, typically to create or update a file
of the same name. makefile contains entries that describe
how to bring a target up to date with respect to those on
which it depends, which are called dependencies. Since each
dependency is a target, it may have dependencies of its own.
Targets, dependencies, and sub-dependencies comprise a tree
structure that make traces when deciding whether or not to
rebuild a target.

The make utility recursively checks each target against its
dependencies, beginning with the first target entry in
makefile if no target argument is supplied on the command
line. If, after processing all of its dependencies, a tar-
get file is found either to be missing, or to be older than
any of its dependencies, make rebuilds it. Optionally with
this version of make, a target can be treated as out-of-date
when the commands used to generate it have changed since the
last time the target was built.

To build a given target, make executes the list of commands,
called a rule. This rule may be listed explicitly in the
target's makefile entry, or it may be supplied implicitly by
make.

If no target is specified on the command line, make uses the
first target defined in makefile.



 - 195 - 

If a target has no makefile entry, or if its entry has no
rule, make attempts to derive a rule by each of the follow-
ing methods, in turn, until a suitable rule is found. Each
method is described under USAGE below.

+ Pattern matching rules.

+ Implicit rules, read in from a user-supplied
makefile.

+ Standard implicit rules (also known as suffix
rules), typically read in from the file
/usr/share/lib/make/make.rules.

+ SCCS retrieval. make retrieves the most recent ver-
sion from the SCCS history file (if any). See the
description of the .SCCS_GET: special-function tar-
get for details.

+ The rule from the .DEFAULT: target entry, if there
is such an entry in the makefile.

If there is no makefile entry for a target, if no rule can
be derived for building it, and if no file by that name is
present, make issues an error message and halts.

OPTIONS 
The following options are supported:

-d Display the reasons why make chooses to
rebuild a target; make displays any and all
dependencies that are newer. In addition,
make displays options read in from the
MAKEFLAGS environment variable.

-dd Display the dependency check and processing
in vast detail.

-D Display the text of the makefiles read in.

-DD Display the text of the makefiles, make.rules
file, the state file, and all hidden-
dependency reports.

-e Environment variables override assignments



 - 196 - 

within makefiles.

-f makefile Use the description file makefile. A `-' as
the makefile argument denotes the standard
input. The contents of makefile, when
present, override the standard set of impli-
cit rules and predefined macros. When more
than one `-f makefile' argument pair
appears, make uses the concatenation of those
files, in order of appearance.

When no makefile is specified,
/usr/ccs/bin/make tries the following in
sequence, except when in POSIX mode (see the
.POSIX Special-Function Target in the usage
section below):

+ If there is a file named makefile in
the working directory, make uses that
file. If, however, there is an SCCS
history file (SCCS/s.makefile) which is
newer, make attempts to retrieve and
use the most recent version.

+ In the absence of the above file(s), if
a file named Makefile is present in the
working directory, make attempts to use
it. If there is an SCCS history file
(SCCS/s.Makefile) that is newer, make
attempts to retrieve and use the most
recent version.

When no makefile is specified,
/usr/ccs/bin/make in POSIX mode and
/usr/xpg4/bin/make try the following files in
sequence:

+ ./makefile, ./Makefile
+ s.makefile, SCCS/s.makefile
+ s.Makefile, SCCS/s.Makefile

-i Ignore error codes returned by commands.
Equivalent to the special-function target
`.IGNORE:'.

-k When a nonzero error status is returned by a
rule, or when make cannot find a rule, aban-
don work on the current target, but continue
with other dependency branches that do not
depend on it.



 - 197 - 

-K statefile Use the state file statefile. A `-' as the
statefile argument denotes the standard
input. The contents of statefile, when
present, override the standard set of impli-
cit rules and predefined macros. When more
than one `-K statefile' argument pair
appears, make uses the concatenation of those
files, in order of appearance. (see also
.KEEP_STATE
and .KEEP_STATE_FILE in the Special-
Functions Targets section).

-n No execution mode. Print commands, but do
not execute them. Even lines beginning with
an @ are printed. However, if a command line
contains a reference to the $(MAKE) macro,
that line is always executed (see the discus-
sion of MAKEFLAGS in Reading Makefiles and
the Environment). When in POSIX mode, lines
beginning with a "+" are executed.

-p Print out the complete set of macro defini-
tions and target descriptions.

-P Merely report dependencies, rather than
building them.

-q Question mode. make returns a zero or
nonzero status code depending on whether or
not the target file is up to date. When in
POSIX mode, lines beginning with a "+" are
executed.

-r Do not read in the default makefile
/usr/share/lib/make/make.rules.

-s Silent mode. Do not print command lines
before executing them. Equivalent to the
special-function target .SILENT:.

-S Undo the effect of the -k option. Stop pro-
cessing when a non-zero exit status is
returned by a command.

-t Touch the target files (bringing them up to
date) rather than performing their rules.
This can be dangerous when files are main-
tained by more than one person. When the



 - 198 - 

.KEEP_STATE: target appears in the makefile,
this option updates the state file just as if
the rules had been performed. When in POSIX
mode, lines beginning with a "+" are exe-
cuted.

-V Puts make into SysV mode. Refer to sysV-
make(1) for respective details.

OPERANDS
The following operands are supported:

target Target names, as defined in USAGE.

macro=value
Macro definition. This definition overrides any
regular definition for the specified macro within
the makefile itself, or in the environment. How-
ever, this definition can still be overridden by
conditional macro assignments.

USAGE 
Refer to make in Programming Utilities Guide for tutorial
information.

Reading Makefiles and the environment
When make first starts, it reads the MAKEFLAGS ENVIRONMENT
variable to obtain any of the following options specified
present in its value: -d, -D, -e, -i, -k, -n, -p, -q, -r,
-s, -S, or -t. Due to the implementation of POSIX.2 (see
POSIX.2(5), the MAKEFLAGS values will contain a leading `-'
character. The make utility then reads the command line for
additional options, which also take effect.

Next, make reads in a default makefile that typically con-
tains predefined macro definitions, target entries for
implicit rules, and additional rules, such as the rule for
retrieving SCCS files. If present, make uses the file
make.rules in the current directory; otherwise it reads the
file /usr/share/lib/make/make.rules, which contains the
standard definitions and rules.
Use the directive:

include /usr/share/lib/make/make.rules

in your local make.rules file to include them.



 - 199 - 

Next, make imports variables from the environment (unless
the -e option is in effect), and treats them as defined mac-
ros. Because make uses the most recent definition it
encounters, a macro definition in the makefile normally
overrides an environment variable of the same name. When -e
is in effect, however, environment variables are read in
after all makefiles have been read. In that case, the
environment variables take precedence over definitions in
the makefile.

Next, make reads any makefiles you specify with -f, or one
of makefile or Makefile as described above and then the
state file, in the local directory if it exists. If the
makefile contains a .KEEP_STATE_FILE target, then it reads
the state file that follows the target. Refer to special
target .KEEP_STATE_FILE for details.

Next, (after reading the environment if -e is in effect),
make reads in any macro definitions supplied as command line
arguments. These override macro definitions in the makefile
and the environment both, but only for the make command
itself.

make exports environment variables, using the most recently
defined value. Macro definitions supplied on the command
line are not normally exported, unless the macro is also an
environment variable.

make does not export macros defined in the makefile. If an
environment variable is set, and a macro with the same name
is defined on the command line, make exports its value as
defined on the command line. Unless -e is in effect, macro
definitions within the makefile take precedence over those
imported from the environment.

The macros MAKEFLAGS, MAKE, SHELL, HOST_ARCH, HOST_MACH, and
TARGET_MACH are special cases. See Special-Purpose Macros,
below for details.

Makefile Target Entries
A target entry has the following format:

target... [:|::] [dependency] ... [; command] ...
[command]

The first line contains the name of a target, or a space-
separated list of target names, terminated with a colon or



 - 200 - 

double colon. If a list of targets is given, this is
equivalent to having a separate entry of the same form for
each target. The colon(s) may be followed by a dependency,
or a dependency list. make checks this list before building
the target. The dependency list may be terminated with a
semicolon (;), which in turn can be followed by a single
Bourne shell command. Subsequent lines in the target entry
begin with a TAB, and contain Bourne shell commands. These
commands comprise the rule for building the target.

Shell commands may be continued across input lines by escap-
ing the NEWLINE with a backslash (\). The continuing line
must also start with a TAB.

To rebuild a target, make expands macros, strips off initial
TAB characters and either executes the command directly (if
it contains no shell metacharacters), or passes each command
line to a Bourne shell for execution.

The first line that does not begin with a TAB or '#' begins
another target or macro definition.

Special Characters
Global

# Start a comment. The comment ends at the
next NEWLINE. If the `#' follows the TAB in a
command line, that line is passed to the
shell (which also treats `#' as the start of
a comment).

include filename
If the word include appears as the first
seven letters of a line and is followed by a
SPACE or TAB, the string that follows is
taken as a filename to interpolate at that
line. include files can be nested to a depth
of no more than about 16. If filename is a
macro reference, it is expanded.

Targets and Dependencies
: Target list terminator. Words following the

colon are added to the dependency list for
the target or targets. If a target is named
in more than one colon-terminated target
entry, the dependencies for all its entries
are added to form that target's complete
dependency list.



 - 201 - 

:: Target terminator for alternate dependencies.
When used in place of a `:' the double-colon
allows a target to be checked and updated
with respect to alternate dependency lists.
When the target is out-of-date with respect
to dependencies listed in the first alter-
nate, it is built according to the rule for
that entry. When out-of-date with respect to
dependencies in another alternate, it is
built according the rule in that other entry.
Implicit rules do not apply to double-colon
targets; you must supply a rule for each
entry. If no dependencies are specified, the
rule is always performed.

target [+ target...] :
Target group. The rule in the target entry
builds all the indicated targets as a group.
It is normally performed only once per make
run, but is checked for command dependencies
every time a target in the group is encoun-
tered in the dependency scan.

% Pattern matching wild card metacharacter.
Like the `*' shell wild card, `%' matches any
string of zero or more characters in a target
name or dependency, in the target portion of
a conditional macro definition, or within a
pattern replacement macro reference. Note
that only one `%' can appear in a target,
dependency-name, or pattern-replacement macro
reference.

./pathname make ignores the leading `./' characters from
targets with names given as pathnames rela-
tive to "dot," the working directory.

Macros
= Macro definition. The word to the left of

this character is the macro name; words to
the right comprise its value. Leading and
trailing white space characters are stripped
from the value. A word break following the =
is implied.

$ Macro reference. The following character, or



 - 202 - 

the parenthesized or bracketed string, is
interpreted as a macro reference: make
expands the reference (including the $) by
replacing it with the macro's value.

( )
{ } Macro-reference name delimiters. A

parenthesized or bracketed word appended to a
$ is taken as the name of the macro being
referred to. Without the delimiters, make
recognizes only the first character as the
macro name.

$$ A reference to the dollar-sign macro, the
value of which is the character `$'. Used to
pass variable expressions beginning with $ to
the shell, to refer to environment variables
which are expanded by the shell, or to delay
processing of dynamic macros within the
dependency list of a target, until that tar-
get is actually processed.

\$ Escaped dollar-sign character. Interpreted
as a literal dollar sign within a rule.

+= When used in place of `=', appends a string
to a macro definition (must be surrounded by
white space, unlike `=').

:= Conditional macro assignment. When preceded
by a list of targets with explicit target
entries, the macro definition that follows
takes effect when processing only those tar-
gets, and their dependencies.

:sh = Define the value of a macro to be the output
of a command (see Command Substitutions,
below).

:sh In a macro reference, execute the command
stored in the macro, and replace the refer-
ence with the output of that command (see
Command Substitutions).

Rules
+ make will always execute the commands pre-

ceded by a "+", even when -n is specified.



 - 203 - 

- make ignores any nonzero error code returned
by a command line for which the first non-TAB
character is a `-'. This character is not
passed to the shell as part of the command
line. make normally terminates when a com-
mand returns nonzero status, unless the -i or
-k options, or the .IGNORE: special-function
target is in effect.

@ If the first non-TAB character is a @, make
does not print the command line before exe-
cuting it. This character is not passed to
the shell.

? Escape command-dependency checking. Command
lines starting with this character are not
subject to command dependency checking.

! Force command-dependency checking. Command-
dependency checking is applied to command
lines for which it would otherwise be
suppressed. This checking is normally
suppressed for lines that contain references
to the `?' dynamic macro (for example,
`$?').

When any combination of `+', `-', `@', `?',
or `!' appear as the first characters after
the TAB, all that are present apply. None
are passed to the shell.

Special-Function Targets
When incorporated in a makefile, the following target names
perform special-functions:

.DEFAULT: If it has an entry in the makefile, the rule
for this target is used to process a target
when there is no other entry for it, no rule
for building it, and no SCCS history file
from which to retrieve a current version.
make ignores any dependencies for this tar-
get.

.DONE: If defined in the makefile, make processes
this target and its dependencies after all
other targets are built. This target is also
performed when make halts with an error,



 - 204 - 

unless the .FAILED target is defined.
.FAILED: This target, along with its dependencies, is

performed instead of .DONE when defined in
the makefile and make halts with an error.

.GET_POSIX: This target contains the rule for retrieving
the current version of an SCCS file from its
history file in the current working direc-
tory. make uses this rule when it is running
in POSIX mode.

.IGNORE: Ignore errors. When this target appears in
the makefile, make ignores non-zero error
codes returned from commands. When used in
POSIX mode, .IGNORE could be followed by tar-
get names only, for which the errors will be
ignored.

.INIT: If defined in the makefile, this target and
its dependencies are built before any other
targets are processed.

.KEEP_STATE: If this target is in effect, make updates the
state file, .make.state, in the current
directory. This target also activates com-
mand dependencies, and hidden dependency
checks. If either the .KEEP_STATE: target
appears in the makefile, or the environment
variable KEEP_STATE is set ("setenv
KEEP_STATE"), make will rebuild everything in
order to collect dependency information, even
if all the targets were up to date due to
previous make runs. See also the environment
section. This target has no effect if used
in POSIX mode.

.KEEP_STATE_FILE:
This target has no effect if used in POSIX
mode. This target implies .KEEP_STATE. If
the target is followed by a filename, make
uses it as the state file. If the target is
followed by a directory name, make looks for
a .make.state file in that directory. If the
target is not followed by any name, make
looks for .make.state file in the current
working directory.



 - 205 - 

.MAKE_VERSION: A target-entry of the form:

.MAKE_VERSION: VERSION-number

enables version checking. If the version of
make differs from the version indicated, make
issues a warning message.

.NO_PARALLEL: Currently, this target has no effect, it is,
however, reserved for future use.

.PARALLEL: Currently of no effect, but reserved for
future use.

.POSIX: This target enables POSIX mode.

.PRECIOUS: List of files not to delete. make does not
remove any of the files listed as dependen-
cies for this target when interrupted. make
normally removes the current target when it
receives an interrupt. When used in POSIX
mode, if the target is not followed by a list
of files, all the file are assumed precious.

.SCCS_GET: This target contains the rule for retrieving
the current version of an SCCS file from its
history file. To suppress automatic
retrieval, add an entry for this target with
an empty rule to your makefile.

.SCCS_GET_POSIX:
This target contains the rule for retrieving
the current version of an SCCS file from its
history file. make uses this rule when it is
running in POSIX mode.

.SILENT: Run silently. When this target appears in
the makefile, make does not echo commands
before executing them. When used in POSIX
mode, it could be followed by target names,
and only those will be executed silently.

.SUFFIXES: The suffixes list for selecting implicit
rules (see The Suffixes List).

.WAIT: Currently of no effect, but reserved for
future use.



 - 206 - 

Clearing Special Targets
In this version of make, you can clear the definition of the
following special targets by supplying entries for them with
no dependencies and no rule:

.DEFAULT, .SCCS_GET, and .SUFFIXES

Command Dependencies
When the .KEEP_STATE: target is effective, make checks the
command for building a target against the state file. If
the command has changed since the last make run, make
rebuilds the target.

Hidden Dependencies
When the .KEEP_STATE: target is effective, make reads
reports from cpp(1) and other compilation processors for any
"hidden" files, such as #include files. If the target is
out of date with respect to any of these files, make
rebuilds it.

Macros
Entries of the form

macro=value

define macros. macro is the name of the macro, and value,
which consists of all characters up to a comment character
or unescaped NEWLINE, is the value. make strips both lead-
ing and trailing white space in accepting the value.

Subsequent references to the macro, of the forms: $(name)
or ${name} are replaced by value. The parentheses or brack-
ets can be omitted in a reference to a macro with a single-
character name.

Macro references can contain references to other macros, in
which case nested references are expanded first.

Suffix Replacement Macro References
Substitutions within macros can be made as follows:

$(name:string1=string2)

where string1 is either a suffix, or a word to be replaced
in the macro definition, and string2 is the replacement suf-
fix or word. Words in a macro value are separated by SPACE,



 - 207 - 

TAB, and escaped NEWLINE characters.

Pattern Replacement Macro References
Pattern matching replacements can also be applied to macros,
with a reference of the form:

$(name: op%os= np%ns)

where op is the existing (old) prefix and os is the existing
(old) suffix, np and ns are the new prefix and new suffix,
respectively, and the pattern matched by % (a string of zero
or more characters), is carried forward from the value being
replaced. For example:

PROGRAM=fabricate
DEBUG= $(PROGRAM:%=tmp/%-g)

sets the value of DEBUG to tmp/fabricate-g.

Note that pattern replacement macro references cannot be
used in the dependency list of a pattern matching rule; the
% characters are not evaluated independently. Also, any
number of % metacharacters can appear after the equal-sign.

Appending to a Macro
Words can be appended to macro values as follows:

macro += word ...

Special-Purpose Macros
When the MAKEFLAGS variable is present in the environment,
make takes options from it, in combination with options
entered on the command line. make retains this combined
value as the MAKEFLAGS macro, and exports it automatically
to each command or shell it invokes.

Note that flags passed by way of MAKEFLAGS are only
displayed when the -d, or -dd options are in effect.

The MAKE macro is another special case. It has the value
make by default, and temporarily overrides the -n option for
any line in which it is referred to. This allows nested
invocations of make written as:

$(MAKE) ...

to run recursively, with the -n flag in effect for all com-
mands but make. This lets you use `make -n' to test an



 - 208 - 

entire hierarchy of makefiles.

For compatibility with the 4.2 BSD make, the MFLAGS macro is
set from the MAKEFLAGS variable by prepending a `-'. MFLAGS
is not exported automatically.

The SHELL macro, when set to a single-word value such as
/usr/bin/csh, indicates the name of an alternate shell to
use. The default is /bin/sh. Note that make executes com-
mands that contain no shell metacharacters itself. Built-in
commands, such as dirs in the C shell, are not recognized
unless the command line includes a metacharacter (for
instance, a semicolon). This macro is neither imported
from, nor exported to the environment, regardless of -e. To
be sure it is set properly, you must define this macro
within every makefile that requires it.
The following macros are provided for use with cross-
compilation:

HOST_ARCH The machine architecture of the host system.
By default, this is the output of the arch(1)
command prepended with `-'. Under normal
circumstances, this value should never be
altered by the user.

HOST_MACH The machine architecture of the host system.
By default, this is the output of the
mach(1), prepended with `-'. Under normal
circumstances, this value should never be
altered by the user.

TARGET_ARCH The machine architecture of the target sys-
tem. By default, the output of mach,
prepended with `-'.

Dynamic Macros
There are several dynamically maintained macros that are
useful as abbreviations within rules. They are shown here
as references; if you were to define them, make would simply
override the definition.

$* The basename of the current target, derived
as if selected for use with an implicit rule.

$< The name of a dependency file, derived as if
selected for use with an implicit rule.



 - 209 - 

$@ The name of the current target. This is the
only dynamic macro whose value is strictly
determined when used in a dependency list.
(In which case it takes the form `$$@'.)

$? The list of dependencies that are newer than
the target. Command-dependency checking is
automatically suppressed for lines that con-
tain this macro, just as if the command had
been prefixed with a `?'. See the descrip-
tion of `?', under Makefile Special Tokens,
above. You can force this check with the !
command-line prefix.

$% The name of the library member being pro-
cessed. (See Library Maintenance, below.)

To refer to the $@ dynamic macro within a dependency list,
precede the reference with an additional `$' character (as
in, `$$@'). Because make assigns $< and $* as it would for
implicit rules (according to the suffixes list and the
directory contents), they may be unreliable when used within
explicit target entries.

These macros can be modified to apply either to the filename
part, or the directory part of the strings they stand for,
by adding an upper case F or D, respectively (and enclosing
the resulting name in parentheses or braces). Thus, `$(@D)'
refers to the directory part of the string `$@'; if there is
no directory part, `.' is assigned. $(@F) refers to the
filename part.

Conditional Macro Definitions
A macro definition of the form:

target-list := macro = value

indicates that when processing any of the targets listed and
their dependencies, macro is to be set to the value sup-
plied. Note that if a conditional macro is referred to in a
dependency list, the $ must be delayed (use $$ instead).
Also, target-list may contain a % pattern, in which case the
macro will be conditionally defined for all targets encoun-
tered that match the pattern. A pattern replacement refer-
ence can be used within the value.

You can temporarily append to a macro's value with a condi-



 - 210 - 

tional definition of the form:

target-list := macro += value

Predefined Macros
make supplies the macros shown in the table that follows for
compilers and their options, host architectures, and other
commands. Unless these macros are read in as environment
variables, their values are not exported by make. If you
run make with any of these set in the environment, it is a
good idea to add commentary to the makefile to indicate what
value each is expected to take. If -r is in effect, make
does not read the default makefile (./make.rules or
/usr/share/lib/make/make.rules) in which these macro defini-
tions are supplied.

__________________________________________________________________
_________

Table of Predefined Macros

__________________________________________________________________
_________

Use Macro Default Value

__________________________________________________________________
_________

Library AR ar
Archives ARFLAGS rv

__________________________________________________________________
_________

Assembler AS as
Commands ASFLAGS

COMPILE.s $(AS) $(ASFLAGS)
COMPILE.S $(CC) $(ASFLAGS) $(CPPFLAGS)

-c

__________________________________________________________________
_________

C Compiler CC cc
Commands CFLAGS

CPPFLAGS
COMPILE.c $(CC) $(CFLAGS) $(CPPFLAGS) -

c
LINK.c $(CC) $(CFLAGS) $(CPPFLAGS)

$(LDFLAGS)



 - 211 - 

__________________________________________________________________
_________

C++ CCC CC
Compiler CCFLAGS CFLAGS
Commands CPPFLAGS

COMPILE.cc $(CCC) $(CCFLAGS) $(CPPFLAGS)
-c

LINK.cc $(CCC) $(CCFLAGS) $(CPPFLAGS)
$(LDFLAGS)

COMPILE.C $(CCC) $(CCFLAGS) $(CPPFLAGS)
-c

LINK.C $(CCC) $(CCFLAGS) $(CPPFLAGS)
$(LDFLAGS)

__________________________________________________________________
_________

FORTRAN 77 FC f77
Compiler FFLAGS
Commands COMPILE.f $(FC) $(FFLAGS) -c

LINK.f $(FC) $(FFLAGS) $(LDFLAGS)
COMPILE.F $(FC) $(FFLAGS) $(CPPFLAGS) -

c
LINK.F $(FC) $(FFLAGS) $(CPPFLAGS)

$(LDFLAGS)

__________________________________________________________________
_________

FORTRAN 90 FC f90
Compiler F90FLAGS
Commands COMPILE.f90 $(F90C) $(F90FLAGS) -c

LINK.f90 $(F90C)
COMPILE.ftn $(F90C) $(F90FLAGS)

$(CPPFLAGS) -c
LINK.ftn $(F90C) $(F90FLAGS)

$(CPPFLAGS) $(LDFLAGS)

__________________________________________________________________
_________

Link Editor LD ld
Command LDFLAGS

__________________________________________________________________
_________

lex LEX lex
Command LFLAGS

LEX.l $(LEX) $(LFLAGS) -t



 - 212 - 

__________________________________________________________________
_________

lint LINT lint
Command LINTFLAGS

LINT.c $(LINT) $(LINTFLAGS)
$(CPPFLAGS)

__________________________________________________________________
_________

Modula 2 M2C m2c
| Commands M2FLAGS

|
| | MODFLAGS |

|
| | DEFFLAGS |

|
| | COMPILE.def | $(M2C) $(M2FLAGS) $(DEFFLAGS)

|
| | COMPILE.mod | $(M2C) $(M2FLAGS) $(MODFLAGS)

|

|______________|______________|___________________________________
_________|

| Pascal | PC | pc
|

| Compiler | PFLAGS |
|

| Commands | COMPILE.p | $(PC) $(PFLAGS) $(CPPFLAGS) -
c |

| | LINK.p | $(PC) $(PFLAGS) $(CPPFLAGS)
$(LDFLAGS) |

|______________|______________|___________________________________
_________|

| Ratfor | RFLAGS |
|

| Compilation | COMPILE.r | $(FC) $(FFLAGS) $(RFLAGS) -c
|

| Commands | LINK.r | $(FC) $(FFLAGS) $(RFLAGS)
$(LDFLAGS) |

|______________|______________|___________________________________
_________|

| rm Command | RM | rm -f
|



 - 213 - 

|______________|______________|___________________________________
_________|

| sccs Command | SCCSFLAGS |
|

| | SCCSGETFLAGS| -s
|

|______________|______________|___________________________________
_________|

| yacc Command | YACC | yacc
|

| | YFLAGS |
|

| | YACC.y | $(YACC) $(YFLAGS)
|

|______________|______________|___________________________________
_________|

| Suffixes List| SUFFIXES | .o .c .c~ .cc .cc~ .y .y~ .l
.l~ |

| | | .s .s~ .sh .sh~ .S .S~ .ln .h
.h~ |

| | | ..f .f~ .F .F~ .mod .mod~
.sym |

| | | .def .def~ .p .p~ .r .r~
|

| | | .cps .cps~ .C .C~ .Y .Y~
|

| | | .L .L .f90 .f90~ .ftn .ftn~
|

|______________|______________|___________________________________
_________|

Implicit Rules
When a target has no entry in the makefile, make attempts to
determine its class (if any) and apply the rule for that
class. An implicit rule describes how to build any target
of a given class, from an associated dependency file. The
class of a target can be determined either by a pattern, or
by a suffix; the corresponding dependency file (with the
same basename) from which such a target might be built. In
addition to a predefined set of implicit rules, make allows
you to define your own, either by pattern, or by suffix.

Pattern Matching Rules



 - 214 - 

A target entry of the form:

tp%ts: dp%ds
rule

is a pattern matching rule, in which tp is a target prefix,
ts is a target suffix, dp is a dependency prefix, and ds is
a dependency suffix (any of which may be null). The `%'
stands for a basename of zero or more characters that is
matched in the target, and is used to construct the name of
a dependency. When make encounters a match in its search
for an implicit rule, it uses the rule in that target entry
to build the target from the dependency file. Pattern-
matching implicit rules typically make use of the $@ and $<
dynamic macros as placeholders for the target and dependency
names. Other, regular dependencies may occur in the depen-
dency list; however, none of the regular dependencies may
contain `%'. An entry of the form:

tp%ts: [dependency ...] dp%ds [dependency ...]
rule

is a valid pattern matching rule.

Suffix Rules
When no pattern matching rule applies, make checks the tar-
get name to see if it ends with a suffix in the known suf-
fixes list. If so, make checks for any suffix rules, as
well as a dependency file with same root and another recog-
nized suffix, from which to build it.

The target entry for a suffix rule takes the form:

DsTs:
rule

where Ts is the suffix of the target, Ds is the suffix of
the dependency file, and rule is the rule for building a
target in the class. Both Ds and Ts must appear in the suf-
fixes list. (A suffix need not begin with a `.' to be
recognized.)

A suffix rule with only one suffix describes how to build a
target having a null (or no) suffix from a dependency file
with the indicated suffix. For instance, the .c rule could
be used to build an executable program named file from a C
source file named `file.c'. If a target with a null suffix



 - 215 - 

has an explicit dependency, make omits the search for a suf-
fix rule.

__________________________________________________________________
________

Table of Standard Implicit (Suffix) Rules

__________________________________________________________________
________

Use Implicit Rule Name Command Line

__________________________________________________________________
________

Assembly .s.o $(COMPILE.s) -o $@ $<

_____________________________________________________________
Files .s.a $(COMPILE.s) -o $% $<

$(AR) $(ARFLAGS) $@ $%
$(RM) $%

_____________________________________________________________
.s~.o $(-s1GET) $(-s1GFLAGS) -p

$< > $*.s
$(-s1COMPILE.s) -o $@ $*.s

_____________________________________________________________
.S.o $(COMPILE.S) -o $@ $<

_____________________________________________________________
.S.a $(COMPILE.S) -o $% $<

$(AR) $(ARFLAGS) $@ $%
$(RM) $%

_____________________________________________________________
.S~.o $(GET) $(GFLAGS) -p $< >

$*.S
$(COMPILE.S) -o $@ $*.S

_____________________________________________________________
.S~.a $(GET) $(GFLAGS) -p $< >

$*.S
$(COMPILE.S) -o $% $*.S
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

__________________________________________________________________
________



 - 216 - 

C .c $(LINK.c) -o $@ $<
$(LDLIBS)

_____________________________________________________________
Files .c.ln $(LINT.c) $(OUTPUT_OPTION)

-i $<

_____________________________________________________________
.c.o $(COMPILE.c)

$(OUTPUT_OPTION) $<

_____________________________________________________________
.c.a $(COMPILE.c) -o $% $<

$(AR) $(ARFLAGS) $@ $%
$(RM) $%

_____________________________________________________________
..c~ $(GET) $(GFLAGS) -p $< >

$*.c
$(CC) $(CFLAGS) $(LDFLAGS)

-o $@ $*.c

_____________________________________________________________
..c~.o $(GET) $(GFLAGS) -p $< >

$*.c
$(CC) $(CFLAGS) -c $*.c

_____________________________________________________________
..c~.ln $(GET) $(GFLAGS) -p $< >

$*.c
$(LINT.c) $(OUTPUT_OPTION)

-c $*.c

_____________________________________________________________
..c~.a $(GET) $(GFLAGS) -p $< >

$*.c
$(COMPILE.c) -o $% $*.c
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

__________________________________________________________________
________

C++ .cc $(LINK.cc) -o $@ $<
$(LDLIBS)

_____________________________________________________________



 - 217 - 

Files .cc.o $(COMPILE.cc)
$(OUTPUT_OPTION) $<

_____________________________________________________________
.cc.a $(COMPILE.cc) -o $% $<

$(AR) $(ARFLAGS) $@ $%
$(RM) $%

_____________________________________________________________
.cc~ $(GET) $(GFLAGS) -p $< >

$*.cc
$(LINK.cc) -o $@ $*.cc

$(LDLIBS)

_____________________________________________________________
.cc.o $(COMPILE.cc)

$(OUTPUT_OPTION) $<

_____________________________________________________________
.cc~.o $(GET) $(GFLAGS) -p $< >

$*.cc
$(COMPILE.cc)

$(OUTPUT_OPTION) $*.cc

_____________________________________________________________
.cc.a $(COMPILE.cc) -o $% $<

$(AR) $(ARFLAGS) $@ $%
$(RM) $%

_____________________________________________________________
.cc~.a $(GET) $(GFLAGS) -p $< >

$*.cc
$(COMPILE.cc) -o $% $*.cc
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

_____________________________________________________________
.C $(LINK.C) -o $@ $<

$(LDLIBS)

_____________________________________________________________
.C~ $(GET) $(GFLAGS) -p $< >

$*.C
$(LINK.C) -o $@ $*.C

$(LDLIBS)

_____________________________________________________________



 - 218 - 

.C.o $(COMPILE.C)
$(OUTPUT_OPTION) $<

_____________________________________________________________
.C~.o $(GET) $(GFLAGS) -p $< >

$*.C
$(COMPILE.C)

$(OUTPUT_OPTION) $*.C

_____________________________________________________________
.C.a $(COMPILE.C) -o $% $<

$(AR) $(ARFLAGS) $@ $%
$(RM) $%

_____________________________________________________________
.C~.a $(GET) $(GFLAGS) -p $< >

$*.C
$(COMPILE.C) -o $% $*.C
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

__________________________________________________________________
________

FORTRAN 77 .f $(LINK.f) -o $@ $<
$(LDLIBS)

_____________________________________________________________
Files .f.o $(COMPILE.f)

$(OUTPUT_OPTION) $<

_____________________________________________________________
.f.a $(COMPILE.f) -o $% $<

$(AR) $(ARFLAGS) $@ $%
$(RM) $%

_____________________________________________________________
.f $(LINK.f) -o $@ $<

$(LDLIBS)
____________________
.f~ $(GET) $(GFLAGS) -p $< >

$*.f
$(FC) $(FFLAGS) $(LDFLAGS)

-o $@ $*.f

_____________________________________________________________
.f~.o $(GET) $(GFLAGS) -p $< >

$*.f



 - 219 - 

$(FC) $(FFLAGS) -c $*.f

_____________________________________________________________
.f~.a $(GET) $(GFLAGS) -p $< >

$*.f
$(COMPILE.f) -o $% $*.f
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

_____________________________________________________________
.F $(LINK.F) -o $@ $<

$(LDLIBS)

_____________________________________________________________
.F.o $(COMPILE.F)

$(OUTPUT_OPTION) $<

_____________________________________________________________
.F.a $(COMPILE.F) -o $% $<

$(AR) $(ARFLAGS) $@ $%
$(RM) $%

_____________________________________________________________
.F~ $(GET) $(GFLAGS) -p $< >

$*.F
$(FC) $(FFLAGS) $(LDFLAGS)

-o $@ $*.F

_____________________________________________________________
.F~.o $(GET) $(GFLAGS) -p $< >

$*.F
$(FC) $(FFLAGS) -c $*.F

_____________________________________________________________
.F~.a $(GET) $(GFLAGS) -p $< >

$*.F
$(COMPILE.F) -o $% $*.F
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

__________________________________________________________________
________

FORTRAN 90 .f90 $(LINK.f90) -o $@ $<
$(LDLIBS)

_____________________________________________________________



 - 220 - 

Files .f90~ $(GET) $(GFLAGS) -p $< >
$*.f90

$(LINK.f90) -o $@ $*.f90
$(LDLIBS)

_____________________________________________________________
.f90.o $(COMPILE.f90)

$(OUTPUT_OPTION) $<

_____________________________________________________________
.f90~.o $(GET) $(GFLAGS) -p $< >

$*.f90
$(COMPILE.f90)

$(OUTPUT_OPTION) $*.f90

_____________________________________________________________
.f90.a $(COMPILE.f90) -o $% $<

$(AR) $(ARFLAGS) $@ $%
$(RM) $%

_____________________________________________________________
.f90~.a $(GET) $(GFLAGS) -p $< >

$*.f90
$(COMPILE.f90) -o $%

$*.f90
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

_____________________________________________________________
.ftn $(LINK.ftn) -o $@ $<

$(LDLIBS)

_____________________________________________________________
.ftn~ $(GET) $(GFLAGS) -p $< >

$*.ftn
$(LINK.ftn) -o $@ $*.ftn

$(LDLIBS)

_____________________________________________________________
.ftn.o $(COMPILE.ftn)

$(OUTPUT_OPTION) $<

_____________________________________________________________
.ftn~.o $(GET) $(GFLAGS) -p $< >

$*.ftn
$(COMPILE.ftn)

$(OUTPUT_OPTION) $*.ftn



 - 221 - 

_____________________________________________________________
.ftn.a $(COMPILE.ftn) -o $% $<

$(AR) $(ARFLAGS) $@ $%
$(RM) $%

_____________________________________________________________
.ftn~.a $(GET) $(GFLAGS) -p $< >

$*.ftn
$(COMPILE.ftn) -o $%

$*.ftn
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

__________________________________________________________________
________

lex .l $(RM) $*.c
Files $(LEX.l) $< > $*.c

$(LINK.c) -o $@ $*.c
$(LDLIBS)

$(RM) $*.c

_____________________________________________________________
.l.c $(RM) $@

$(LEX.l) $< > $@

_____________________________________________________________
.l.ln $(RM) $*.c

$(LEX.l) $< > $*.c
$(LINT.c) -o $@ -i $*.c
$(RM) $*.c

_____________________________________________________________
.l.o $(RM) $*.c

$(LEX.l) $< > $*.c
$(COMPILE.c) -o $@ $*.c
$(RM) $*.c

_____________________________________________________________
.l~ $(GET) $(GFLAGS) -p $< >

$*.l
$(LEX) $(LFLAGS) $*.l
$(CC) $(CFLAGS) -c

lex.yy.c
rm -f lex.yy.c
mv lex.yy.c $@



 - 222 - 

_____________________________________________________________
.l~.c $(GET) $(GFLAGS) -p $< >

$*.l
$(LEX) $(LFLAGS) $*.l
mv lex.yy.c $@

.l~.ln $(GET) $(GFLAGS) -p $< >
$*.l

$(RM) $*.c
$(LEX.l) $*.l > $*.c
$(LINT.c) -o $@ -i $*.c
$(RM) $*.c

.l~.o $(GET) $(GFLAGS) -p $< >
$*.l

$(LEX) $(LFLAGS) $*.l
$(CC) $(CFLAGS) -c

lex.yy.c
rm -f lex.yy.c
mv lex.yy.c $@

__________________________________________________________________
________

Modula 2 .mod $(COMPILE.mod) -o $@ -e $@
$<

Files .mod.o $(COMPILE.mod) -o $@ $<

.def.sym $(COMPILE.def) -o $@ $<

.def~.sym $(GET) $(GFLAGS) -p $< >
$*.def

$(COMPILE.def) -o $@
$*.def

.mod~ $(GET) $(GFLAGS) -p $< >
$*.mod

$(COMPILE.mod) -o $@ -e $@
$*.mod

.mod~.o $(GET) $(GFLAGS) -p $< >
$*.mod

$(COMPILE.mod) -o $@
$*.mod

.mod~.a $(GET) $(GFLAGS) -p $< >
$*.mod



 - 223 - 

$(COMPILE.mod) -o $%
$*.mod

$(AR) $(ARFLAGS) $@ $%
$(RM) $%

__________________________________________________________________
________

NeWS .cps.h cps $*.cps

Files .cps~.h $(GET) $(GFLAGS) -p $< >
$*.cps

$(CPS) $(CPSFLAGS) $*.cps

__________________________________________________________________
________

Pascal .p $(LINK.p) -o $@ $<
$(LDLIBS)

Files .p.o $(COMPILE.p)
$(OUTPUT_OPTION) $<

.p~ $(GET) $(GFLAGS) -p $< >
$*.p

$(LINK.p) -o $@ $*.p
$(LDLIBS)

.p~.o $(GET) $(GFLAGS) -p $< >
$*.p

$(COMPILE.p)
$(OUTPUT_OPTION) $*.p

.p~.a $(GET) $(GFLAGS) -p $< >
$*.p

$(COMPILE.p) -o $% $*.p
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

__________________________________________________________________
________

Ratfor .r $(LINK.r) -o $@ $<
$(LDLIBS)

Files .r.o $(COMPILE.r)
$(OUTPUT_OPTION) $<

.r.a $(COMPILE.r) -o $% $<
$(AR) $(ARFLAGS) $@ $%



 - 224 - 

$(RM) $%

.r~ $(GET) $(GFLAGS) -p $< >
$*.r

$(LINK.r) -o $@ $*.r
$(LDLIBS)

.r~.o $(GET) $(GFLAGS) -p $< >
$*.r

$(COMPILE.r)
$(OUTPUT_OPTION) $*.r

.r~.a $(GET) $(GFLAGS) -p $< >
$*.r

$(COMPILE.r) -o $% $*.r
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

__________________________________________________________________
________

SCCS .SCCS_GET sccs $(SCCSFLAGS) get
$(SCCSGETFLAGS) $@ -G$@

Files

.SCCS_GET_POSIX sccs $(SCCSFLAGS) get
$(SCCSGETFLAGS) $@

.GET_POSIX $(GET) $(GFLAGS) s.$@

__________________________________________________________________
________

Shell .sh cat $< >$@
Scripts chmod +x $@

.sh~ $(GET) $(GFLAGS) -p $< >
$*.sh

cp $*.sh $@
chmod a+x $@

__________________________________________________________________
________

yacc .y $(YACC.y) $<
Files $(LINK.c) -o $@ y.tab.c

$(LDLIBS)
$(RM) y.tab.c

.y.c $(YACC.y) $<



 - 225 - 

mv y.tab.c $@

.y.ln $(YACC.y) $<
$(LINT.c) -o $@ -i y.tab.c
$(RM) y.tab.c

.y.o $(YACC.y) $<
$(COMPILE.c) -o $@ y.tab.c
$(RM) y.tab.c

.y~ $(GET) $(GFLAGS) -p $< >
$*.y

$(YACC) $(YFLAGS) $*.y
$(COMPILE.c) -o $@ y.tab.c
$(RM) y.tab.c

.y~.c $(GET) $(GFLAGS) -p $< >
$*.y

$(YACC) $(YFLAGS) $*.y
mv y.tab.c $@

.y~.ln $(GET) $(GFLAGS) -p $< >
$*.y

$(YACC.y) $*.y
$(LINT.c) -o $@ -i y.tab.c

| | $(RM) y.tab.c
| |
| .y~.o | $(GET) $(GFLAGS) -p $< >

$*.y
| | $(YACC) $(YFLAGS) $*.y
| | $(CC) $(CFLAGS) -c y.tab.c
| | rm -f y.tab.c

| | | mv y.tab.o $@
|

|___________|____________________|________________________________
________|

make reads in the standard set of implicit rules from the
file /usr/share/lib/make/make.rules, unless -r is in effect,
or there is a make.rules file in the local directory that
does not include that file.

The Suffixes List
The suffixes list is given as the list of dependencies for
the `.SUFFIXES:' special-function target. The default list
is contained in the SUFFIXES macro (See Table of Predefined



 - 226 - 

Macros for the standard list of suffixes). You can define
additional .SUFFIXES: targets; a .SUFFIXES target with no
dependencies clears the list of suffixes. Order is signifi-
cant within the list; make selects a rule that corresponds
to the target's suffix and the first dependency-file suffix
found in the list. To place suffixes at the head of the
list, clear the list and replace it with the new suffixes,
followed by the default list:

.SUFFIXES:

.SUFFIXES: suffixes $(SUFFIXES)

A tilde (~) indicates that if a dependency file with the
indicated suffix (minus the ~) is under SCCS its most recent
version should be retrieved, if necessary, before the target
is processed.

Library Maintenance
A target name of the form:

lib(member ...)

refers to a member, or a space-separated list of members, in
an ar(1) library.

The dependency of the library member on the corresponding
file must be given as an explicit entry in the makefile.
This can be handled by a pattern matching rule of the form:

lib(%.s): %.s
where .s is the suffix of the member; this suffix is typi-
cally .o for object libraries.

A target name of the form

lib((symbol))

refers to the member of a randomized object library that
defines the entry point named symbol.

Command Execution
Command lines are executed one at a time, each by its own
process or shell. Shell commands, notably cd, are ineffec-
tual across an unescaped NEWLINE in the makefile. A line is
printed (after macro expansion) just before being executed.
This is suppressed if it starts with a `@', if there is a
`.SILENT:' entry in the makefile, or if make is run with



 - 227 - 

the -s option. Although the -n option specifies printing
without execution, lines containing the macro $(MAKE) are
executed regardless, and lines containing the @ special
character are printed. The -t (touch) option updates the
modification date of a file without executing any rules.
This can be dangerous when sources are maintained by more
than one person.

make invokes the shell with the -e (exit-on-errors) argu-
ment. Thus, with semicolon-separated command sequences,
execution of the later commands depends on the success of
the former. This behavior can be overridden by starting the
command line with a `-', or by writing a shell script that
returns a non-zero status only as it finds appropriate.

Bourne Shell Constructs
To use the Bourne shell if control structure for branching,
use a command line of the form:

if expression ; \
then command ; \

... ; \
else command ; \

... ; \
fi

Although composed of several input lines, the escaped NEW-
LINE characters insure that make treats them all as one
(shell) command line.

To use the Bourne shell for control structure for loops, use
a command line of the form:

for var in list ; \
do command; \
... ; \

done

To refer to a shell variable, use a double-dollar-sign ($$).
This prevents expansion of the dollar-sign by make.

Command Substitutions
To incorporate the standard output of a shell command in a
macro, use a definition of the form:

MACRO:sh =command



 - 228 - 

The command is executed only once, standard error output is
discarded, and NEWLINE characters are replaced with SPACEs.
If the command has a non-zero exit status, make halts with
an error.

To capture the output of a shell command in a macro refer-
ence, use a reference of the form:

$(MACRO:sh)

where MACRO is the name of a macro containing a valid Bourne
shell command line. In this case, the command is executed
whenever the reference is evaluated. As with shell command
substitutions, the reference is replaced with the standard
output of the command. If the command has a non-zero exit
status, make halts with an error.

In contrast to commands in rules, the command is not subject
for macro substitution; therefore, a dollar sign ($) need
not be replaced with a double dollar sign ($$).

Signals
INT, SIGTERM, and QUIT signals received from the keyboard
halt make and remove the target file being processed unless
that target is in the dependency list for .PRECIOUS:.

EXAMPLES 
This makefile says that pgm depends on two files a.o and
b.o, and that they in turn depend on their corresponding
source files (a.c and b.c) along with a common file incl.h:

pgm: a.o b.o
$(LINK.c) -o $@ a.o b.o

a.o: incl.h a.c
cc -c a.c

b.o: incl.h b.c
cc -c b.c

The following makefile uses implicit rules to express the
same dependencies:

pgm: a.o b.o
cc a.o b.o -o pgm

a.o b.o: incl.h



 - 229 - 

ENVIRONMENT 
See environ(5) for descriptions of the following environment
variables that affect the execution of make: LC_CTYPE,
LC_MESSAGES, and NLSPATH.

KEEP_STATE
This environment variable has the same effect as
the .KEEP_STATE: special-function target. It
enables command dependencies, hidden dependencies
and writing of the state file.

USE_SVR4_MAKE
This environment variable causes make to invoke
the generic System V version of make
(/usr/ccs/lib/svr4.make). See sysV-make(1).

MAKEFLAGS This variable is interpreted as a character string
representing a series of option characters to be
used as the default options. The implementation
will accept both of the following formats (but
need not accept them when intermixed):

1. The characters are option letters without the
leading hyphens or blank character separation
used on a command line.

2. The characters are formatted in a manner
similar to a portion of the make command
line: options are preceded by hyphens and
blank-character-separated. The macro=name
macro definition operands can also be
included. The difference between the con-
tents of MAKEFLAGS and the command line is
that the contents of the variable will not be
subjected to the word expansions (see
wordexp(3C)) associated with parsing the com-
mand line values.

When the command-line options -f or -p are used,
they will take effect regardless of whether they
also appear in MAKEFLAGS. If they otherwise appear
in MAKEFLAGS, the result is undefined.

The MAKEFLAGS variable will be accessed from the environment
before the makefile is read. At that time, all of the
options (except -f and -p) and command-line macros not
already included in MAKEFLAGS are added to the MAKEFLAGS



 - 230 - 

macro. The MAKEFLAGS macro will be passed into the environ-
ment as an environment variable for all child processes. If
the MAKEFLAGS macro is subsequently set by the makefile, it
replaces the MAKEFLAGS variable currently found in the
environment.

EXIT STATUS
When the -q option is specified, the make utility will exit
with one of the following values:

0 Successful completion.

1 The target was not up-to-date.

>1 An error occurred.

When the -q option is not specified, the make utility will
exit with one of the following values:

0 successful completion

>0 an error occurred

FILES
makefile
Makefile current version(s) of make description

file
s.makefile
s.Makefile SCCS history files for the above

makefile(s) in the current directory
SCCS/s.makefile
SCCS/s.Makefile SCCS history files for the above

makefile(s)
make.rules default file for user-defined targets,

macros, and implicit rules
/usr/share/lib/make/make.rules

makefile for standard implicit rules and
macros (not read if make.rules is)

.make.state state file in the local directory

ATTRIBUTES 
See attributes(5) for descriptions of the following attri-
butes:

/usr/ccs/bin/make
__________________________________
| ATTRIBUTE TYPE| ATTRIBUTE VALUE|



 - 231 - 

|_______________|_________________|
| Availability | SUNWsprot |
|_______________|_________________|

/usr/xpg4/bin/make
__________________________________
| ATTRIBUTE TYPE| ATTRIBUTE VALUE|
|_______________|_________________|
| Availability | SUNWxcu4t |
|_______________|_________________|

SEE ALSO 
ar(1), cd(1), lex(1), sh(1), sccs-get(1), sysV-make(1)
yacc(1), passwd(4), attributes(5), POSIX.2(5)

Solaris Advanced User's Guide
Programming Utilities Guide

DIAGNOSTICS
Don't know how to make target 'target'

There is no makefile entry for target, and none of
make's implicit rules apply (there is no dependency
file with a suffix in the suffixes list, or the
target's suffix is not in the list).

*** target removed.
make was interrupted while building target. Rather
than leaving a partially-completed version that is
newer than its dependencies, make removes the file
named target.

*** target not removed.
make was interrupted while building target and target
was not present in the directory.

*** target could not be removed, reason
make was interrupted while building target, which was
not removed for the indicated reason.

Read of include file `file' failed
The makefile indicated in an include directive was not
found, or was inaccessible.

Loop detected when expanding macro value `macro'
A reference to the macro being defined was found in the
definition.



 - 232 - 

Could not write state file `file'
You used the .KEEP_STATE: target, but do not have write
permission on the state file.

*** Error code n
The previous shell command returned a nonzero error
code.

*** signal message
The previous shell command was aborted due to a signal.
If `- core dumped' appears after the message, a core
file was created.

Conditional macro conflict encountered
Displayed only when -d is in effect, this message indi-
cates that two or more parallel targets currently being
processed depend on a target which is built differently
for each by virtue of conditional macros. Since the
target cannot simultaneously satisfy both dependency
relationships, it is conflicted.

BUGS
Some commands return nonzero status inappropriately; to
overcome this difficulty, prefix the offending command line
in the rule with a `-'.

Filenames with the characters `=', `:', or `@', do not work.

You cannot build file.o from lib(file.o).

Options supplied by MAKEFLAGS should be reported for nested
make commands. Use the -d option to find out what options
the nested command picks up from MAKEFLAGS.

This version of make is incompatible in certain respects
with previous versions:

+ The -d option output is much briefer in this ver-
sion. -dd now produces the equivalent voluminous
output.

+ make attempts to derive values for the dynamic mac-
ros `$*', `$<', and `$?', while processing explicit
targets. It uses the same method as for implicit
rules; in some cases this can lead either to unex-
pected values, or to an empty value being assigned.
(Actually, this was true for earlier versions as



 - 233 - 

well, even though the documentation stated other-
wise.)

+ make no longer searches for SCCS history "(s.)"
files.

+ Suffix replacement in macro references are now
applied after the macro is expanded.

There is no guarantee that makefiles created for this ver-
sion of make will work with earlier versions.

If there is no make.rules file in the current directory, and
the file /usr/share/lib/make/make.rules is missing, make
stops before processing any targets. To force make to run
anyway, create an empty make.rules file in the current
directory.

Once a dependency is made, make assumes the dependency file
is present for the remainder of the run. If a rule subse-
quently removes that file and future targets depend on its
existence, unexpected errors may result.

When hidden dependency checking is in effect, the $? macro's
value includes the names of hidden dependencies. This can
lead to improper filename arguments to commands when $? is
used in a rule.

Pattern replacement macro references cannot be used in the
dependency list of a pattern matching rule.

Unlike previous versions, this version of make strips a
leading `./' from the value of the `$@' dynamic macro.

With automatic SCCS retrieval, this version of make does not
support tilde suffix rules.

The only dynamic macro whose value is strictly determined
when used in a dependency list is $@ (takes the form `$$@').

make invokes the shell with the -e argument. This cannot be
inferred from the syntax of the rule alone.



 - 234 - 

man 
man - find and display reference manual pages

SYNOPSIS 
man [ - ] [ -adFlrt ] [ -M path ] [ -T macro-package ]

[-s section ] name ...
man [ -M path ] -k keyword ...
man [ -M path ] -f file ...

DESCRIPTION 
The man command displays information from the reference
manuals. It displays complete manual pages that you select
by name, or one-line summaries selected either by keyword
(-k), or by the name of an associated file (-f). If no
manual page is located, man prints an error message.

Source Format
Reference Manual pages are marked up with either nroff(1) or
sgml(5) (Standard Generalized Markup Language) tags. The
man command recognizes the type of markup and processes the
file accordingly. The various source files are kept in
separate directories depending on the type of markup.

Location of Manual Pages
The online Reference Manual page directories are convention-
ally located in /usr/share/man. The nroff sources are
located in the /usr/share/man/man* directories. The SGML
sources are located in the /usr/share/man/sman* directories.
Each directory corresponds to a section of the manual.
Since these directories are optionally installed, they may
not reside on your host; you may have to mount
/usr/share/man from a host on which they do reside. If
there are preformatted, up-to-date versions in the
corresponding cat* or fmt* directories, man simply displays
or prints those versions. If the preformatted version of
interest is out of date or missing, man reformats it prior
to display and will store the preformatted version if cat*
or fmt* is writable. The windex database is not updated.
See catman(1M). If directories for the preformatted ver-
sions are not provided, man reformats a page whenever it is
requested; it uses a temporary file to store the formatted
text during display.



 - 235 - 

If the standard output is not a terminal, or if the `-' flag
is given, man pipes its output through cat(1); otherwise,
man pipes its output through more(1) to handle paging and
underlining on the screen.

OPTIONS 
The following options are supported:

-a Show all manual pages matching name within the
MANPATH search path. Manual pages are displayed
in the order found.

-d Debug. Displays what a section-specifier evalu-
ates to, method used for searching, and paths
searched by man.

-f file...
man attempts to locate manual pages related to any
of the given files. It strips the leading path
name components from each file, and then prints
one-line summaries containing the resulting
basename or names. This option also uses the win-
dex database.

-F Force man to search all directories specified by
MANPATH or the man.cf file, rather than using the
windex lookup database. This is useful if the
database is not up to date. If the windex data-
base does not exist, this option is assumed.

-k keyword ...
Print out one-line summaries from the windex data-
base (table of contents) that contain any of the
given keywords. The windex database is created
using catman(1M).

-l List all manual pages found matching name within
the search path.

-M path Specify an alternate search path for manual pages.
path is a colon-separated list of directories that
contain manual page directory subtrees. For exam-
ple, if path is /usr/share/man:/usr/local/man, man
searches for name in the standard location, and
then /usr/local/man. When used with the -k or -f
options, the -M option must appear first. Each



 - 236 - 

directory in the path is assumed to contain sub-
directories of the form man* or sman*, one for
each section. This option overrides the MANPATH
environment variable.

-r Reformat the manual page, but do not display it.
This replaces the man - -t name combination.

-s section ...
Specify sections of the manual for man to search.
The directories searched for name is limited to
those specified by section. section can be a
digit (perhaps followed by one or more letters), a
word (for example: local, new, old, public), or a
letter. To specify multiple sections, separate
each section with a comma. This option overrides
the MANPATH environment variable and the man.cf
file. See Search Path below for an explanation of
how man conducts its search.

-t man arranges for the specified manual pages to be
troffed to a suitable raster output device (see
troff(1). If both the - and -t flags are given,
man updates the troffed versions of each named
name (if necessary), but does not display them.

-T macro-package
Format manual pages using macro-package rather
than the standard -man macros defined in
/usr/share/lib/tmac/an. See Search Path under
USAGE for a complete explanation of the default
search path order.

OPERANDS
The following operand is supported:

name A keyword or the name of a standard utility.

USAGE 
Manual Page Sections

Entries in the reference manuals are organized into sec-
tions. A section name consists of a major section name,
typically a single digit, optionally followed by a subsec-
tion name, typically one or more letters. An unadorned
major section name acts as an abbreviation for the section
of the same name along with all of its subsections. Each



 - 237 - 

section contains descriptions apropos to a particular refer-
ence category, with subsections refining these distinctions.
See the intro manual pages for an explanation of the clas-
sification used in this release.

Search Path
Before searching for a given name, man constructs a list of
candidate directories and sections. man searches for name
in the directories specified by the MANPATH ENVIRONMENT
variable. If this variable is not set, /usr/share/man is
searched by default.

Within the manual page directories, man confines its search
to the sections specified in the following order:

o sections specified on the command line with the -s
option

o sections embedded in the MANPATH environment variable

o sections specified in the man.cf file for each
directory specified in the MANPATH environment vari-
able

If none of the above exist, man searches each directory in
the manual page path, and displays the first matching manual
page found.

The man.cf file has the following format:

MANSECTS=section[,section]...

Lines beginning with `#' and blank lines are considered com-
ments, and are ignored. Each directory specified in MANPATH
can contain a manual page configuration file, specifying the
default search order for that directory.

Formatting Manual Pages
Manual pages are marked up in nroff(1) or SGML. Nroff manual
pages are processed by nroff(1) or troff(1) with the -man
macro package. Please refer to man(5) for information on
macro usage. SGML tagged manual pages are processed by an
SGML parser and passed to the formatter.

Preprocessing Nroff Manual Pages
When formatting an nroff manual page, man examines the first
line to determine whether it requires special processing.



 - 238 - 

If the first line is a string of the form:

'\" X

where X is separated from the `"' by a single SPACE and con-
sists of any combination of characters in the following
list, man pipes its input to troff(1) or nroff(1) through
the corresponding preprocessors.

e eqn(1), or neqn for nroff
r refer(1)
t tbl(1)
v vgrind(1)

If eqn or neqn is invoked, it will automatically read the
file /usr/pub/eqnchar (see eqnchar(5)). If nroff(1) is
invoked, col(1) is automatically used.

Referring to Other Nroff Manual Pages
If the first line of the nroff manual page is a reference to
another manual page entry fitting the pattern:

.so man*/ sourcefile

man processes the indicated file in place of the current
one. The reference must be expressed as a path name
relative to the root of the manual page directory subtree.

When the second or any subsequent line starts with .so, man
ignores it; troff(1) or nroff(1) processes the request in
the usual manner.

Processing SGML Manual Pages
Manual pages are identified as being marked up in SGML by
the presence of the string <!DOCTYPE. If the file also con-
tains the string SHADOW_PAGE the file refers to another
manual page for the content. The reference is made with a
file entity reference to the manual page that contains the
text. This is similar to the .so mechanism used in the nroff
formatted man pages.

ENVIRONMENT 
See environ(5) for descriptions of the following environment
variables that affect the execution of man: LC_CTYPE,
LC_MESSAGES, and NLSPATH.



 - 239 - 

MANPATH A colon-separated list of directories; each
directory can be followed by a comma-
separated list of sections. If set, its
value overrides /usr/share/man as the default
directory search path, and the man.cf file as
the default section search path. The -M and
-s flags, in turn, override these values.)

PAGER A program to use for interactively delivering
man's output to the screen. If not set,
`more -s' is used. See more(1).

TCAT The name of the program to use to display
troffed manual pages.

TROFF The name of the formatter to use when the -t
flag is given. If not set, troff(1) is used.

EXIT STATUS
The following exit values are returned:

0 Successful completion.

>0 An error occurred.

FILES
/usr/share/man root of the standard manual

page directory subtree
/usr/share/man/man?/* unformatted nroff manual

entries
/usr/share/man/sman?/* unformatted SGML manual

entries
/usr/share/man/cat?/* nroffed manual entries
/usr/share/man/fmt?/* troffed manual entries
/usr/share/man/windex table of contents and key-

word database
/usr/share/lib/tmac/an standard -man macro package
/usr/share/lib/sgml/locale/C/dtd/*

SGML document type defini-
tion files

/usr/share/lib/sgml/locale/C/solbook/*
SGML style sheet and entity
definitions directories

/usr/share/lib/pub/eqnchar standard definitions for
eqn and neqn

man.cf default search order by
section



 - 240 - 

ATTRIBUTES 
See attributes(5) for descriptions of the following attri-
butes:

______________________________________
| ATTRIBUTE TYPE| ATTRIBUTE VALUE |
|_______________|_____________________|
| Availability | SUNWdoc |
| CSI | Enabled (see NOTES)|
|_______________|_____________________|

SEE ALSO 
apropos(1), cat(1), col(1), eqn(1), more(1), nroff(1),
refer(1), tbl(1), troff(1), vgrind(1), whatis(1),
catman(1M), attributes(5), environ(5), eqnchar(5), man(5),
sgml(5)

NOTES 
The -f and -k options use the windex database, which is
created by catman(1M).

The man command is CSI-capable. However, some utilities
invoked by the man command, namely, troff, eqn, neqn, refer,
tbl, and vgrind, are not verified to be CSI-capable.
Because of this, the man command with the -t option may not
handle non-EUC data. Also, using the man command to display
man pages that require special processing through eqn, neqn,
refer, tbl, or vgrind may not be CSI-capable.

BUGS
The manual is supposed to be reproducible either on a photo-
typesetter or on an ASCII terminal. However, on a terminal
some information (indicated by font changes, for instance)
is lost.
Some dumb terminals cannot process the vertical motions pro-
duced by the e (see eqn(1)) preprocessing flag. To prevent
garbled output on these terminals, when you use e also use
t, to invoke col(1) implicitly. This workaround has the
disadvantage of eliminating superscripts and subscripts -
even on those terminals that can display them. Control-q
will clear a terminal that gets confused by eqn(1) output.



 - 241 - 

more 
more, page - browse or page through a text file

SYNOPSIS 
/usr/bin/more [ -cdflrsuw ] [ -lines ] [ +linenumber ]

[ +/pattern ] [ file ... ]

/usr/bin/page [ -cdflrsuw ] [ -lines ] [ +linenumber ]
[ +/pattern ] [ file ... ]

/usr/xpg4/bin/more [ -cdeisu ] [ -nnumber ] [ -pcommand ]
[ -ttagstring ] [ file ... ]

/usr/xpg4/bin/more [ -cdeisu ] [ -nnumber ] [ +command ]
[ -ttagstring ] [ file ... ]

DESCRIPTION 
The more utility is a filter that displays the contents of a
text file on the terminal, one screenful at a time. It nor-
mally pauses after each screenful. /usr/bin/more then
prints --More-- and /usr/xpg4/bin/more then prints file at
the bottom of the screen. If more is reading from a file
rather than a pipe, the percentage of characters displayed
so far is also shown.

The more utility scrolls up to display one more line in
response to a RETURN character; it displays another screen-
ful in response to a SPACE character. Other commands are
listed below.

The page utility clears the screen before displaying the
next screenful of text; it only provides a one-line overlap
between screens.

The more utility sets the terminal to NOECHO mode, so that
the output can be continuous. Commands that you type do not
normally show up on your terminal, except for the / and !
commands.

The /usr/bin/more utility exits after displaying the last
specified file; /usr/xpg4/bin/more prompts for a command at
the last line of the last specified file.



 - 242 - 

If the standard output is not a terminal, more acts just
like cat(1), except that a header is printed before each
file in a series.

OPTIONS 
The following options are supported for both /usr/bin/more
and /usr/xpg4/bin/more:

-c Clear before displaying. Redraws the screen
instead of scrolling for faster displays.
This option is ignored if the terminal does
not have the ability to clear to the end of a
line.

-d Display error messages rather than ringing
the terminal bell if an unrecognized command
is used. This is helpful for inexperienced
users.

-s Squeeze. Replace multiple blank lines with a
single blank line. This is helpful when
viewing nroff(1) output on the screen.

/usr/bin/more
The following options are supported for /usr/bin/more only:

-f Do not fold long lines. This is useful when
lines contain nonprinting characters or
escape sequences, such as those generated
when nroff(1) output is piped through ul(1).

-l Do not treat FORMFEED characters (CTRL-L) as
page breaks. If -l is not used, more pauses
to accept commands after any line containing
a ^L character (CTRL-L). Also, if a file
begins with a FORMFEED, the screen is cleared
before the file is printed.

-r Normally, more ignores control characters
that it does not interpret in some way. The
-r option causes these to be displayed as ^C
where C stands for any such control charac-
ter.

-u Suppress generation of underlining escape
sequences. Normally, more handles underlin-



 - 243 - 

ing, such as that produced by nroff(1), in a
manner appropriate to the terminal. If the
terminal can perform underlining or has a
stand-out mode, more supplies appropriate
escape sequences as called for in the text
file.

-w Normally, more exits when it comes to the end
of its input. With -w, however, more prompts
and waits for any key to be struck before
exiting.

-lines Display the indicated number of lines in each
screenful, rather than the default (the
number of lines in the terminal screen less
two).

+linenumber Start up at linenumber.

+/pattern Start up two lines above the line containing
the regular expression pattern. Note:
Unlike editors, this construct should not end
with a `/.' If it does, then the trailing
slash is taken as a character in the search
pattern.

/usr/xpg4/bin/more
The following options are supported for /usr/xpg4/bin/more
only:

-e Exit immediately after writing the last line
of the last file in the argument list.

-i Perform pattern matching in searches without
regard to case.

-n number Specify the number of lines per screenful.
The number argument is a positive decimal
integer. The -n option overrides any values
obtained from the environment.

-p command
+command For each file examined, initially execute the

more command in the command argument. If the
command is a positioning command, such as a
line number or a regular expression search,
set the current position to represent the



 - 244 - 

final results of the command, without writing
any intermediate lines of the file. For
example, the two commands:

more -p 1000j file
more -p 1000G file

are equivalent and start the display with the
current position at line 1000, bypassing the
lines that j would write and scroll off the
screen if it had been issued during the file
examination. If the positioning command is
unsuccessful, the first line in the file will
be the current position.

-t tagstring Write the screenful of the file containing
the tag named by the tagstring argument. See
the ctags(1) utility.

-u Treat a backspace character as a printable
control character, displayed as a ^H (CTRL-
H), suppressing backspacing and the special
handling that produces underlined or
standout-mode text on some terminal types.
Also, do not ignore a carriage-return charac-
ter at the end of a line.

If both the -t tagstring and -p command (or the obsolescent
+command) options are given, the -t tagstring is processed
first.

USAGE 

  ENVIRONMENT 
more uses the terminal's terminfo(4) entry to determine its
display characteristics.

more looks in the environment variable MORE for any preset
options. For instance, to page through files using the -c
mode by default, set the value of this variable to -c.
(Normally, the command sequence to set up this environment
variable is placed in the .login or .profile file).

Commands
The commands take effect immediately. It is not necessary
to type a carriage return unless the command requires a
file, command, tagstring, or pattern. Up to the time when
the command character itself is given, the user may type the



 - 245 - 

line kill character to cancel the numerical argument being
formed. In addition, the user may type the erase character
to redisplay the `--More--(xx%)' or file message.

In the following commands, i is a numerical argument (1 by
default).

iSPACE Display another screenful, or i more lines if i is
specified.

iRETURN Display another line, or i more lines, if speci-
fied.

ib
i^B (CTRL-B) Skip back i screenfuls and then print a

screenful.

id
i^D (CTRL-D) Scroll forward one half screenful or i

more lines. If i is specified, the count becomes
the default for subsequent d and u commands.

if Skip i screens full and then print a screenful.

h Help. Give a description of all the more com-
mands.

^L (CTRL-L) Refresh.

in Search for the ith occurrence of the last pattern
entered.

q
Q Exit from more.

is Skip i lines and then print a screenful.

v Drop into the vi editor at the current line of the
current file.

iz Same as SPACE, except that i, if present, becomes
the new default number of lines per screenful.

= Display the current line number.

i/pattern Search forward for the ith occurrence of the regu-
lar expression pattern. Display the screenful
starting two lines before the line that contains



 - 246 - 

the ith match for the regular expression pattern,
or the end of a pipe, whichever comes first. If
more is displaying a file and there is no match,
its position in the file remains unchanged. Regu-
lar expressions can be edited using erase and kill
characters. Erasing back past the first column
cancels the search command.

!command Invoke a shell to execute command. The characters
% and !, when used within command are replaced
with the current filename and the previous shell
command, respectively. If there is no current
filename, % is not expanded. Prepend a backslash
to these characters to escape expansion.

:f Display the current filename and line number.

i:n Skip to the ith next filename given in the command
line, or to the last filename in the list if i is
out of range.

i:p Skip to the ith previous filename given in the
command line, or to the first filename if i is out
of range. If given while more is positioned
within a file, go to the beginning of the file.
If more is reading from a pipe, more simply rings
the terminal bell.

:q
:Q Exit from more (same as q or Q).

/usr/bin/more
The following commands are available only in /usr/bin/more:

' Single quote. Go to the point from which the last
search started. If no search has been performed
in the current file, go to the beginning of the
file.

. Dot. Repeat the previous command.

^\ Halt a partial display of text. more stops send-
ing output, and displays the usual --More--
prompt. Some output is lost as a result.

/usr/xpg4/bin/more
The following commands are available only in
/usr/xpg4/bin/more:



 - 247 - 

i^F (CTRL-F) Skip i screens full and print a screen-
ful. (Same as if.)

^G (CTRL-G) Display the current line number (same as
=).

ig Go to line number i with the default of the first
line in the file.

iG Go to line number i with the default of the Last
line in the file.

ij Display another line, or i more lines, if speci-
fied. (Same as iRETURN.)

ik Scroll backwards one or i lines, if specified.

mletter Mark the current position with the name letter.

N Reverse direction of search.

r Refresh the screen.

R Refresh the screen, discarding any buffered input.

iu
i^U (CTRL-U) Scroll backwards one half a screen of i

lines, if specified. If i is specified, the count
becomes the new default for subsequent d and u
commands.

ZZ Exit from more (same as q).

:e file Examine (display) a new file. If no file is
specified, the current file is redisplayed.

:t tagstring
Go to the tag named by the tagstring argument and
scroll/rewrite the screen with the tagged line in
the current position. See the ctags utility.

'letter Return to the position that was previously marked
with the name letter.

'' Return to the position from which the last move of
more than a screenful was made. Defaults to the



 - 248 - 

beginning of the file.

i?[!]pattern
Search backward in the file for the ith line con-
taining the pattern. The ! specifies to search
backward for the ith line that does not contain
the pattern.

i/!pattern
Search forward in the file for the ith line that
does not contain the pattern.

![command]
Invoke a shell or the specified command.

Large File Behavior
See largefile(5) for the description of the behavior of more
and page when encountering files greater than or equal to 2
Gbyte (2**31 bytes).

ENVIRONMENT 
See environ(5) for descriptions of the following environment
variables that affect the execution of more: LC_COLLATE
(/usr/xpg4/bin/more only), LC_CTYPE, LC_MESSAGES, NLSPATH,
and TERM.

/usr/xpg4/bin/more
The following environment variables also affect the execu-
tion of /usr/xpg4/bin/more:

COLUMNS Override the system selected horizontal screen
size.

EDITOR Used by the v command to select an editor.

LINES Override the system selected vertical screen
size. The -n option has precedence over LINES
in determining the number of lines in a screen.

MORE A string specifying options as described in the
OPTIONS section, above. As in a command line,
The options must be separated by blank charac-
ters and each option specification must start
with a -. Any command line options are pro-
cessed after those specified in MORE as though
the command line were:



 - 249 - 

more $MORE options operands

EXIT STATUS
The following exit values are returned:

0 Successful completion.

>0 An error occurred.

FILES
/usr/lib/more.help help file for /usr/bin/more and

/usr/bin/page only.

ATTRIBUTES 
See attributes(5) for descriptions of the following attri-
butes:

/usr/bin/more /usr/bin/page
__________________________________
| ATTRIBUTE TYPE| ATTRIBUTE VALUE|
|_______________|_________________|
| Availability | SUNWcsu |
| CSI | Not enabled |
|_______________|_________________|

/usr/xpg4/bin/more
__________________________________
| ATTRIBUTE TYPE| ATTRIBUTE VALUE|
|_______________|_________________|
| Availability | SUNWxcu4 |
| CSI | Enabled |
|_______________|_________________|

SEE ALSO 
cat(1), csh(1), ctags(1), man(1), nroff(1), script(1),
sh(1), ul(1), environ(4), terminfo(4), attributes(5),
environ(5), largefile(5)

/usr/bin/more /usr/bin/page
regcomp(3C)

/usr/xpg4/bin/more
regex(5), xpg4(5)

NOTES 
/usr/bin/more

Skipping backwards is too slow on large files.



 - 250 - 

/usr/xpg4/bin/more
This utility will not behave correctly if the terminal is
not set up properly.



 - 251 - 

mv 
mv - move files

SYNOPSIS 
/usr/bin/mv [-fi] source target_file
/usr/bin/mv [-fi] source... target_dir

/usr/xpg4/bin/mv [-fi] source target_file
/usr/xpg4/bin/mv [-fi] source... target_dir

DESCRIPTION 
In the first synopsis form, the mv utility moves the file
named by the source operand to the destination specified by
the target_file. source and target_file may not have the
same name. If target_file does not exist, mv creates a file
named target_file. If target_file exists, its contents are
overwritten. This first synopsis form is assumed when the
final operand does not name an existing directory.

In the second synopsis form, mv moves each file named by a
source operand to a destination file in the existing direc-
tory named by the target_dir operand. The destination path
for each source is the concatenation of the target direc-
tory, a single slash character (/), and the last path name
component of the source. This second form is assumed when
the final operand names an existing directory.

If mv determines that the mode of target_file forbids writ-
ing, it will print the mode (see chmod(2)), ask for a
response, and read the standard input for one line. If the
response is affirmative, the mv occurs, if permissible; oth-
erwise, the command exits. Note that the mode displayed may
not fully represent the access permission if target is asso-
ciated with an ACL. When the parent directory of source is
writable and has the sticky bit set, one or more of the fol-
lowing conditions must be true:

o the user must own the file
o the user must own the directory
o the file must be writable by the user
o the user must be a privileged user

If source is a file and target_file is a link to another



 - 252 - 

file with links, the other links remain and target_file
becomes a new file.

OPTIONS 
-f mv will move the file(s) without prompting even if

it is writing over an existing target. Note that
this is the default if the standard input is not a
terminal.

-i mv will prompt for confirmation whenever the move
would overwrite an existing target. An affirma-
tive answer means that the move should proceed.
Any other answer prevents mv from overwriting the
target.

/usr/bin/mv
Specifying both the -f and the -i options is not considered
an error. The -f option will override the -i option.

/usr/xpg4/bin/mv
Specifying both the -f and the -i options is not considered
an error. The last option specified will determine the
behavior of mv.

OPERANDS
The following operands are supported:

source A path name of a file or directory to be moved.

target_file A new path name for the file or directory being
moved.

target_dir A path name of an existing directory into which
to move the input files.

USAGE 
See largefile(5) for the description of the behavior of mv
when encountering files greater than or equal to 2 Gbyte
(2**31 bytes).

ENVIRONMENT 
See environ(5) for descriptions of the following environment
variables that affect the execution of mv: LC_CTYPE,
LC_MESSAGES, and NLSPATH.



 - 253 - 

EXIT STATUS
The following exit values are returned:
0 All input files were moved successfully.
>0 An error occurred.

ATTRIBUTES 
See attributes(5) for descriptions of the following attri-
butes:

/usr/bin/mv
__________________________________
| ATTRIBUTE TYPE| ATTRIBUTE VALUE|
|_______________|_________________|
| Availability | SUNWcsu |
| CSI | Enabled |
|_______________|_________________|

/usr/xpg4/bin/mv
__________________________________
| ATTRIBUTE TYPE| ATTRIBUTE VALUE|
|_______________|_________________|
| Availability | SUNWxcu4 |
| CSI | Enabled |
|_______________|_________________|

SEE ALSO 
cp(1), cpio(1), ln(1), rm(1), setfacl(1), chmod(2), attri-
butes(5), environ(5), largefile(5), xpg4(5)

NOTES 
If source and target_dir are on different file systems, mv
copies the file and deletes the original; any links to other
files are lost.

A `--' permits the user to mark explicitly the end of any
command line options, allowing mv to recognize filename
arguments that begin with a `-'. As an aid to BSD migra-
tion, mv will accept `-' as a synonym for `--'. This migra-
tion aid may disappear in a future release. If a `--' and a
`-' both appear on the same command line, the second will be
interpreted as a filename.



 - 254 - 

nroff 
nroff - format documents for display or line-printer

SYNOPSIS 
nroff [ -ehiq ] [ -mname ] [ -nN ] [ -opagelist ] [ -raN ]

[ -sN ] [ -Tname ]

DESCRIPTION 
nroff formats text in the named files for typewriter-like
devices. See also troff(1).

If no file argument is present, nroff reads the standard
input. An argument consisting of a `-' is taken to be a
file name corresponding to the standard input.

OPTIONS 
Options may appear in any order so long as they appear
before the files.

-e Produce equally-spaced words in adjusted lines, using
full terminal resolution.

-h Use output TAB characters during horizontal spacing to
speed output and reduce output character count. TAB
settings are assumed to be every 8 nominal character
widths.

-i Read the standard input after the input files are
exhausted.

-q Invoke the simultaneous input-output mode of the rd(9F)
request.

-mname
Prepend the macro file /usr/share/lib/tmac/tmac.name to
the input files.

-nN Number first generated page N.

-opagelist
Print only pages whose page numbers appear in the
comma-separated list of numbers and ranges. A range



 - 255 - 

N-M means pages N through M; an initial -N means from
the beginning to page N; and a final N- means from N to
the end.

-raN Set register a (one-character) to N.

-sN Stop every N pages. nroff will halt prior to every N
pages (default N=1) to allow paper loading or changing,
and will resume upon receipt of a NEWLINE.

-Tname
Prepare output for a device of the specified name.
Known names are:
37 Teletype Corporation Model 37 ter-

minal - this is the default.
lp | tn300 GE Any line printer or terminal

without half-line capability.
300 DASI-300.
300-12 DASI-300 - 12-pitch.
300S DASI-300S.
300S-12 DASI-300S.
382 DASI-382 (fancy DTC 382).
450 DASI-450 (Diablo Hyterm).
450-12 DASI-450 (Diablo Hyterm) - 12-

pitch.
832 AJ 832.

EXAMPLES 
The following command:

example% nroff -s4 -me users.guide

formats users.guide using the -me macro package, and stop-
ping every 4 pages.

ENVIRONMENT 
See environ(5) for descriptions of the following environment
variables that affect the execution of nroff: LC_CTYPE,
LC_MESSAGES, and NLSPATH.

FILES
/var/tmp/trtmp* temporary file
/usr/share/lib/tmac/tmac.* standard macro files
/usr/share/lib/nterm/* terminal driving tables for

nroff
/usr/share/lib/nterm/README index to terminal description



 - 256 - 

files

ATTRIBUTES 
See attributes(5) for descriptions of the following attri-
butes:

__________________________________
| ATTRIBUTE TYPE| ATTRIBUTE VALUE|
|_______________|_________________|
| Availability | SUNWdoc |
| CSI | Enabled |
|_______________|_________________|

SEE ALSO 
checknr(1), col(1), eqn(1), man(1), tbl(1), troff(1), attri-
butes(5), environ(5), me(5), ms(5), term(5), rd(9F)



 - 257 - 

od 
od - octal dump

SYNOPSIS 
/usr/bin/od [ -bcCDdFfOoSsvXx ] [ -] [ file ]

[ offset_string ]
/usr/bin/od [ -bcCDdFfOoSsvXx ] [ -A address_base ]

[ -j skip ] [ -N count ] [ -t type_string ] ...
[ - ] [ file

/usr/xpg4/bin/od [ -bcCDdFfOoSsvXx ] [ -] [ file ]
[ offset_string ]

/usr/xpg4/bin/od [ -bcCDdFfOoSsvXx ] [ -A address_base ]
[ -j skip ] [ -N count ] [ -t type_string
[ - ] [ file

DESCRIPTION 
The od command copies sequentially each input file to stan-
dard output and transforming the input data according to the
output types specified by the -t or -bcCDdFfOoSsvXx options.
If no output type is specified, the default output is as if
-t o2 had been specified. Multiple types can be specified
by using multiple -bcCDdFfOoSstvXx options. Output lines
are written for each type specified in the order in which
the types are specified. If no file is specified, the stan-
dard input is used. The [offset_string] operand is mutually
exclusive from the -A, -j, -N, and -t options. For the pur-
poses of this description, the following terms are used:

word refers to a 16-bit unit, independent of
the word size of the machine

long word refers to a 32-bit unit
double long word refers to a 64-bit unit.

OPTIONS 
The following options are supported:

-A address_base
Specify the input offset base. The address_base
option-argument must be a character. The characters
d, o and x specify that the offset base will be
written in decimal, octal or hexadecimal, respec-



 - 258 - 

tively. The character n specifies that the offset
will not be written. Unless -A n is specified, the
output line will be preceded by the input offset,
cumulative across input files, of the next byte to
be written. In addition, the offset of the byte
following the last byte written will be displayed
after all the input data has been processed.
Without the -A address_base option and the
[offset_string] operand, the input offset base is
displayed in octal.

-b Interpret bytes in octal. This is equivalent to -t
o1.

/usr/bin/od
-c Display single-byte characters. Certain non-graphic

characters appear as C-language escapes:
null \0
backspace \b
form-feed \f
new-line \n
return \r
tab \t

others appear as 3-digit octal numbers. For exam-
ple:

echo "hello world" | od -c
0000000 h e l l o w o r l d

\n
0000014

/usr/xpg4/bin/od
-c Interpret bytes as single-byte or multibyte charac-

ters according to the current setting of the
LC_CTYPE locale category. Printable multibyte char-
acters are written in the area corresponding to the
first byte of the character; the two character
sequence ** is written in the area corresponding to
each remaining byte in the character, as an indica-
tion that the character is continued. Non-graphic
characters appear the same as they would using the
-C option.

-C Interpret bytes as single-byte or multibyte charac-
ters according to the current setting of the
LC_CTYPE locale category. Printable multibyte char-
acters are written in the area corresponding to the



 - 259 - 

first byte of the character; two character sequence
** are written in the area corresponding to each
remaining byte in the character, as an indication
that the character is continued. Certain non-
graphic characters appear as C escapes:

null \0
backspace \b
formfeed \f
newline \n
return \r
tab \t

Other non-printable characters appear as one three-
digit octal number for each byte in the character.

-d Interpret words in unsigned decimal. This is
equivalent to -t u2.

-D Interpret long words in unsigned decimal. This is
equivalent to -t u4.

-f Interpret long words in floating point. This is
equivalent to -t f4.

-F Interpret double long words in extended precision.
This is equivalent to -t f8.

-j skip Jump over skip bytes from the beginning of the
input. The od command will read or seek past the
first skip bytes in the concatenated input files.
If the combined input is not at least skip bytes
long, the od command will write a diagnostic message
to standard error and exit with a non-zero exit
status.

By default, the skip option-argument is interpreted
as a decimal number. With a leading 0x or 0X, the
offset is interpreted as a hexadecimal number; oth-
erwise, with a leading 0, the offset will be inter-
preted as an octal number. Appending the character
b, k or m to offset will cause it to be interpreted
as a multiple of 512, 1024 or 1048576 bytes, respec-
tively. If the skip number is hexadecimal, any
appended b is considered to be the final hexadecimal
digit. The address is displayed starting at
0000000, and its base is not implied by the base of
the skip option-argument.



 - 260 - 

-N count
Format no more than count bytes of input. By
default, count is interpreted as a decimal number.
With a leading 0x or 0X, count is interpreted as a
hexadecimal number; otherwise, with a leading 0, it
is interpreted as an octal number. If count bytes
of input (after successfully skipping, if -j skip is
specified) are not available, it will not be con-
sidered an error; the od command will format the
input that is available. The base of the address
displayed is not implied by the base of the count
option-argument.

-o Interpret words in octal. This is equivalent to -t
o2.

-O Interpret long words in unsigned octal. This is
equivalent to -t o4.

-s Interpret words in signed decimal. This is
equivalent to -t d2.

-S Interpret long words in signed decimal. This is
equivalent to -t d4.

-t type_string
Specify one or more output types. The type_string
option-argument must be a string specifying the
types to be used when writing the input data. The
string must consist of the type specification char-
acters:

a Named character. Interpret bytes as named
characters. Only the least significant seven
bits of each byte will be used for this type
specification. Bytes with the values listed in
the following table will be written using the
corresponding names for those characters.

Named Characters in od

___________________________________________________________
| Value Name| Value Name| Value Name| Value Name|
|_____________|______________|______________|______________|
| \000 nul | \001 soh | \002 stx | \003 etx |
| \004 eot | \005 enq | \006 ack | \007 bel |
| \010 bs | \011 ht | \012 lf | \013 vt |



 - 261 - 

| \014 ff | \015 cr | \016 so | \017 si |
| \020 dle | \021 dc1 | \022 dc2 | \023 dc3 |
| \024 dc4 | \025 nak | \026 syn | \027 etb |
| \030 can | \031 em | \032 sub | \033 esc |
| \034 fs | \035 gs | \036 rs | \037 us |
| \040 sp | \177 del | | |
|_____________|______________|______________|______________|

c Character. Interpret bytes as single-byte or
multibyte characters specified by the current
setting of the LC_CTYPE locale category.
Printable multibyte characters are written in
the area corresponding to the first byte of the
character; the two character sequence ** is
written in the area corresponding to each
remaining byte in the character, as an indica-
tion that the character is continued. Certain
non-graphic characters appear as C escapes:
\0, \a, \b, \f, \n, \r, \t, \v. Other non-
printable characters appear as one three-digit
octal number for each byte in the character.

The type specification characters d, f, o, u and x
can be followed by an optional unsigned decimal
integer that specifies the number of bytes to be
transformed by each instance of the output type.

f Floating point. Can be followed by an optional
F, D or L indicating that the conversion should
be applied to an item of type float, double or
long double, respectively.

d, o, u and x
Signed decimal, octal, unsigned decimal, and
hexadecimal, respectively. Can be followed by
an optional C, S, I or L indicating that the
conversion should be applied to an item of type
char, short, int or long, respectively.

Multiple types can be concatenated within the same
type_string and multiple -t options can be speci-
fied. Output lines are written for each type speci-
fied in the order in which the type specification
characters are specified.

-v Show all input data (verbose). Without the -v
option, all groups of output lines that would be
identical to the immediately preceding output line



 - 262 - 

(except for byte offsets), will be replaced with a
line containing only an asterisk (*).

-x Interpret words in hex. This is equivalent to -t
x2.

-X Interpret long words in hex. This is equivalent to
-t x4.

OPERANDS
The following operands are supported for both /usr/bin/od
and /usr/xpg4/bin/od:

- Use the standard input in addition
to any files specified. When this
operand is not given, the standard
input is used only if no file
operands are specified.

/usr/bin/od
The following operands are supported for /usr/bin/od only:

file A path name of a file to be read.
If no file operands are specified,
the standard input will be used. If
there are no more than two operands,
none of the -A, -j, -N or -t options
is specified, and any of the follow-
ing are true:

1. the first character of the
last operand is a plus sign
(+)

2. the first character of the
second operand is numeric

3. the first character of the
second operand is x and the
second character of the second
operand is a lower-case hexa-
decimal character or digit

4. the second operand is named
"x"

5. the second operand is named



 - 263 - 

"."
then the corresponding operand is
assumed to be an offset operand
rather than a file operand.

Without the -N count option, the
display continues until an end-of-
file is reached.

[+] [0] offset [.][b|B]
[+] [0] [offset] [.]
[+][0x|x][offset]
[+][0x|x] offset[B] The offset_string operand specifies

the byte offset in the file where
dumping is to commence. The offset
is interpreted in octal bytes by
default. If offset begins with "0",
it is interpreted in octal. If
offset begins with "x" or "0x", it
is interpreted in hexadecimal and
any appended "b" is considered to be
the final hexadecimal digit. If "."
is appended, the offset is inter-
preted in decimal. If "b" or "B" is
appended, the offset is interpreted
in units of 512 bytes. If the file
argument is omitted, the offset
argument must be preceded by a plus
sign (+). The address is displayed
starting at the given offset. The
radix of the address will be the
same as the radix of the offset, if
specified, otherwise it will be
octal. Decimal overrides octal, and
it is an error to specify both hexa-
decimal and decimal conversions in
the same offset operand.

/usr/xpg4/bin/od
The following operands are supported for /usr/xpg4/bin/od
only:

file Same as /usr/bin/od, except only one
of the first two conditions must be
true.

[+] [0] offset [.][b|B]
+ [offset] [.]



 - 264 - 

[+][0x][offset]
[+][0x] offset[B]
+x [offset]
+xoffset [B] Description of offset_string is the

same as for /usr/bin/od.

ENVIRONMENT 
See environ(5) for descriptions of the following environment
variables that affect the execution of od: LC_CTYPE,
LC_MESSAGES, LC_NUMERIC, and NLSPATH.

EXIT STATUS
The following exit values are returned:
0 Successful completion.
>0 An error occurred.

ATTRIBUTES 
See attributes(5) for descriptions of the following attri-
butes:

/usr/bin/od
__________________________________
| ATTRIBUTE TYPE| ATTRIBUTE VALUE|
|_______________|_________________|
| Availability | SUNWtoo |
| CSI | enabled |
|_______________|_________________|

/usr/xpg4/bin/od
__________________________________
| ATTRIBUTE TYPE| ATTRIBUTE VALUE|
|_______________|_________________|
| Availability | SUNWxcu4 |
| CSI | enabled |
|_______________|_________________|

SEE ALSO 
sed(1), attributes(5), environ(5), xpg4(5)



 - 265 - 

printf 
printf - write formatted output

SYNOPSIS 
printf format [ argument... ]

DESCRIPTION 
The printf command writes formatted operands to the standard
output. The argument operands are formatted under control
of the format operand.

OPERANDS
The following operands are supported:

format A string describing the format to use to
write the remaining operands. The format
operand is used as the format string
described on the formats(5) manual page, with
the following exceptions:

+ A SPACE character in the format string, in
any context other than a flag of a conver-
sion specification, is treated as an ordi-
nary character that is copied to the out-
put.

+ A delta character in the format string is
treated as a delta character, not as a
SPACE character.

+ In addition to the escape sequences
described on the formats(5) manual page
(\\, \a, \b, \f, \n, \r, \t, \v), \ddd,
where ddd is a one-, two- or three-digit
octal number, is written as a byte with the
numeric value specified by the octal
number.

+ The program does not precede or follow out-
put from the d or u conversion specifica-
tions with blank characters not specified
by the format operand.



 - 266 - 

+ The program does not precede output from
the o conversion specification with zeros
not specified by the format operand.

+ An additional conversion character, b, is
supported as follows. The argument is
taken to be a string that may contain
backslash-escape sequences. The following
backslash-escape sequences are supported:
- the escape sequences listed on the for-

mats(5) manual page (\\, \a, \b, \f, \n,
\r, \t, \v), which are converted to the
characters they represent

- \0ddd, where ddd is a zero-, one-, two-
or three-digit octal number that is con-
verted to a byte with the numeric value
specified by the octal number

- \c, which is written and causes printf
to ignore any remaining characters in
the string operand containing it, any
remaining string operands and any addi-
tional characters in the format operand.

The interpretation of a backslash followed by
any other sequence of characters is unspeci-
fied.

Bytes from the converted string are written
until the end of the string or the number of
bytes indicated by the precision specifica-
tion is reached. If the precision is omit-
ted, it is taken to be infinite, so all bytes
up to the end of the converted string are
written. For each specification that con-
sumes an argument, the next argument operand
is evaluated and converted to the appropriate
type for the conversion as specified below.
The format operand is reused as often as
necessary to satisfy the argument operands.
Any extra c or s conversion specifications
are evaluated as if a null string argument
were supplied; other extra conversion specif-
ications are evaluated as if a zero argument
were supplied. If the format operand con-
tains no conversion specifications and argu-



 - 267 - 

ment operands are present, the results are
unspecified. If a character sequence in the
format operand begins with a % character, but
does not form a valid conversion specifica-
tion, the behavior is unspecified.

argument The strings to be written to standard output,
under the control of format. The argument
operands are treated as strings if the
corresponding conversion character is b, c or
s; otherwise, it is evaluated as a C con-
stant, as described by the ISO C standard,
with the following extensions:
+ A leading plus or minus sign is allowed.

+ If the leading character is a single- or
double-quote, the value is the numeric
value in the underlying codeset of the
character following the single- or
double-quote.

If an argument operand cannot be completely
converted into an internal value appropriate
to the corresponding conversion specifica-
tion, a diagnostic message is written to
standard error and the utility does not exit
with a zero exit status, but continues pro-
cessing any remaining operands and writes the
value accumulated at the time the error was
detected to standard output.

USAGE 
Note that this printf utility, like the printf(3S) function
on which it is based, makes no special provision for dealing
with multi-byte characters when using the %c conversion
specification or when a precision is specified in a %b or %s
conversion specification. Applications should be extremely
cautious using either of these features when there are
multi-byte characters in the character set.

Field widths and precisions cannot be specified as *.

For compatibility with previous versions of SunOS 5.x, the $
format specifier is supported for formats containing only %s
specifiers.



 - 268 - 

The %b conversion specification is not part of the ISO C
standard; it has been added here as a portable way to pro-
cess backslash escapes expanded in string operands as pro-
vided by the echo utility. See also the USAGE section of
the echo(1) manual page for ways to use printf as a replace-
ment for all of the traditional versions of the echo util-
ity.

If an argument cannot be parsed correctly for the
corresponding conversion specification, the printf utility
reports an error. Thus, overflow and extraneous characters
at the end of an argument being used for a numeric conver-
sion are to be reported as errors.

It is not considered an error if an argument operand is not
completely used for a c or s conversion or if a string
operand's first or second character is used to get the
numeric value of a character.

EXAMPLES 
To alert the user and then print and read a series of
prompts:

printf "\aPlease fill in the following: \nName: "
read name
printf "Phone number: "
read phone

To read out a list of right and wrong answers from a file,
calculate the percentage correctly, and print them out. The
numbers are right-justified and separated by a single tab
character. The percentage is written to one decimal place
of accuracy:

while read right wrong ; do
percent=$(echo "scale=1;($right*100)/($right+$wrong)"

| bc)
printf "%2d right\t%2d wrong\t(%s%%)\n" \

$right $wrong $percent
done < database_file

The command:

printf "%5d%4d\n" 1 21 321 4321 54321

produces:

1 21



 - 269 - 

3214321
54321 0

Note that the format operand is used three times to print
all of the given strings and that a 0 was supplied by printf
to satisfy the last %4d conversion specification.

The printf utility tells the user when conversion errors are
detected while producing numeric output; thus, the following
results would be expected on an implementation with 32-bit
twos-complement integers when %d is specified as the format
operand:

Standard
Argument Output Diagnostic Output

__________________________________________________________________
_

5a 5 printf: 5a not completely
converted

9999999999 2147483647 printf: 9999999999: Results too
large

-9999999999 -2147483648 printf: -9999999999: Results too
large

ABC 0 printf: ABC expected numeric
value

Note that the value shown on standard output is what would
be expected as the return value from the function
strtol(3C). A similar correspondence exists between %u and
strtoul(3C), and %e, %f and %g and strtod(3C).
In a locale using the ISO/IEC 646:1991 standard as the
underlying codeset, the command:

printf "%d\n" 3 +3 -3 \'3 \"+3 "'-3"

produces:

3 Numeric value of constant 3
3 Numeric value of constant 3
-3 Numeric value of constant -3
51 Numeric value of the character `3' in the ISO/IEC

646:1991 standard codeset
43 Numeric value of the character `+' in the ISO/IEC

646:1991 standard codeset
45 Numeric value of the character `-' in the SO/IEC

646:1991 standard codeset



 - 270 - 

Note that in a locale with multi-byte characters, the value
of a character is intended to be the value of the equivalent
of the wchar_t representation of the character.

If an argument operand cannot be completely converted into
an internal value appropriate to the corresponding conver-
sion specification, a diagnostic message is written to stan-
dard error and the utility does exit with a zero exit
status, but continues processing any remaining operands and
writes the value accumulated at the time the error was
detected to standard output.

ENVIRONMENT 
See environ(5) for descriptions of the following environment
variables that affect the execution of printf: LC_COLLATE,
LC_CTYPE, LC_MESSAGES, LC_TIME, TZ, and NLSPATH.

EXIT STATUS
The following exit values are returned:
0 Successful completion.
>0 An error occurred.

ATTRIBUTES 
See attributes(5) for descriptions of the following attri-
butes:

__________________________________
| ATTRIBUTE TYPE| ATTRIBUTE VALUE|
|_______________|_________________|
| Availability | SUNWloc |
| CSI | enabled |
|_______________|_________________|

SEE ALSO 
awk(1), bc(1), echo(1), printf(3S), strtod(3C), strtol(3C),
strtoul(3C), attributes(5), environ(5), formats(5)



 - 271 - 

ps 
ps - report process status

SYNOPSIS 
ps [ -aAcdefjlLPy ] [ -g grplist ] [ -n namelist ]

[[ -o format ] ... ] [ -p proclist ]
[ -s sidlist ] [ -t term ] [ -u uidlist ]
[ -U uidlist ] [ -G gidlist ]

DESCRIPTION 
The ps command prints information about active processes.
Without options, ps prints information about processes asso-
ciated with the controlling terminal. The output contains
only the process ID, terminal identifier, cumulative execu-
tion time, and the command name. Otherwise, the information
that is displayed is controlled by the options.

Some options accept lists as arguments. Items in a list can
be either separated by commas or else enclosed in quotes and
separated by commas or spaces. Values for proclist and
grplist must be numeric.

OPTIONS 
The following options are supported:

-a List information about all processes most
frequently requested: all those except pro-
cess group leaders and processes not associ-
ated with a terminal.

-A List information for all processes. Identi-
cal to -e, below.

-c Print information in a format that reflects
scheduler properties as described in
priocntl(1). The -c option affects the out-
put of the -f and -l options, as described
below.

-d List information about all processes except
session leaders.



 - 272 - 

-e List information about every process now run-
ning.

-f Generate a full listing. (See below for sig-
nificance of columns in a full listing.)

-g grplist List only process data whose group leader's
ID number(s) appears in grplist. (A group
leader is a process whose process ID number
is identical to its process group ID number.)

-G gidlist List information for processes whose real
group ID numbers are given in gidlist. The
gidlist must be a single argument in the form
of a blank- or comma-separated list.

-j Print session ID and process group ID.

-l Generate a long listing. (See below.)

-L Print information about each light weight
process (lwp) in each selected process. (See
below.)

-n namelist Specify the name of an alternative system
namelist file in place of the default. This
option is accepted for compatibility, but is
ignored.

-o format Print information according to the format
specification given in format. This is fully
described in DISPLAY FORMATS. Multiple -o
options can be specified; the format specifi-
cation will be interpreted as the space-
character-separated concatenation of all the
format option-arguments.

-p proclist List only process data whose process ID
numbers are given in proclist.

-P Print the number of the processor to which
the process or lwp is bound, if any, under an
additional column header, PSR.

-s sidlist List information on all session leaders whose
IDs appear in sidlist.

-t term List only process data associated with term.



 - 273 - 

Terminal identifiers are specified as a dev-
ice file name, and an identifier. For exam-
ple, term/a, or pts/0.

-u uidlist List only process data whose effective user
ID number or login name is given in uidlist.
In the listing, the numerical user ID will be
printed unless you give the -f option, which
prints the login name.

-U uidlist List information for processes whose real
user ID numbers or login names are given in
uidlist. The uidlist must be a single argu-
ment in the form of a blank- or comma-
separated list.

-y Under a long listing (-l), omit the obsolete
F and ADDR columns and include an RSS column
to report the resident set size of the pro-
cess. Under the -y option, both RSS and SZ
(see below) will be reported in units of
kilobytes instead of pages.

Many of the options shown are used to select processes to
list. If any are specified, the default list will be
ignored and ps will select the processes represented by the
inclusive OR of all the selection-criteria options.

DISPLAY FORMATS
Under the -f option, ps tries to determine the command name
and arguments given when the process was created by examin-
ing the user block. Failing this, the command name is
printed, as it would have appeared without the -f option, in
square brackets.

The column headings and the meaning of the columns in a ps
listing are given below; the letters f and l indicate the
option (full or long, respectively) that causes the
corresponding heading to appear; all means that the heading
always appears. Note: These two options determine only
what information is provided for a process; they do not
determine which processes will be listed.

F (l) Flags (hexadecimal and additive) associ-
ated with the process. These flags are
available for historical purposes; no
meaning should be currently ascribed to
them.



 - 274 - 

S (l) The state of the process:

O Process is running on a processor.
S Sleeping: process is waiting for an

event to complete.
R Runnable: process is on run queue.
Z Zombie state: process terminated

and parent not waiting.
T Process is stopped, either by a job

control signal or because it is
being traced.

UID (f,l) The effective user ID number of the pro-
cess (the login name is printed under
the -f option).

PID (all) The process ID of the process (this
datum is necessary in order to kill a
process).

PPID (f,l) The process ID of the parent process.

C (f,l) Processor utilization for scheduling
(obsolete). Not printed when the -c
option is used.

CLS (f,l) Scheduling class. Printed only when the
-c option is used.

PRI (l) The priority of the process. Without
the -c option, higher numbers mean lower
priority. With the -c option, higher
numbers mean higher priority.

NI (l) Nice value, used in priority computa-
tion. Not printed when the -c option is
used. Only processes in the certain
scheduling classes have a nice value.

ADDR (l) The memory address of the process.

SZ (l) The total size of the process in virtual
memory, including all mapped files and
devices, in pages. See pagesize(1).

WCHAN (l) The address of an event for which the
process is sleeping (if blank, the pro-



 - 275 - 

cess is running).

STIME (f) The starting time of the process, given
in hours, minutes, and seconds. (A pro-
cess begun more than twenty-four hours
before the ps inquiry is executed is
given in months and days.)

TTY (all) The controlling terminal for the process
(the message, ?, is printed when there
is no controlling terminal).

TIME (all) The cumulative execution time for the
process.

CMD (all) The command name (the full command name
and its arguments, up to a limit of 80
characters, are printed under the -f
option).

The following two additional columns are printed when the -j
option is specified:

PGID The process ID of the process group
leader.

SID The process ID of the session leader.

The following two additional columns are printed when the -L
option is specified:

LWP The lwp ID of the lwp being reported.

NLWP The number of lwps in the process (if -f
is also specified).

Under the -L option, one line is printed for each lwp in the
process and the time-reporting fields STIME and TIME show
the values for the lwp, not the process. A traditional
single-threaded process contains only one lwp.

A process that has exited and has a parent, but has not yet
been waited for by the parent, is marked <defunct>.

-o format
The -o option allows the output format to be specified under
user control.



 - 276 - 

The format specification must be a list of names presented
as a single argument, blank- or comma-separated. Each vari-
able has a default header. The default header can be over-
ridden by appending an equals sign and the new text of the
header. The rest of the characters in the argument will be
used as the header text. The fields specified will be writ-
ten in the order specified on the command line, and should
be arranged in columns in the output. The field widths will
be selected by the system to be at least as wide as the
header text (default or overridden value). If the header
text is null, such as -o user=, the field width will be at
least as wide as the default header text. If all header
text fields are null, no header line will be written.

The following names are recognized in the POSIX locale:

user The effective user ID of the process. This will
be the textual user ID, if it can be obtained
and the field width permits, or a decimal
representation otherwise.

ruser The real user ID of the process. This will be
the textual user ID, if it can be obtained and
the field width permits, or a decimal represen-
tation otherwise.

group The effective group ID of the process. This
will be the textual group ID, if it can be
obtained and the field width permits, or a
decimal representation otherwise.

rgroup The real group ID of the process. This will be
the textual group ID, if it can be obtained and
the field width permits, or a decimal represen-
tation otherwise.

pid The decimal value of the process ID.

ppid The decimal value of the parent process ID.

pgid The decimal value of the process group ID.

pcpu The ratio of CPU time used recently to CPU time
available in the same period, expressed as a
percentage. The meaning of ``recently'' in this
context is unspecified. The CPU time available
is determined in an unspecified manner.



 - 277 - 

vsz The total size of the process in virtual memory,
in kilobytes.

nice The decimal value of the system scheduling
priority of the process. See nice(1).

etime In the POSIX locale, the elapsed time since the
process was started, in the form:
[[dd-]hh:]mm:ss

where

dd will represent the number of days,
hh the number of hours,
mm the number of minutes, and
ss the number of seconds.

The dd field will be a decimal integer. The hh,
mm and ss fields will be two-digit decimal
integers padded on the left with zeros.

time In the POSIX locale, the cumulative CPU time of
the process in the form:
[dd-]hh:mm:ss

The dd, hh, mm, and ss fields will be as
described in the etime specifier.

tty The name of the controlling terminal of the pro-
cess (if any) in the same format used by the
who(1) command.

comm The name of the command being executed (argv[0]
value) as a string.

args The command with all its arguments as a string.
The implementation may truncate this value to
the field width; it is implementation-dependent
whether any further truncation occurs. It is
unspecified whether the string represented is a
version of the argument list as it was passed to
the command when it started, or is a version of
the arguments as they may have been modified by
the application. Applications cannot depend on
being able to modify their argument list and
having that modification be reflected in the
output of ps. The Solaris implementation limits
the string to 80 bytes; the string is the ver-



 - 278 - 

sion of the argument list as it was passed to
the command when it started.

The following names are recognized in the Solaris implemen-
tation:

f Flags (hexadecimal and additive) associated with
the process.

s The state of the process.

c Processor utilization for scheduling (obsolete).

uid The effective user ID number of the process as a
decimal integer.

ruid The real user ID number of the process as a
decimal integer.

gid The effective group ID number of the process as
a decimal integer.

rgid The real group ID number of the process as a
decimal integer.

sid The process ID of the session leader.

class The scheduling class of the process.

pri The priority of the process. Higher numbers
mean higher priority.

opri The obsolete priority of the process. Lower
numbers mean higher priority.

lwp The decimal value of the lwp ID. Requesting
this formatting option causes one line to be
printed for each lwp in the process.

nlwp The number of lwps in the process.

psr The number of the processor to which the process
or lwp is bound.

addr The memory address of the process.

osz The total size of the process in virtual memory,
in pages.



 - 279 - 

wchan The address of an event for which the process is
sleeping (if -, the process is running).

stime The starting time or date of the process,
printed with no blanks.

rss The resident set size of the process, in kilo-
bytes.

pmem The ratio of the process's resident set size to
the physical memory on the machine, expressed as
a percentage.

fname The first 8 bytes of the base name of the
process's executable file.

Only comm and args are allowed to contain blank characters;
all others, including the Solaris implementation variables,
are not.

The following table specifies the default header to be used
in the POSIX locale corresponding to each format specifier.

__________________________________________________________________
_____
| Format Specifier Default Header| Format Specifier Default
Header|

|__________________________________|______________________________
_____|
| args COMMAND | ppid PPID
|
| comm COMMAND | rgroup RGROUP
|
| etime ELAPSED | ruser RUSER
|
| group GROUP | time TIME
|
| nice NI | tty TT
|
| pcpu %CPU | user USER
|
| pgid PGID | vsz VSZ
|



 - 280 - 

| pid PID |
|

|__________________________________|______________________________
_____|

The following table lists the Solaris implementation format
specifiers and the default header used with each.

__________________________________________________________________
_____
| Format Specifier Default Header| Format Specifier Default
Header|

|__________________________________|______________________________
_____|
| addr ADDR | pri PRI
|
| c C | psr PSR
|
| class CLS | rgid RGID
|
| f F | rss RSS
|
| fname COMMAND | ruid RUID
|
| gid GID | s S
|
| lwp LWP | sid SID
|
| nlwp NLWP | stime STIME
|
| opri PRI | uid UID
|
| osz SZ | wchan WCHAN
|
| pmem %MEM |
|

|__________________________________|______________________________
_____|

EXAMPLES 
The command:

example% ps -o user,pid,ppid=MOM -o args



 - 281 - 

writes the following in the POSIX locale:

USER PID MOM COMMAND
helene 34 12 ps -o uid,pid,ppid=MOM -o args

The contents of the COMMAND field need not be the same due
to possible truncation.

ENVIRONMENT 
See environ(5) for descriptions of the following environment
variables that affect the execution of ps: LC_CTYPE,
LC_MESSAGES, LC_TIME, and NLSPATH.

COLUMNS Override the system-selected horizontal
screen size, used to determine the
number of text columns to display.

EXIT STATUS
The following exit values are returned:

0 Successful completion.

>0 An error occurred.

FILES
/dev/pts/*
/dev/term/* terminal (``tty'') names searcher files
/etc/passwd UID information supplier
/proc/* process control files
/tmp/ps_data internal data structure

ATTRIBUTES 
See attributes(5) for descriptions of the following attri-
butes:

______________________________________
| ATTRIBUTE TYPE| ATTRIBUTE VALUE |
|_______________|_____________________|
| Availability | SUNWcsu |
| CSI | Enabled (see NOTES)|
|_______________|_____________________|

SEE ALSO 
kill(1), nice(1), pagesize(1), priocntl(1), who(1),
getty(1M), proc(4), ttysrch(4), attributes(5), environ(5)



 - 282 - 

NOTES 
Things can change while ps is running; the snap-shot it
gives is true only for a split-second, and it may not be
accurate by the time you see it. Some data printed for
defunct processes is irrelevant.

If no options to select processes are specified, ps will
report all processes associated with the controlling termi-
nal. If there is no controlling terminal, there will be no
report other than the header.

ps -ef or ps -o stime may not report the actual start of a
tty login session, but rather an earlier time, when a getty
was last respawned on the tty line.

ps is CSI-enabled except for login names (usernames).



 - 283 - 

regexp 
regexp, compile, step, advance - simple regular expression
compile and match routines

SYNOPSIS 
#define INIT declarations
#define GETC(void) getc code
#define PEEKC(void) peekc code
#define UNGETC(void) ungetc code
#define RETURN(ptr) return code
#define ERROR(val) error code

#include <regexp.h>

char *compile(char *instring, char *expbuf,
const char *endbuf, int eof);

int step(const char *string, const char *expbuf);

int advance(const char *string, const char *expbuf);

extern char *loc1, *loc2, *locs;

DESCRIPTION 
Regular Expressions (REs) provide a mechanism to select
specific strings from a set of character strings. The Sim-
ple Regular Expressions described below differ from the
Internationalized Regular Expressions described on the
regex(5) manual page in the following ways:

+ only Basic Regular Expressions are supported

+ the Internationalization features-character class,
equivalence class, and multi-character collation-are
not supported.

The functions step(), advance(), and compile() are general
purpose regular expression matching routines to be used in
programs that perform regular expression matching. These
functions are defined by the <regexp.h> header.

The functions step() and advance() do pattern matching given
a character string and a compiled regular expression as



 - 284 - 

input.

The function compile() takes as input a regular expression
as defined below and produces a compiled expression that can
be used with step() or advance().

Basic Regular Expressions
A regular expression specifies a set of character strings.
A member of this set of strings is said to be matched by the
regular expression. Some characters have special meaning
when used in a regular expression; other characters stand
for themselves.

The following one-character REs match a single character:

1.1 An ordinary character (not one of those discussed in
1.2 below) is a one-character RE that matches itself.

1.2 A backslash (\) followed by any special character is a
one-character RE that matches the special character
itself. The special characters are:

a. ., *, [, and \ (period, asterisk, left square
bracket, and backslash, respectively), which are
always special, except when they appear within
square brackets ([]; see 1.4 below).

b. ^ (caret or circumflex), which is special at the
beginning of an entire RE (see 4.1 and 4.3 below),
or when it immediately follows the left of a pair
of square brackets ([]) (see 1.4 below).

c. $ (dollar sign), which is special at the end of an
entire RE (see 4.2 below).

d. The character used to bound (that is, delimit) an
entire RE, which is special for that RE (for exam-
ple, see how slash (/) is used in the g command,
below.)

1.3 A period (.) is a one-character RE that matches any
character except new-line.

1.4 A non-empty string of characters enclosed in square
brackets ([]) is a one-character RE that matches any
one character in that string. If, however, the first
character of the string is a circumflex (^), the one-



 - 285 - 

character RE matches any character except new-line and
the remaining characters in the string. The ^ has this
special meaning only if it occurs first in the string.
The minus (-) may be used to indicate a range of con-
secutive characters; for example, [0-9] is equivalent
to [0123456789]. The - loses this special meaning if
it occurs first (after an initial ^, if any) or last in
the string. The right square bracket (]) does not ter-
minate such a string when it is the first character
within it (after an initial ^, if any); for example,
[]a-f] matches either a right square bracket (]) or one
of the ASCII letters a through f inclusive. The four
characters listed in 1.2.a above stand for themselves
within such a string of characters.

The following rules may be used to construct REs from one-
character REs:

2.1 A one-character RE is a RE that matches whatever the
one-character RE matches.

2.2 A one-character RE followed by an asterisk (*) is a RE
that matches 0 or more occurrences of the one-character
RE. If there is any choice, the longest leftmost
string that permits a match is chosen.

2.3 A one-character RE followed by \{m\}, \{m,\}, or
\{m,n\} is a RE that matches a range of occurrences of
the one-character RE. The values of m and n must be
non-negative integers less than 256; \{m\} matches
exactly m occurrences; \{m,\} matches at least m
occurrences; \{m,n\} matches any number of occurrences
between m and n inclusive. Whenever a choice exists,
the RE matches as many occurrences as possible.

2.4 The concatenation of REs is a RE that matches the con-
catenation of the strings matched by each component of
the RE.

2.5 A RE enclosed between the character sequences \( and \)
is a RE that matches whatever the unadorned RE matches.

2.6 The expression \n matches the same string of characters
as was matched by an expression enclosed between \( and
\) earlier in the same RE. Here n is a digit; the
sub-expression specified is that beginning with the n-
th occurrence of \( counting from the left. For exam-
ple, the expression ^\(.*\)\1$ matches a line consist-



 - 286 - 

ing of two repeated appearances of the same string.

A RE may be constrained to match words.

3.1 \< constrains a RE to match the beginning of a string
or to follow a character that is not a digit, under-
score, or letter. The first character matching the RE
must be a digit, underscore, or letter.

3.2 \> constrains a RE to match the end of a string or to
precede a character that is not a digit, underscore, or
letter.

An entire RE may be constrained to match only an initial
segment or final segment of a line (or both).

4.1 A circumflex (^) at the beginning of an entire RE con-
strains that RE to match an initial segment of a line.

4.2 A dollar sign ($) at the end of an entire RE constrains
that RE to match a final segment of a line.

4.3 The construction ^entire RE$ constrains the entire RE
to match the entire line.

The null RE (for example, //) is equivalent to the last RE
encountered.

Addressing with REs
Addresses are constructed as follows:

1. The character "." addresses the current line.

2. The character "$" addresses the last line of the
buffer.

3. A decimal number n addresses the n-th line of the
buffer.

4. 'x addresses the line marked with the mark name charac-
ter x, which must be an ASCII lower-case letter (a-z).
Lines are marked with the k command described below.

5. A RE enclosed by slashes (/) addresses the first line
found by searching forward from the line following the
current line toward the end of the buffer and stopping
at the first line containing a string matching the RE.
If necessary, the search wraps around to the beginning



 - 287 - 

of the buffer and continues up to and including the
current line, so that the entire buffer is searched.

6. A RE enclosed in question marks (?) addresses the first
line found by searching backward from the line preced-
ing the current line toward the beginning of the buffer
and stopping at the first line containing a string
matching the RE. If necessary, the search wraps around
to the end of the buffer and continues up to and
including the current line.

7. An address followed by a plus sign (+) or a minus sign
(-) followed by a decimal number specifies that address
plus (respectively minus) the indicated number of
lines. A shorthand for .+5 is .5.

8. If an address begins with + or -, the addition or sub-
traction is taken with respect to the current line; for
example, -5 is understood to mean .-5.

9. If an address ends with + or -, then 1 is added to or
subtracted from the address, respectively. As a conse-
quence of this rule and of Rule 8, immediately above,
the address - refers to the line preceding the current
line. (To maintain compatibility with earlier versions
of the editor, the character ^ in addresses is entirely
equivalent to -.) Moreover, trailing + and - charac-
ters have a cumulative effect, so -- refers to the
current line less 2.

10. For convenience, a comma (,) stands for the address
pair 1,$, while a semicolon (;) stands for the pair
.,$.

Characters With Special Meaning
Characters that have special meaning except when they appear
within square brackets ([]) or are preceded by \ are: ., *,
[, \. Other special characters, such as $ have special
meaning in more restricted contexts.

The character ^ at the beginning of an expression permits a
successful match only immediately after a newline, and the
character $ at the end of an expression requires a trailing
newline.

Two characters have special meaning only when used within
square brackets. The character - denotes a range, [c-c],



 - 288 - 

unless it is just after the open bracket or before the clos-
ing bracket, [-c] or [c-] in which case it has no special
meaning. When used within brackets, the character ^ has the
meaning complement of if it immediately follows the open
bracket (example: [^c]); elsewhere between brackets (exam-
ple: [c^]) it stands for the ordinary character ^.

The special meaning of the \ operator can be escaped only by
preceding it with another \, for example \\.

Macros
Programs must have the following five macros declared before
the #include <regexp.h> statement. These macros are used by
the compile() routine. The macros GETC, PEEKC, and UNGETC
operate on the regular expression given as input to com-
pile().

GETC This macro returns the value of the next
character (byte) in the regular expression
pattern. Successive calls to GETC should
return successive characters of the regular
expression.

PEEKC This macro returns the next character (byte)
in the regular expression. Immediately suc-
cessive calls to PEEKC should return the same
character, which should also be the next
character returned by GETC.

UNGETC This macro causes the argument c to be
returned by the next call to GETC and PEEKC.
No more than one character of pushback is
ever needed and this character is guaranteed
to be the last character read by GETC. The
return value of the macro UNGETC(c) is always
ignored.

RETURN(ptr) This macro is used on normal exit of the com-
pile() routine. The value of the argument
ptr is a pointer to the character after the
last character of the compiled regular
expression. This is useful to programs which
have memory allocation to manage.

ERROR(val) This macro is the abnormal return from the
compile() routine. The argument val is an
error number (see ERRORS below for meanings).
This call should never return.



 - 289 - 

compile()
The syntax of the compile() routine is as follows:

compile(instring, expbuf, endbuf, eof)

The first parameter, instring, is never used explicitly by
the compile() routine but is useful for programs that pass
down different pointers to input characters. It is some-
times used in the INIT declaration (see below). Programs
which call functions to input characters or have characters
in an external array can pass down a value of (char *)0 for
this parameter.

The next parameter, expbuf, is a character pointer. It
points to the place where the compiled regular expression
will be placed.

The parameter endbuf is one more than the highest address
where the compiled regular expression may be placed. If the
compiled expression cannot fit in (endbuf-expbuf) bytes, a
call to ERROR(50) is made.

The parameter eof is the character which marks the end of
the regular expression. This character is usually a /.

Each program that includes the <regexp.h> header file must
have a #define statement for INIT. It is used for dependent
declarations and initializations. Most often it is used to
set a register variable to point to the beginning of the
regular expression so that this register variable can be
used in the declarations for GETC, PEEKC, and UNGETC. Oth-
erwise it can be used to declare external variables that
might be used by GETC, PEEKC and UNGETC. (See examples
below.)

step(), advance()
The first parameter to the step() and advance() functions is
a pointer to a string of characters to be checked for a
match. This string should be null terminated.

The second parameter, expbuf, is the compiled regular
expression which was obtained by a call to the function com-
pile().

The function step() returns non-zero if some substring of
string matches the regular expression in expbuf and 0 if



 - 290 - 

there is no match. If there is a match, two external char-
acter pointers are set as a side effect to the call to
step(). The variable loc1 points to the first character
that matched the regular expression; the variable loc2
points to the character after the last character that
matches the regular expression. Thus if the regular expres-
sion matches the entire input string, loc1 will point to the
first character of string and loc2 will point to the null at
the end of string.

The function advance() returns non-zero if the initial sub-
string of string matches the regular expression in expbuf.
If there is a match, an external character pointer, loc2, is
set as a side effect. The variable loc2 points to the next
character in string after the last character that matched.

When advance() encounters a * or \{ \} sequence in the regu-
lar expression, it will advance its pointer to the string to
be matched as far as possible and will recursively call
itself trying to match the rest of the string to the rest of
the regular expression. As long as there is no match,
advance() will back up along the string until it finds a
match or reaches the point in the string that initially
matched the * or \{ \}. It is sometimes desirable to stop
this backing up before the initial point in the string is
reached. If the external character pointer locs is equal to
the point in the string at sometime during the backing up
process, advance() will break out of the loop that backs up
and will return zero.

The external variables circf, sed, and nbra are reserved.

EXAMPLES 
The following is an example of how the regular expression
macros and calls might be defined by an application program:

#define INIT register char *sp = instring;
#define GETC (*sp++)
#define PEEKC (*sp)
#define UNGETC(c) (--sp)
#define RETURN(*c) return;
#define ERROR(c) regerr
#include <regexp.h>
. . .

(void) compile(*argv, expbuf, &expbuf[ESIZE],'\0');
. . .



 - 291 - 

if (step(linebuf, expbuf))
succeed;

DIAGNOSTICS
The function compile() uses the macro RETURN on success and
the macro ERROR on failure (see above). The functions
step() and advance() return non-zero on a successful match
and zero if there is no match. Errors are:

11 range endpoint too large.

16 bad number.

25 \ digit out of range.

36 illegal or missing delimiter.

41 no remembered search string.

42 \( \) imbalance.

43 too many \(.

44 more than 2 numbers given in \{ \}.

45 } expected after \.

46 first number exceeds second in \{ \}.

49 [ ] imbalance.

50 regular expression overflow.

SEE ALSO 
regex(5)



 - 292 - 

rm 
rm, rmdir - remove directory entries

SYNOPSIS 
/usr/bin/rm [-f] [-i] file...
/usr/bin/rm -rR [-f] [-i] dirname...[file...]

/usr/xpg4/bin/rm [ -fiRr ] file...

/usr/bin/rmdir [-ps] dirname...

DESCRIPTION 
/usr/bin/rm /usr/xpg4/bin/rm

The rm utility removes the directory entry specified by each
file argument. If a file has no write permission and the
standard input is a terminal, the full set of permissions
(in octal) for the file are printed followed by a question
mark. This is a prompt for confirmation. If the answer
begins with y (for yes), the file is deleted, otherwise the
file remains.

If file is a symbolic link, the link will be removed, but
the file or directory to which it refers will not be
deleted. Users do not need write permission to remove a
symbolic link, provided they have write permissions in the
directory.

If multiple files are specified and removal of a file fails
for any reason, rm will write a diagnostic message to stan-
dard error, do nothing more to the current file, and go on
to any remaining files.

If the standard input is not a terminal, the utility will
operate as if the -f option is in effect.

/usr/bin/rmdir
The rmdir utility will remove the directory entry specified
by each dirname operand, which must refer to an empty direc-
tory.

Directories will be processed in the order specified. If a
directory and a subdirectory of that directory are specified
in a single invocation of rmdir, the subdirectory must be



 - 293 - 

specified before the parent directory so that the parent
directory will be empty when rmdir tries to remove it.

OPTIONS 
The following options are supported for /usr/bin/rm and
/usr/xpg4/bin/rm:

-r Recursively remove directories and subdirectories in
the argument list. The directory will be emptied of
files and removed. The user is normally prompted for
removal of any write-protected files which the direc-
tory contains. The write-protected files are removed
without prompting, however, if the -f option is used,
or if the standard input is not a terminal and the -i
option is not used.

Symbolic links that are encountered with this option
will not be traversed.

If the removal of a non-empty, write-protected direc-
tory is attempted, the utility will always fail (even
if the -f option is used), resulting in an error mes-
sage.

-R Same as -r option.

/usr/bin/rm
The following options are supported for /usr/bin/rm only:

-f Remove all files (whether write-protected or not) in a
directory without prompting the user. In a write-
protected directory, however, files are never removed
(whatever their permissions are), but no messages are
displayed. If the removal of a write-protected direc-
tory is attempted, this option will not suppress an
error message.

-i Interactive. With this option, rm prompts for confir-
mation before removing any files. It overrides the -f
option and remains in effect even if the standard input
is not a terminal.

/usr/xpg4/bin/rm
The following options are supported for /usr/xpg4/bin/rm
only:



 - 294 - 

-f Do not prompt for confirmation. Do not write diagnostic
messages or modify the exit status in the case of non-
existent operands. Any previous occurences of the -i
option will be ignored.

-i Prompt for confirmation. Any occurences of the -f
option will be ignored.

/usr/bin/rmdir
The following options are supported for /usr/bin/rmdir only:

-p Allow users to remove the directory dirname and its
parent directories which become empty. A message is
printed on the standard error about whether the whole
path is removed or part of the path remains for some
reason.

-s Suppress the message printed on the standard error when
-p is in effect.

OPERANDS
The following operands are supported:

file A path name of a directory entry to be removed.

dirname A path name of an empty directory to be removed.

USAGE 
See largefile(5) for the description of the behavior of rm
and rmdir when encountering files greater than or equal to 2
Gbyte (2**31 bytes).

EXAMPLES 
/usr/bin/rm /usr/xpg4/bin/rm

The following command:
example% rm a.out core

removes the directory entries: a.out and core.

The following command:

example% rm -rf junk

removes the directory junk and all its contents, without
prompting.



 - 295 - 

/usr/bin/rmdir
If a directory a in the current directory is empty except it
contains a directory b and a/b is empty except it contains a
directory c,

example% rmdir -p a/b/c

will remove all three directories.

ENVIRONMENT 
See environ(5) for descriptions of the following environment
variables that affect the execution of rm and rmdir:
LC_COLLATE, LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS
The following exit values are returned:

0 If the -f option was not specified, all the named
directory entries were removed; otherwise, all the
existing named directory entries were removed.

>0 An error occurred.

ATTRIBUTES 
See attributes(5) for descriptions of the following attri-
butes:

/usr/bin/rm /usr/bin/rmdir
__________________________________
| ATTRIBUTE TYPE| ATTRIBUTE VALUE|
|_______________|_________________|
| Availability | SUNWcsu |
| CSI | enabled |
|_______________|_________________|

/usr/xpg4/bin/rm
__________________________________
| ATTRIBUTE TYPE| ATTRIBUTE VALUE|
|_______________|_________________|
| Availability | SUNWxcu4 |
| CSI | enabled |
|_______________|_________________|

SEE ALSO 
rmdir(2), unlink(2), attributes(5), environ(5), large-



 - 296 - 

file(5), xpg4(5)

DIAGNOSTICS
All messages are generally self-explanatory.

It is forbidden to remove the files "." and ".." in order
to avoid the consequences of inadvertently doing something
like the following:

rm -r .*

NOTES 
A -- permits the user to mark explicitly the end of any com-
mand line options, allowing rm to recognize file arguments
that begin with a -. As an aid to BSD migration, rm will
accept - as a synonym for --. This migration aid may disap-
pear in a future release. If a -- and a - both appear on
the same command line, the second will be interpreted as a
file.



 - 297 - 

script 
script - make record of a terminal session

SYNOPSIS 
script [ -a ] [ filename ]

DESCRIPTION 
script makes a record of everything printed on your screen.
The record is written to filename. If no file name is
given, the record is saved in the file typescript.

The script command forks and creates a sub-shell, according
to the value of $SHELL, and records the text from this ses-
sion. The script ends when the forked shell exits or when
CTRL-D is typed.

OPTIONS 
-a Append the session record to filename, rather than

overwrite it.

NOTES 
script places everything that appears on the screen in
filename, including prompts.

ATTRIBUTES 
See attributes(5) for descriptions of the following attri-
butes:

__________________________________
| ATTRIBUTE TYPE| ATTRIBUTE VALUE|
|_______________|_________________|
| Availability | SUNWcsu |
| CSI | enabled |
|_______________|_________________|

SEE ALSO 
attributes(5)



 - 298 - 

sed 
sed - stream editor

SYNOPSIS 
/usr/bin/sed [ -n ] script [ file ... ]
/usr/bin/sed [ -n ] [ -e script ] ...

[ -f script_file ] ... [ file ... ]

/usr/xpg4/bin/sed [ -n ] script [ file ... ]
/usr/xpg4/bin/sed [ -n ] [ -e script ] ...

[ -f script_file ] ... [ file ... ]

DESCRIPTION 
The sed utility is a stream editor that reads one or more
text files, makes editing changes according to a script of
editing commands, and writes the results to standard output.
The script is obtained from either the script operand
string, or a combination of the option-arguments from the -
e script and -f script_file options.

The sed utility is a text editor. It cannot edit binary
files or files containing ASCII NUL (\0) characters or very
long lines.

OPTIONS 
The following options are supported;

-e script script is an edit command for sed. See usage
below for more information on the format of
script. If there is just one -e option and
no -f options, the flag -e may be omitted.

-f script_file Take the script from script_file.
script_file consists of editing commands, one
per line.

-n Suppress the default output.

Multiple -e and -f options may be specified. All commands
are added to the script in the order specified, regardless
of their origin.



 - 299 - 

OPERANDS
The following operands are supported:

file A path name of a file whose contents will be
read and edited. If multiple file operands
are specified, the named files will be read
in the order specified and the concatenation
will be edited. If no file operands are
specified, the standard input will be used.

script A string to be used as the script of editing
commands. The application must not present a
script that violates the restrictions of a
text file except that the final character
need not be a NEWLINE character.

USAGE 
A script consists of editing commands, one per line, of the
following form:

[ address [ , address ] ] command [ arguments ]

Zero or more blank characters are accepted before the first
address and before command. Any number of semicolons are
accepted before the first address.

In normal operation, sed cyclically copies a line of input
(less its terminating NEWLINE character) into a pattern
space (unless there is something left after a D command),
applies in sequence all commands whose addresses select that
pattern space, and copies the resulting pattern space to the
standard output (except under -n) and deletes the pattern
space. Whenever the pattern space is written to standard
output or a named file, sed will immediately follow it with
a NEWLINE character.

Some of the commands use a hold space to save all or part of
the pattern space for subsequent retrieval. The pattern and
hold spaces will each be able to hold at least 8192 bytes.

sed Addresses
An address is either empty, a decimal number that counts
input lines cumulatively across files, a $ that addresses
the last line of input, or a context address, which consists
of a /regular expression/ as described on the regexp(5)
manual page.



 - 300 - 

A command line with no addresses selects every pattern
space.

A command line with one address selects each pattern space
that matches the address.

A command line with two addresses selects the inclusive
range from the first pattern space that matches the first
address through the next pattern space that matches the
second address. Thereafter the process is repeated, looking
again for the first address. (If the second address is a
number less than or equal to the line number selected by the
first address, only the line corresponding to the first
address is selected.)
Typically, address are separated from each other by a comma
(,). They may also be separated by a semicolon (;).

sed Regular Expressions
sed supports the basic regular expressions described on the
regexp(5) manual page, with the following additions:

\cREc In a context address, the construction \cREc,
where c is any character other than a
backslash or NEWLINE character, is identical
to /RE/. If the character designated by c
appears following a backslash, then it is
considered to be that literal character,
which does not terminate the RE. For exam-
ple, in the context address \xabc\xdefx, the
second x stands for itself, so that the regu-
lar expression is abcxdef.

\n The escape sequence \n matches a NEWLINE
character embedded in the pattern space. A
literal NEWLINE character must not be used in
the regular expression of a context address
or in the substitute command.

Editing commands can be applied only to non-selected pattern
spaces by use of the negation command ! (described below).

sed Editing Commands
In the following list of functions the maximum number of
permissible addresses for each function is indicated.

The r and w commands take an optional rfile (or wfile)
parameter, separated from the command letter by one or more



 - 301 - 

blank characters.

Multiple commands can be specified by separating them with a
semicolon (;) on the same command line.

The text argument consists of one or more lines, all but the
last of which end with \ to hide the NEWLINE. Each embedded
NEWLINE character in the text must be preceded by a
backslash. Other backslashes in text are removed and the
following character is treated literally. Backslashes in
text are treated like backslashes in the replacement string
of an s command, and may be used to protect initial blanks
and tabs against the stripping that is done on every script
line. The rfile or wfile argument must terminate the com-
mand line and must be preceded by exactly one blank. The
use of the wfile parameter causes that file to be initially
created, if it does not exist, or will replace the contents
of an existing file. There can be at most 10 distinct wfile
arguments.
Regular expressions match entire strings, not just indivi-
dual lines, but a NEWLINE character is matched by \n in a
sed RE; a NEWLINE character is not allowed in an RE. Also
note that \n cannot be used to match a NEWLINE character at
the end of an input line; NEWLINE characters appear in the
pattern space as a result of the N editing command.

Two of the commands take a command-list, which is a list of
sed commands separated by NEWLINE characters, as follows:

{ command
command
}

The { can be preceded with blank characters and can be fol-
lowed with white space. The commands can be preceded by
white space. The terminating } must be preceded by a NEW-
LINE character and can be preceded or followed by <blank>s.
The braces may be preceded or followed by <blank>s. The
command may be preceeded by <blank>s, but may not be fol-
lowed by <blank>s.

The following table lists the functions.

Maximum Command Description
Number of
Addresses
2 {command-list



 - 302 - 

} Execute command-list only when the
pattern

space is selected.
1 a\

text Append by executing N command or
beginning

a new cycle. Place text on the output
before reading the next input line.

2 b label Branch to the : command bearing the
label.

If label is empty, branch to the end of
the script. Labels are recognized unique
up to eight characters.

2 c\
text Change. Delete the pattern space. Place

text on the output. Start the next
cycle.

2 d Delete the pattern space. Start the next
cycle.

2 D Delete the initial segment of the pattern
space through the first new-line. Start
the next cycle. (See the N command

below.)

2 g Replace the contents of the pattern space
by the contents of the hold space.

2 G Append the contents of the hold space to
the pattern space.

2 h Replace the contents of the hold space by
the contents of the pattern space.

2 H Append the contents of the pattern space
to the hold space.

1 i\
text Insert. Place text on the standard

output.

2 l usr/bin/sed: List the pattern space on
the standard output in an unambiguous

form.
Non-printable characters are displayed in



 - 303 - 

octal notation and long lines are folded.

usr//xpg4/bin/sed: List the pattern space
on

the standard output in an unambiguous
form.

Non-printable characters are displayed in
octal notation and long lines are folded.
The characters (\\, \a, \b, \f, \r, \t,
and \v) are written as the corresponding
escape sequences. Non-printable

characters
not in that table will be written as one
three-digit octal number (with a

preceding
backslash character) for each byte in the
character (most significant byte first).
If the size of a byte on the system is
greater than nine bits, the format used
for non-printable characters is
implementation-dependent.

Long lines will be folded, with the point
of folding indicated by writing a
backslash followed by a newline

character;
the length at which folding occurs is
unspecified, but should be appropriate
for the output device. The end of each
line will be marked with a $.

2 n Copy the pattern space to the standard
output if default is not suppressed.
Replace the pattern space with the
next line of input.

2 N Append the next line of input to the
pattern space with an embedded new-line.
(The current line number changes.) If the
end of input is reached, the N command
verb shall branch to the end of the

script
and quit without starting a new cycle.

2 p Print. Copy the pattern space to the
standard output.



 - 304 - 

2 P Copy the initial segment of the pattern
space through the first new-line to the
standard output.

1 q Quit. Branch to the end of the script.
Do not start a new cycle.

2 r rfile Read the contents of rfile. Place them
on the output before reading the next
input line.

Maximum Command Description
Number of
Addresses

2 t label Test. Branch to the : command
bearing

the label if any substitutions have
been made since the most recent

reading
of an input line or execution of a t.
If label is empty, branch to the end
of the script.

2 w wfile Write. Append the pattern space to
wfile. The first occurrence of w
will cause wfile to be cleared.
Subsequent invocations of w will
append. Each time the sed command is
used, wfile is overwritten.

2 x Exchange the contents of the pattern
and hold spaces.

2 ! command Don't. Apply the command (or group,
if command is {) only to lines
not selected by the address(es).

0 : label This command does nothing; it bears
a label for b and t commands
to branch to.

1 = Place the current line number on the
standard output as a line.

2 { Execute the following commands
through



 - 305 - 

a matching } only when the pattern
space is selected.

0 An empty command is ignored.

0 # If a # appears as the first character
on a line of a script file, then that
entire line is treated as a comment,
with one exception: if a # appears
on the first line and the character
after the # is an n, then the
default output will be suppressed.
The rest of the line after #n is
also ignored. A script file must
contain at least one non-comment
line.

Maximum Command (Using strings) and Description
Number of
Addresses

2 s/regular expression/replacement/flags
Substitute the replacement string for instances
of the regular expression in the pattern space.
Any character other than backslash or newline can
be used instead of a slash to delimit the RE and
the replacement. Within the RE and the

replacement,
the RE delimiter itself can be used as a literal
character if it is preceded by a backslash.

An ampersand (&) appearing in the replacement
will be replaced by the string matching the RE.
The special meaning of & in this context can
be suppressed by preceding it by backslash. The
characters \n, where n is a digit,
will be replaced by the text matched by the
corresponding backreference expression. For
each backslash (\) encountered in scanning
replacement from beginning to end, the
following character loses its special meaning
(if any). It is unspecified what special
meaning is given to any character other
than &, \ or digits.

A line can be split by substituting a newline
character into it. The application must escape
the newline character in the replacement by



 - 306 - 

preceding it by backslash. A substitution is
considered to have been performed even if the
replacement string is identical to the string
that it replaces. For a fuller description
see ed(1). flags is zero or more of:

n
n= 1 - 512. Substitute for just the nth
occurrence of the regular expression.

g
Global. Substitute for all nonoverlapping
instances of the regular expression rather
than just the first one. If both g and n are
specified, the results are unspecified.

p
Print the pattern space if a replacement
was made.

w wfile
Write. Append the pattern space to wfile

if a replacement was made. The first
occurrence

of w will cause wfile to be cleared.
Subsequent invocations of w will append.
Each time the sed command is used, wfile
is overwritten.

2 y/string1/string2/
Transform. Replace all occurrences of characters
in string1 with the corresponding characters in
string2. string1 and string2 must have the same
number of characters, or if any of the characters
in string1 appear more than once, the results
are undefined. Any character other than backslash
or newline can be used instead of slash to
delimit the strings. Within string1 and
string2, the delimiter itself can be
used as a literal character if it is
preceded by a backslash. For example, y/abc/ABC/
replaces a with A, b with B, and c with C.

See largefile(5) for the description of the behavior of sed
when encountering files greater than or equal to 2 Gbyte
(2**31 bytes).



 - 307 - 

EXAMPLES 
This sed script simulates the BSD cat -s command, squeezing
excess blank lines from standard input.

sed -n '
# Write non-empty lines.
/./ {

p
d
}

# Write a single empty line, then look for more empty
lines.

/^$/ p
# Get next line, discard the held <newline> (empty

line),
# and look for more empty lines.
:Empty
/^$/ {

N
s/.//
b Empty
}

# Write the non-empty line before going back to search
# for the first in a set of empty lines.

p
'

ENVIRONMENT 
See environ(5) for descriptions of the following environment
variables that affect the execution of sed: LC_COLLATE,
LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS
The following exit values are returned:

0 Successful completion.

>0 An error occurred.

ATTRIBUTES 
See attributes(5) for descriptions of the following attri-
butes:

/usr/bin/sed
__________________________________
| ATTRIBUTE TYPE| ATTRIBUTE VALUE|



 - 308 - 

|_______________|_________________|
| Availability | SUNWcsu |
| CSI | Not enabled |
|_______________|_________________|

/usr/xpg4/bin/sed
__________________________________
| ATTRIBUTE TYPE| ATTRIBUTE VALUE|
|_______________|_________________|
| Availability | SUNWxcu4 |
| CSI | Enabled |
|_______________|_________________|

SEE ALSO 
awk(1), ed(1), grep(1), attributes(5), environ(5), large-
file(5), regexp(5), xpg4(5)



 - 309 - 

shutdown 
shutdown - shut down system, change system state

SYNOPSIS 
/usr/sbin/shutdown [ -y ] [ -g grace-period ]

[ -i init-state ] [ message ]

DESCRIPTION 
shutdown is executed by the super-user to change the state
of the machine. In most cases, it is used to change from
the multi-user state (state 2) to another state.

By default, shutdown brings the system to a state where only
the console has access to the operating system. This state
is called single-user.

Before starting to shut down daemons and killing processes,
shutdown sends a warning message and, by default, a final
message asking for confirmation. message is a string that
is sent out following the standard warning message "The sys-
tem will be shut down in ..." If the string contains more
than one word, it should be contained within single (') or
double (") quotation marks.

The warning message and the user provided message are output
when there are 7200, 3600, 1800, 1200, 600, 300, 120, 60,
and 30 seconds remaining before shutdown begins. See EXAM-
PLES.

System state definitions are:

state 0 Stop the operating system.

state 1 State 1 is referred to as the administrative
state. In state 1 file systems required for
multi-user operations are mounted, and logins
requiring access to multi-user file systems
can be used. When the system comes up from
firmware mode into state 1, only the console
is active and other multi-user (state 2) ser-
vices are unavailable. Note that not all
user processes are stopped when transitioning
from multi-user state to state 1.



 - 310 - 

state s, S State s (or S) is referred to as the single-
user state. All user processes are stopped
on transitions to this state. In the
single-user state, file systems required for
multi-user logins are unmounted and the sys-
tem can only be accessed through the console.
Logins requiring access to multi-user file
systems cannot be used.

state 5 Shut the machine down so that it is safe to
remove the power. Have the machine remove
power, if possible. The rc0 procedure is
called to perform this task.

state 6 Stop the operating system and reboot to the
state defined by the initdefault entry in
/etc/inittab. The rc6 procedure is called to
perform this task.

OPTIONS 
-y Pre-answer the confirmation question so the

command can be run without user intervention.

-g grace-period
Allow the super-user to change the number of
seconds from the 60-second default.

-i init-state If there are warnings, init-state specifies
the state init is to be in. By default, sys-
tem state \�>qspq is used.

EXAMPLES 
In the following example, shutdown is being executed on host
foo and is scheduled in 120 seconds. The warning message is
output 2 minutes, 1 minute, and 30 seconds before the final
confirmation message.

example# shutdown -i S -g 120 "===== disk replacement
====="

Shutdown started. Tue Jun 7 14:51:40 PDT 1994
Broadcast Message from root (pts/1) on foo Tue Jun 7

14:51:41...
The system will be shut down in 2 minutes
===== disk replacement =====



 - 311 - 

Broadcast Message from root (pts/1) on foo Tue Jun 7
14:52:41...

The system will be shut down in 1 minutes
===== disk replacement =====
Broadcast Message from root (pts/1) on foo Tue Jun 7

14:53:41...
The system will be shut down in 30 seconds
===== disk replacement =====
Do you want to continue? (y or n):

FILES
/etc/inittab controls process dispatching by init

ATTRIBUTES 
See attributes(5) for descriptions of the following
attributes:

__________________________________
| ATTRIBUTE TYPE| ATTRIBUTE VALUE|
|_______________|_________________|
| Availability | SUNWcsu |
|_______________|_________________|

SEE ALSO 
boot(1M), halt(1M), init(1M), killall(1M), reboot(1M),
ufsdump(1M), init.d(4), inittab(4), nologin(4), attri-
butes(5)



 - 312 - 

sleep 
sleep - suspend execution for an interval

SYNOPSIS 
sleep time

DESCRIPTION 
The sleep utility will suspend execution for at least the
integral number of seconds specified by the time operand.

OPERANDS
The following operands are supported:

time A non-negative decimal integer specifying the
number of seconds for which to suspend execution.

EXAMPLES 
To execute a command after a certain amount of time:

(sleep 105; command)&

or to execute a command every so often:

while true
do

command
sleep 37

done

ENVIRONMENT 
See environ(5) for descriptions of the following environment
variables that affect the execution of sleep: LC_CTYPE,
LC_MESSAGES, and NLSPATH.

EXIT STATUS
The following exit values are returned:

0 The execution was successfully suspended for at
least time seconds, or a SIGALRM signal was
received (see NOTES).



 - 313 - 

>0 An error has occurred.

ATTRIBUTES 
See attributes(5) for descriptions of the following attri-
butes:

__________________________________
| ATTRIBUTE TYPE| ATTRIBUTE VALUE|
|_______________|_________________|
| Availability | SUNWcsu |
|_______________|_________________|

SEE ALSO 
wait(1), alarm(2), sleep(3C), wait(3B), attributes(5),
environ(5)

NOTES 
If the sleep utility receives a SIGALRM signal, one of the
following actions will be taken:

+ Terminate normally with a zero exit status.

+ Effectively ignore the signal.

The sleep utility will take the standard action for all
other signals.



 - 314 - 

sort 
sort - sort, merge, or sequence check text files

SYNOPSIS 
/usr/bin/sort [ -cmu ] [ -o output ] [ -T directory ]

[ -y [ kmem ]] [ -z recsz ] [ -dfiMnr ] [ -b ] [
-t char ]

[ -k keydef ] [ +pos1 [ -pos2 ]] [ file...]

/usr/xpg4/bin/sort [ -cmu ] [ -o output ]
[ -T directory ] [ -y [ kmem ]] [ -z recsz ] [ -dfiMnr

] [ -b ] [ -t char ]
[ -k keydef ] [ +pos1 [ -pos2 ]] [ file...]

DESCRIPTION 
The sort command sorts lines of all the named files together
and writes the result on the standard output.

Comparisons are based on one or more sort keys extracted
from each line of input. By default, there is one sort key,
the entire input line. Lines are ordered according to the
collating sequence of the current locale.

OPTIONS 
The following options alter the default behavior:

/usr/bin/sort
-c Check that the single input file is ordered as

specified by the arguments and the collating
sequence of the current locale. The exit code is
set and no output is produced unless the file is
out of sort.

/usr/xpg4/bin/sort
-c Same as /usr/bin/sort except no output is produced

under any circumstances.

-m Merge only. The input files are assumed to be
already sorted.

-u Unique: suppress all but one in each set of lines
having equal keys. If used with the -c option,



 - 315 - 

check that there are no lines with duplicate keys
in addition to checking that the input file is
sorted.

-o output Specify the name of an output file to be used
instead of the standard output. This file can be
the same as one of the input files.

-T directory
The directory argument is the name of a directory
in which to place temporary files.

-y kmem The amount of main memory initially used by sort.
If this option is omitted, sort begins using a
system default memory size, and continues to use
more space as needed. If kmem is present, sort
will start using that number of Kbytes of memory,
unless the administrative minimum or maximum is
exceeded, in which case the corresponding extremum
will be used. Thus, -y 0 is guaranteed to start
with minimum memory. -y with no kmem argument
starts with maximum memory.

-z recsz (obsolete). This option was used to prevent
abnormal termination when lines longer than the
system-dependent default buffer size are encoun-
tered. Because sort automatically allocates
buffers large enough to hold the longest line,
this option has no effect.

Ordering options
The following options override the default ordering rules.
When ordering options appear independent of any key field
specifications, the requested field ordering rules are
applied globally to all sort keys. When attached to a
specific key (see Sort Key Options), the specified ordering
options override all global ordering options for that key.
In the obsolescent forms, if one or more of these options
follows a +pos1 option, it will affect only the key field
specified by that preceding option.

-d ``Dictionary'' order: only letters, digits, and
blanks (spaces and tabs) are significant in com-
parisons.

-f Fold lower-case letters into upper case.



 - 316 - 

-i Ignore non-printable characters.

-M Compare as months. The first three non-blank
characters of the field are folded to upper case
and compared. For example, in English the sorting
order is "JAN" < "FEB" < ... < "DEC". Invalid
fields compare low to "JAN". The -M option
implies the -b option (see below).

-n Restrict the sort key to an initial numeric
string, consisting of optional blank characters,
optional minus sign, and zero or more digits with
an optional radix character and thousands separa-
tors (as defined in the current locale), which
will be sorted by arithmetic value. An empty
digit string is treated as zero. Leading zeros
and signs on zeros do not affect ordering.

-r Reverse the sense of comparisons.

Field Separator options
The treatment of field separators can be altered using the
following options:

-b Ignore leading blank characters when determining
the starting and ending positions of a restricted
sort key. If the -b option is specified before
the first sort key option, it is applied to all
sort key options. Otherwise, the -b option can be
attached independently to each -k field_start,
field_end, or +pos1 or -pos2 option-argument (see
below).

-t char Use char as the field separator character. char
is not considered to be part of a field (although
it can be included in a sort key). Each
occurrence of char is significant (for example,
<char><char> delimits an empty field). If -t is
not specified, blank characters are used as
default field separators; each maximal non-empty
sequence of blank characters that follows a non-
blank character is a field separator.

Sort Key options
Sort keys can be specified using the options:

-k keydef The keydef argument is a restricted sort key field



 - 317 - 

definition. The format of this definition is:
-k field_start [ type ] [ ,field_end [ type ]
]

where:

field_start and field_end
define a key field restricted to a por-
tion of the line.

type is a modifier from the list of charac-
ters bdfiMnr. The b modifier behaves
like the -b option, but applies only to
the field_start or field_end to which it
is attached and characters within a
field are counted from the first non-
blank character in the field. (This
applies separately to first_character
and last_character.) The other modif-
iers behave like the corresponding
options, but apply only to the key field
to which they are attached. They have
this effect if specified with
field_start, field_end or both. If any
modifier is attached to a field_start or
to a field_end, no option applies to
either.

When there are multiple key fields, later keys are
compared only after all earlier keys compare
equal. Except when the -u option is specified,
lines that otherwise compare equal are ordered as
if none of the options -d, -f, -i, -n or -k were
present (but with -r still in effect, if it was
specified) and with all bytes in the lines signi-
ficant to the comparison.

The notation:

-k field_start[type][,field_end[type]]

defines a key field that begins at field_start and
ends at field_end inclusive, unless field_start
falls beyond the end of the line or after
field_end, in which case the key field is empty.
A missing field_end means the last character of
the line.



 - 318 - 

A field comprises a maximal sequence of non-
separating characters and, in the absence of
option -t, any preceding field separator.

The field_start portion of the keydef option-
argument has the form:

field_number[.first_character]

Fields and characters within fields are numbered
starting with 1. field_number and
first_character, interpreted as positive decimal
integers, specify the first character to be used
as part of a sort key. If .first_character is
omitted, it refers to the first character of the
field.

The field_end portion of the keydef option-
argument has the form:

field_number[.last_character]

The field_number is as described above for
field_start. last_character, interpreted as a
non-negative decimal integer, specifies the last
character to be used as part of the sort key. If
last_character evaluates to zero or
.last_character is omitted, it refers to the last
character of the field specified by field_number.

If the -b option or b type modifier is in effect,
characters within a field are counted from the
first non-blank character in the field. (This
applies separately to first_character and
last_character.)

[+pos1[-pos2]]
(obsolete). Provide functionality equivalent to
the -k keydef option.

pos1 and pos2 each have the form m.n optionally
followed by one or more of the flags bdfiMnr. A
starting position specified by +m.n is interpreted
to mean the n+1st character in the m+1st field. A
missing .n means .0, indicating the first charac-
ter of the m+1st field. If the b flag is in
effect n is counted from the first non-blank in



 - 319 - 

the m+1st field; +m.0b refers to the first non-
blank character in the m+1st field.

A last position specified by -m.n is interpreted
to mean the nth character (including separators)
after the last character of the mth field. A
missing .n means .0, indicating the last character
of the mth field. If the b flag is in effect n is
counted from the last leading blank in the m+1st
field; -m.1b refers to the first non-blank in the
m+1st field.

The fully specified +pos1 -pos2 form with type
modifiers T and U:

+w.xT -y.zU

is equivalent to:

undefined (z==0 & U contains b & -t is
present)

-k w+1.x+1T,y.0U (z==0 otherwise)
-k w+1.x+1T,y+1.zU (z > 0)

Implementations support at least nine occurrences
of the sort keys (the -k option and obsolescent
+pos1 and -pos2) which are significant in command
line order. If no sort key is specified, a
default sort key of the entire line is used.

OPERANDS
The following operand is supported:
file A path name of a file to be sorted, merged or

checked. If no file operands are specified, or if
a file operand is -, the standard input will be
used.

USAGE 
See largefile(5) for the description of the behavior of sort
when encountering files greater than or equal to 2 Gbyte
(2**31 bytes).

EXAMPLES 
In the following examples, non-obsolescent and obsolescent
ways of specifying sort keys are given as an aid to under-
standing the relationship between the two forms.



 - 320 - 

Either of the following commands sorts the contents of
infile with the second field as the sort key:

example% sort -k 2,2 infile
example% sort +1 -2 infile

Either of the following commands sorts, in reverse order,
the contents of infile1 and infile2, placing the output in
outfile and using the second character of the second field
as the sort key (assuming that the first character of the
second field is the field separator):

example% sort -r -o outfile -k 2.2,2.2 infile1 infile2
example% sort -r -o outfile +1.1 -1.2 infile1 infile2

Either of the following commands sorts the contents of
infile1 and infile2 using the second non-blank character of
the second field as the sort key:

example% sort -k 2.2b,2.2b infile1 infile2
example% sort +1.1b -1.2b infile1 infile2

Either of the following commands prints the passwd(4) file
(user database) sorted by the numeric user ID (the third
colon-separated field):

example% sort -t : -k 3,3n /etc/passwd
example% sort -t : +2 -3n /etc/passwd

Either of the following commands prints the lines of the
already sorted file infile, suppressing all but one
occurrence of lines having the same third field:

example% sort -um -k 3.1,3.0 infile
example% sort -um +2.0 -3.0 infile

ENVIRONMENT 
See environ(5) for descriptions of the following environment
variables that affect the execution of sort: LC_COLLATE,
LC_MESSAGES, and NLSPATH.

LC_CTYPE Determine the locale for the interpretation
of sequences of bytes of text data as charac-
ters (for example, single- versus multi-byte
characters in arguments and input files) and
the behavior of character classification for



 - 321 - 

the -b, -d, -f, -i and -n options.

LC_NUMERIC Determine the locale for the definition of
the radix character and thousands separator
for the -n option.

EXIT STATUS
The following exit values are returned:

0 All input files were output successfully, or -c
was specified and the input file was correctly
sorted.

1 Under the -c option, the file was not ordered as
specified, or if the -c and -u options were both
specified, two input lines were found with equal
keys.

>1 An error occurred.

FILES
/var/tmp/stm??? temporary files

ATTRIBUTES 
See attributes(5) for descriptions of the following attri-
butes:

/usr/bin/sort
__________________________________
| ATTRIBUTE TYPE| ATTRIBUTE VALUE|
|_______________|_________________|
| Availability | SUNWesu |
| CSI | Enabled |
|_______________|_________________|

/usr/xpg4/bin/sort
__________________________________
ATTRIBUTE TYPE ATTRIBUTE VALUE
__________________________________
Availability SUNWxcu4
CSI Enabled
__________________________________
| | |

SEE |�ALSO | |
|comm(1), join|�(1), uniq(1), |�passwd(4),

attributes(5),



 - 322 - 

|environ(5), lar|�gefile(5), xpg4(5)|
| | |

DIAG|�NOSTICS | |
|Comments and ex|�its with non-zero |�status for various

trouble
|conditions (for|example, when inp|�ut lines are too long),

and
|for disorders d|�iscovered under th|�e -c option.
| | |

NOTE|�S | |
|When the last l|�ine of an input fi|�le is missing a new-

line
|character, sor|�t appends one, pr|�ints a warning message,

and
|continues. | |
| | |
|sort does not g|�uarantee preservat|�ion of relative line

order-
|ing on equal ke|�ys. |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |



 - 323 - 

| | |



 - 324 - 

spell 
spell, hashmake, spellin, hashcheck - report spelling errors

SYNOPSIS 
spell [ -bilvx ]

[ +local_file ] [ file]...

/usr/lib/spell/hashmake

/usr/lib/spell/spellin n

/usr/lib/spell/hashcheck spelling_list

DESCRIPTION 
The spell command collects words from the named files and
looks them up in a spelling list. Words that neither occur
among nor are derivable (by applying certain inflections,
prefixes, or suffixes) from words in the spelling list are
written to the standard output.

If there are no file arguments, words to check are collected
from the standard input. spell ignores most troff(1),
tbl(1), and eqn(1) constructs. Copies of all output words
are accumulated in the history file (spellhist), and a stop
list filters out misspellings (for example, their=thy-y+ier)
that would otherwise pass.

By default, spell (like deroff(1)) follows chains of
included files (.so and .nx troff(1) requests), unless the
names of such included files begin with /usr/lib.

The standard spelling list is based on many sources, and
while more haphazard than an ordinary dictionary, is also
more effective in respect to proper names and popular techn-
ical words. Coverage of the specialized vocabularies of
biology, medicine and chemistry is light.

Three programs help maintain and check the hash lists used
by spell:

hashmake Reads a list of words from the standard input
and writes the corresponding nine-digit hash
code on the standard output.



 - 325 - 

spellin Reads n hash codes from the standard input and
writes a compressed spelling list on the stan-
dard output.

hashcheck Reads a compressed spelling_list and recreates
the nine-digit hash codes for all the words in
it. It writes these codes on the standard out-
put.

OPTIONS 
The following options are supported:

-b Check British spelling. Besides preferring
"centre," "colour," "programme," "speciality,"
"travelled," and so forth, this option insists
upon -ise in words like "standardise."

-i Cause deroff(1) to ignore .so and .nx commands.
If deroff(1) is not present on the system, then
this option is ignored.

-l Follow the chains of all included files.

-v Print all words not literally in the spelling
list, as well as plausible derivations from the
words in the spelling list.

-x Print every plausible stem, one per line, with =
preceding each word.

+local_file Specify a set of words that are correct spel-
lings (in addition to spell's own spelling list)
for each job. local_file is the name of a
user-provided file that contains a sorted list
of words, one per line. Words found in
local_file are removed from spell's output. Use
sort(1) to order local_file in ASCII collating
sequence. If this ordering is not followed,
some entries in local_file may be ignored.

OPERANDS
The following operands are supported:

file A path name of a text file to check for spelling
errors. If no files are named, words are col-
lected from the standard input.



 - 326 - 

ENVIRONMENT 
See environ(5) for descriptions of the following environment
variables that affect the execution of spell: LC_CTYPE,
LC_MESSAGES, and NLSPATH.

EXIT STATUS
The following exit values are returned:
0 Successful completion.
>0 An error occurred.

FILES
D_SPELL=/usr/lib/spell/hlist[ab] hashed spelling lists,

American & British
S_SPELL=/usr/lib/spell/hstop hashed stop list
H_SPELL=/var/adm/spellhist history file
/usr/share/lib/dict/words master dictionary

ATTRIBUTES 
See attributes(5) for descriptions of the following attri-
butes:

__________________________________
| ATTRIBUTE TYPE| ATTRIBUTE VALUE|
|_______________|_________________|
| Availability | SUNWesu |
|_______________|_________________|

SEE ALSO 
deroff(1), eqn(1), sort(1), tbl(1), troff(1), attributes(5),
environ(5)

NOTES 
Misspelled words can be monitored by default by setting the
H_SPELL variable in /usr/bin/spell to the name of a file
that has permission mode 666.

spell works only on English words defined in the U.S. ASCII
codeset.

Because copies of all output are accumulated in the
spellhist file, spellhist may grow quite large and require
purging.



 - 327 - 

BUGS
The spelling list's coverage is uneven; new installations
may wish to monitor the output for several months to gather
local additions.

British spelling was done by an American.



 - 328 - 

sum 
sum - print checksum and block count for a file

SYNOPSIS 
sum [-r] [file...]

DESCRIPTION 
The sum utility calculates and prints a 16-bit checksum for
the named file and the number of 512-byte blocks in the
file. It is typically used to look for bad spots, or to
validate a file communicated over some transmission line.

OPTIONS 
The following options are supported:

-r Use an alternate (machine-dependent) algorithm in com-
puting the checksum.

OPERANDS
The following operands are supported:

file A path name of a file. If no files are named, the
standard input is used.

USAGE 
See largefile(5) for the description of the behavior of sum
when encountering files greater than or equal to 2 Gbyte
(2**31 bytes).

ENVIRONMENT 
See environ(5) for descriptions of the following environment
variables that affect the execution of sum: LC_CTYPE,
LC_MESSAGES, and NLSPATH.

EXIT STATUS
The following exit values are returned.

0 Successful completion.

>0 An error occurred.



 - 329 - 

ATTRIBUTES 
See attributes(5) for descriptions of the following attri-
butes:

__________________________________
| ATTRIBUTE TYPE| ATTRIBUTE VALUE|
|_______________|_________________|
| Availability | SUNWesu |
| CSI | enabled |
|_______________|_________________|

SEE ALSO 
cksum(1), sum(1B), wc(1), attributes(5), environ(5), large-
file(5)

DIAGNOSTICS
"Read error" is indistinguishable from end of file on most
devices; check the block count.

NOTES 
Portable applications should use cksum(1).

sum and usr/ucb/sum (see sum(1B)) return different check-
sums.



 - 330 - 

tar 
tar - create tape archives and add or extract files

SYNOPSIS 
tar c [bBefFhiklnopPqvwX [ 0-7 ]] [ block ] [ tarfile ]

[ exclude-file ] { -I include-file |
-C directory file | file } ...

tar r [ bBefFhiklnqvw [ 0-7 ]] [ block ]
{ -I include-file | -C directory file | file } ...

tar t [ BefFhiklnqvX [ 0-7 ]] [ tarfile ]
[ exclude-file ] { -I include-file | file } ...

tar u [ bBefFhiklnqvw [ 0-7 ]] [ block ] [ tarfile ]
file ...

tar x [ BefFhiklmnopqvwX [ 0-7 ]] [ tarfile ]
[ exclude-file ] [ file ... ]

DESCRIPTION 
The tar command archives and extracts files to and from a
single file called a tarfile. A tarfile is usually a mag-
netic tape, but it can be any file. tar's actions are con-
trolled by the key argument. The key is a string of charac-
ters containing exactly one function letter (c, r, t , u, or
x) and zero or more function modifiers (letters or digits),
depending on the function letter used. The key string con-
tains no SPACE characters. Function modifier arguments are
listed on the command line in the same order as their
corresponding function modifiers appear in the key string.

The -I include-file, -C directory file, and file arguments
specify which files or directories are to be archived or
extracted. In all cases, appearance of a directory name
refers to the files and (recursively) subdirectories of that
directory. Arguments appearing within braces ({ indicate
that one of the arguments must be specified.

OPTIONS 
The following options are supported:



 - 331 - 

-I include-file
Open include-file containing a list of files, one per
line, and treat as if each file appeared separately on
the command line. Be careful of trailing white spaces.
In the case where excluded files (see X function modif-
ier) are also specified, they take precedence over all
included files. If a file is specified in both the
exclude-file and the include-file (or on the command
line), it will be excluded.

-C directory file
Perform a chdir (see cd(1)) operation on directory and
perform the c (create) or r (replace) operation on
file. Use short relative path names for file. If file
is `.', archive all files in directory. This option
enables archiving files from multiple directories not
related by a close common parent.

OPERANDS
The following operands are supported:

file A path name of a regular file or directory to be
archived (when the c, r or u functions are specified),
extracted (x) or listed (t). When file is the path
name of a directory, the action applies to all of the
files and (recursively) subdirectories of that direc-
tory. The directory portion of file (see dirname(1))
cannot exceed 155 characters. The file name portion
(see basename(1)) cannot exceed 100 characters.

Function Letters
The function portion of the key is specified by one of the
following letters:

c Create. Writing begins at the beginning of the tarfile,
instead of at the end.

r Replace. The named files are written at the end of the
tarfile.

t Table of Contents. The names of the specified files
are listed each time they occur in the tarfile. If no
file argument is given, the names of all files in the
tarfile are listed. With the v function modifier,
additional information for the specified files is
displayed.

u Update. The named files are written at the end of the



 - 332 - 

tarfile if they are not already in the tarfile, or if
they have been modified since last written to that tar-
file. An update can be rather slow. A tarfile created
on a 5.x system cannot be updated on a 4.x system.

x Extract or restore. The named files are extracted from
the tarfile and written to the directory specified in
the tarfile, relative to the current directory. Use
the relative path names of files and directories to be
extracted. If a named file matches a directory whose
contents has been written to the tarfile, this direc-
tory is recursively extracted. The owner, modification
time, and mode are restored (if possible); otherwise,
to restore owner, you must be the super-user.
Character-special and block-special devices (created by
mknod(1M)) can only be extracted by the super-user. If
no file argument is given, the entire content of the
tarfile is extracted. If the tarfile contains several
files with the same name, each file is written to the
appropriate directory, overwriting the previous one.
Filename substitution wildcards cannot be used for
extracting files from the archive; rather, use a com-
mand of the form:

tar xvf... /dev/rmt/0 `tar tf... /dev/rmt/0 |
grep 'pattern'`

When extracting tapes created with the r or u functions,
directory modification times may not be set correctly.
These same functions cannot be used with many tape drives
due to tape drive limitations such as the absence of back-
space or append capabilities.

When using the r, u, or x functions or the X function modif-
ier, the named files must match exactly the corresponding
files in the tarfile. For example, to extract ./thisfile,
you must specify ./thisfile, and not thisfile. The t func-
tion displays how each file was archived.

Function Modifiers
The characters below may be used in conjunction with the
letter that selects the desired function.

b Blocking Factor. Use when reading or writing to raw
magnetic archives (see f below). The block argument
specifies the number of 512-byte tape blocks to be
included in each read or write operation performed on



 - 333 - 

the tarfile. The minimum is 1, the default is 20. The
maximum value is a function of the amount of memory
available and the blocking requirements of the specific
tape device involved (see mtio(7I) for details.)

When a tape archive is being read, its actual blocking
factor will be automatically detected, provided that it
is less than or equal to the nominal blocking factor
(the value of the block argument, or the default value
if the b modifier is not specified). If the actual
blocking factor is greater than the nominal blocking
factor, a read error will result. See Example 5 in

B Block. Force tar to perform multiple reads (if neces-
sary) to read exactly enough bytes to fill a block.
This function modifier enables tar to work across the
Ethernet, since pipes and sockets return partial blocks
even when more data is coming. When reading from stan-
dard input, '-', this function modifier is selected by
default to ensure that tar can recover from short
reads.

e Error. Exit immediately with a positive exit status if
any unexpected errors occur. The SYSV3 ENVIRONMENT
variable overrides the default behavior. (See ENVIRON-
MENT section below.)

f File. Use the tarfile argument as the name of the tar-
file. If f is specified, /etc/default/tar is not
searched. If f is omitted, tar will use the device
indicated by the TAPE environment variable, if set;
otherwise, it will use the default values defined in
/etc/default/tar. If the name of the tarfile is '-',
tar writes to the standard output or reads from the
standard input, whichever is appropriate. tar can be
used as the head or tail of a pipeline. tar can also
be used to move hierarchies with the command:

example% cd fromdir; tar cf - .
| (cd todir; tar xfBp -)

F With one F argument, tar excludes all directories named
SCCS and RCS from the tarfile. With two arguments, FF,
tar excludes all directories named SCCS and RCS, all
files with .o as their suffix, and all files named
errs, core, and a.out. The SYSV3 environment variable
overrides the default behavior. (See ENVIRONMENT sec-



 - 334 - 

tion below.)

h Follow symbolic links as if they were normal files or
directories. Normally, tar does not follow symbolic
links.

i Ignore directory checksum errors.

k size
Requires tar to use the size argument as the size of an
archive in kilobytes. This is useful when the archive
is intended for a fixed size device such as floppy
disks. Large files are then split across volumes if
they do not fit in the specified size.

l Link. Output error message if unable to resolve all
links to the files being archived. If l is not speci-
fied, no error messages are printed.

m Modify. The modification time of the file is the time
of extraction. This function modifier is valid only
with the x function.

n The file being read is a non-tape device. Reading of
the archive is faster since tar can randomly seek
around the archive.

o Ownership. Assign to extracted files the user and
group identifiers of the user running the program,
rather than those on tarfile. This is the default
behavior for users other than root. If the o function
modifier is not set and the user is root, the extracted
files will take on the group and user identifiers of
the files on tarfile (see chown(1) for more informa-
tion). The o function modifier is only valid with the
x function.

p Restore the named files to their original modes, and
ACLs if applicable, ignoring the present umask(1).
This is the default behavior if invoked as super-user
with the x function letter specified. If super-user,
SETUID and sticky information are also extracted, and
files are restored with their original owners and per-
missions, rather than owned by root. When this func-
tion modifier is used with the c function, ACLs are
created in the tarfile along with other information.
Errors will occur when a tarfile with ACLs is extracted



 - 335 - 

by previous versions of tar.

P Suppress the addition of a trailing "/" on directory
entries in the archive.

q Stop after extracting the first occurrence of the named
file. tar will normally continue reading the archive
after finding an occurrence of a file.

v Verbose. Output the name of each file preceded by the
function letter. With the t function, v provides addi-
tional information about the tarfile entries. The
listing is similar to the format produced by the -l
option of the ls(1) command.

w What. Output the action to be taken and the name of
the file, then await the user's confirmation. If the
response is affirmative, the action is performed; oth-
erwise, the action is not performed. This function
modifier cannot be used with the t function.

X Exclude. Use the exclude-file argument as a file con-
taining a list of relative path names for files (or
directories) to be excluded from the tarfile when using
the functions c, x, or t. Be careful of trailing white
spaces. Multiple X arguments may be used, with one
exclude-file per argument. In the case where included
files (see -I include-file option) are also specified,
the excluded files take precedence over all included
files. If a file is specified in both the exclude-file
and the include-file (or on the command line), it will
be excluded.

[0-7]
Select an alternative drive on which the tape is
mounted. The default entries are specified in
/etc/default/tar. If no digit or f function modifier
is specified, the entry in /etc/default/tar with digit
"0" is the default.

USAGE 
See largefile(5) for the description of the behavior of tar
when encountering files greater than or equal to 2 Gbyte
(2**31 bytes). in the EXAMPLES below.

The automatic determination of the actual blocking factor



 - 336 - 

may be fooled when reading from a pipe or a socket (see the
B function modifier below).

1/4" streaming tape has an inherent blocking factor of one
512-byte block. It can be read or written using any block-
ing factor.

This function modifier works for archives on disk files and
block special devices, among others, but is intended princi-
pally for tape devices.

EXAMPLES 
1. The following is an example using tar to create an

archive of your home directory on a tape mounted on drive
/dev/rmt/0:

example% cd
example% tar cvf /dev/rmt/0 .
messages from tar

The c function letter means create the archive; the v
function modifier outputs messages explaining what tar is
doing; the f function modifier indicates that the tarfile
is being specified ( /dev/rmt/0 in this example). The dot
(.) at the end of the command line indicates the current
directory and is the argument of the f function modifier.

Display the table of contents of the tarfile with the
following command:

example% tar tvf /dev/rmt/0
The output will be similar to the following for the POSIX
locale:

rw-r--r-- 1677/40 2123 Nov 7 18:15 1985
./test.c

...
example%

The columns have the following meanings:

+ column 1 is the access permissions to ./test.c
+ column 2 is the user-id/group-id of ./test.c
+ column 3 is the size of ./test.c in bytes
+ column 4 is the modification date of ./test.c.

When the LC_TIME category is not set to the POSIX



 - 337 - 

locale, a different format and date order field
may be used.

+ column 5 is the name of ./test.c

To extract files from the archive:

example% tar xvf /dev/rmt/0
messages from tar
example%

If there are multiple archive files on a tape, each is
separated from the following one by an EOF marker. To
have tar read the first and second archives from a tape
with multiple archives on it, the non-rewinding version
of the tape device name must be used with the f function
modifier, as follows:

example% tar xvfp /dev/rmt/0n read first archive
from tape

messages from tar
example% tar xvfp /dev/rmt/0n read second archive

from tape
messages from tar
example%

Note that in some earlier releases, the above scenario
did not work correctly, and intervention with mt(1)
between tar invocations was necessary. To emulate the
old behavior, use the non-rewind device name containing
the letter b for BSD behavior. See the Close Operations
section of the mtio(7I) manual page.

2. To archive files from /usr/include and from /etc to
default tape drive 0:

example% tar c -C /usr include -C /etc .

The table of contents from the resulting tarfile would
produce output like the following:

include/
include/a.out.h
and all the other files in /usr/include ...
./chown
and all the other files in /etc

To extract all files in the include directory:

example% tar xv include



 - 338 - 

x include/, 0 bytes, 0 tape blocks
and all files under include...

3. The following is an example using tar to transfer files
across the Ethernet. First, here is how to archive files
from the local machine (example) to a tape on a remote
system (host):

example% tar cvfb - 20 files |
rsh host dd of=/dev/rmt/0 obs=20b

messages from tar
example%

In the example above, we are creating a tarfile with the
c key letter, asking for verbose output from tar with the
v function modifier, specifying the name of the output
tarfile using the f function modifier (the standard out-
put is where the tarfile appears, as indicated by the `-'
sign), and specifying the blocksize (20) with the b func-
tion modifier. If you want to change the blocksize, you
must change the blocksize arguments both on the tar com-
mand and on the dd command.

4. The following is an example that uses tar to retrieve
files from a tape on the remote system back to the local
system:

example% rsh -n host dd if=/dev/rmt/0 bs=20b |
tar xvBfb - 20 files

messages from tar
example%

In the example above, we are extracting from the tarfile
with the x key letter, asking for verbose output from tar
with the v function modifier, telling tar it is reading
from a pipe with the B function modifier, specifying the
name of the input tarfile using the f function modifier
(the standard input is where the tarfile appears, as
indicated by the `-' sign), and specifying the blocksize
(20) with the b function modifier.

5. The following example creates an archive of the home
directory on /dev/rmt/0 with an actual blocking factor of
19.

example% tar cvfb /dev/rmt/0 19 $HOME

To recognize this archive's actual blocking factor



 - 339 - 

without using the b function modifier:

example% tar tvf /dev/rmt/0
tar: blocksize = 19
...

To recognize this archive's actual blocking factor using
a larger nominal blocking factor:

example% tar tvf /dev/rmt/0 30
tar: blocksize = 19
...

Attempt to recognize this archive's actual blocking fac-
tor using a nominal blocking factor that is too small:

example% tar tvf /dev/rmt/0 10
tar: tape read error

ENVIRONMENT 
SYSV3

This variable is used to override the default behavior
of tar, provide compatibility with INTERACTIVE UNIX
Systems and SCO UNIX installation scripts, and should
not be used in new scripts. (It is intended for compa-
tibility purposes only.) When set, the following
options behave differently:

-F filename
Uses filename to obtain a list of command line
switches and files on which to operate.

-e Prevents files from being split across volumes.
If there is insufficient room on one volume, tar
prompts for a new volume. If the file will not
fix on the new volume, tar exits with an error.

See environ(5) for descriptions of the following environment
variables that affect the execution of tar: LC_CTYPE,
LC_MESSAGES, LC_TIME, TZ, and NLSPATH.

EXIT STATUS
The following exit values are returned:
0 Successful completion.
>0 An error occurred.

FILES



 - 340 - 

/dev/rmt/[0-7][b][n]
/dev/rmt/[0-7]l[b][n]
/dev/rmt/[0-7]m[b][n]
/dev/rmt/[0-7]h[b][n]
/dev/rmt/[0-7]u[b][n]
/dev/rmt/[0-7]c[b][n]
/etc/default/tar Settings may look like this:

archive0=/dev/rmt/0
archive1=/dev/rmt/0n
archive2=/dev/rmt/1
archive3=/dev/rmt/1n
archive4=/dev/rmt/0
archive5=/dev/rmt/0n
archive6=/dev/rmt/1
archive7=/dev/rmt/1n

/tmp/tar*

ATTRIBUTES 
See attributes(5) for descriptions of the following attri-
butes:

__________________________________
| ATTRIBUTE TYPE| ATTRIBUTE VALUE|
|_______________|_________________|
| Availability | SUNWcsu |
| CSI | Enabled |
|_______________|_________________|

SEE ALSO 
ar(1), basename(1), cd(1), chown(1), cpio(1), csh(1), dir-
name(1), ls(1), mt(1), pax(1), setfacl(1), umask(1),
mknod(1M), vold(1M), attributes(5), environ(5), large-
file(5), mtio(7I)

DIAGNOSTICS
Diagnostic messages are output for bad key characters and
tape read/write errors, and for insufficient memory to hold
the link tables.

NOTES 
There is no way to access for the n-th occurrence of a file.

Tape errors are handled ungracefully.



 - 341 - 

When the Volume Management daemon is running, accesses to
floppy devices through the conventional device names (for
example, /dev/rdiskette) may not succeed. See vold(1M) for
further details.

The tar archive format allows UIDs and GIDs up to 2097151 to
be stored in the archive header. Files with UIDs and GIDs
greater than this value will be archived with the UID and
GID of 60001.



 - 342 - 

tr 
tr - translate characters

SYNOPSIS 
/usr/bin/tr [-cs] string1 string2
/usr/bin/tr -s|-d [-c] string1
/usr/bin/tr -ds [-c] string1 string2

/usr/bin/xpg4/tr [-cs] string1 string2
/usr/bin/xpg4/tr -s|-d [-c] string1
/usr/bin/xpg4/tr -ds [-c] string1 string2

DESCRIPTION 
The tr utility copies the standard input to the standard
output with substitution or deletion of selected characters.
The options specified and the string1 and string2 operands
control translations that occur while copying characters and
single-character collating elements.

OPTIONS 
The following options are supported:

-c Complement the set of characters specified by
string1.

-d Delete all occurrences of input characters that are
specified by string1.

-s Replace instances of repeated characters with a sin-
gle character.

When the -d option is not specified:

+ Each input character found in the array specified by
string1 is replaced by the character in the same relative
position in the array specified by string2. When the
array specified by string2 is shorter that the one speci-
fied by string1, the results are unspecified.

+ If the -c option is specified, the complements of the
characters specified by string1 (the set of all charac-
ters in the current character set, as defined by the



 - 343 - 

current setting of LC_CTYPE, except for those actually
specified in the string1 operand) are placed in the array
in ascending collation sequence, as defined by the
current setting of LC_COLLATE.

+ Because the order in which characters specified by char-
acter class expressions or equivalence class expressions
is undefined, such expressions should only be used if the
intent is to map several characters into one. An excep-
tion is case conversion, as described previously.

When the -d option is specified:

+ Input characters found in the array specified by string1
will be deleted.

+ When the -c option is specified with -d, all characters
except those specified by string1 will be deleted. The
contents of string2 will be ignored, unless the -s option
is also specified.

+ The same string cannot be used for both the -d and the -s
option; when both options are specified, both string1
(used for deletion) and string2 (used for squeezing) are
required.

When the -s option is specified, after any deletions or
translations have taken place, repeated sequences of the
same character will be replaced by one occurrence of the
same character, if the character is found in the array
specified by the last operand. If the last operand contains
a character class, such as the following example:

tr -s '[:space:]'
the last operand's array will contain all of the characters
in that character class. However, in a case conversion, as
described previously, such as

tr -s '[:upper:]' '[:lower:]'
the last operand's array will contain only those characters
defined as the second characters in each of the toupper or
tolower character pairs, as appropriate. (See touopper(3C)
and tolower(3C)).

An empty string used for string1 or string2 produces unde-
fined results.

OPERANDS
The following operands are supported:



 - 344 - 

string1

string2 Translation control strings. Each string
represents a set of characters to be converted
into an array of characters used for the trans-
lation.

The operands string1 and string2 (if specified)
define two arrays of characters. The constructs
in the following list can be used to specify
characters or single-character collating ele-
ments. If any of the constructs result in
multi-character collating elements, tr will
exclude, without a diagnostic, those multi-
character elements from the resulting array.
character Any character not described by one

of the conventions below represents
itself.

\octal Octal sequences can be used to
represent characters with specific
coded values. An octal sequence
consists of a backslash followed by
the longest sequence of one-, two-
or three-octal-digit characters
(01234567). The sequence causes the
character whose encoding is
represented by the one-, two- or
three-digit octal integer to be
placed into the array. Multi-byte
characters require multiple, con-
catenated escape sequences of this
type, including the leading \ for
each byte.

\character The backslash-escape sequences \a,
\b, \f, \n, \r, \t, and \v are sup-
ported. The results of using any
other character, other than an octal
digit, following the backslash are
unspecified.

/usr/xpg4/bin/tr
c-c

/usr/bin/tr
[c-c] Represents the range of collating elements

between the range endpoints, inclusive, as



 - 345 - 

defined by the current setting of the LC_COLLATE
locale category. The starting endpoint must
precede the second endpoint in the current col-
lation order. The characters or collating ele-
ments in the range are placed in the array in
ascending collation sequence.

[:class:] Represents all characters belonging to the
defined character class, as defined by the
current setting of the LC_CTYPE locale category.
The following character class names will be
accepted when specified in string1:
alnum blank digit lower punct upper
alpha cntrl graph print space xdigit

In addition, character class expressions of the
form [:name:] are recognized in those locales
where the name keyword has been given a char-
class definition in the LC_CTYPE category.
When both the -d and -s options are specified,
any of the character class names will be
accepted in string2. Otherwise, only character
class names lower or upper are valid in string2
and then only if the corresponding character
class upper and lower, respectively, is speci-
fied in the same relative position in string1.
Such a specification is interpreted as a request
for case conversion. When [:lower:] appears in
string1 and [:upper:] appears in string2, the
arrays will contain the characters from the
toupper mapping in the LC_CTYPE category of the
current locale. When [:upper:] appears in
string1 and [:lower:] appears in string2, the
arrays will contain the characters from the
tolower mapping in the LC_CTYPE category of the
current locale. The first character from each
mapping pair will be in the array for string1
and the second character from each mapping pair
will be in the array for string2 in the same
relative position.

Except for case conversion, the characters
specified by a character class expression are
placed in the array in an unspecified order.

If the name specified for class does not define
a valid character class in the current locale,



 - 346 - 

the behavior is undefined.

[=equiv=] Represents all characters or collating elements
belonging to the same equivalence class as
equiv, as defined by the current setting of the
LC_COLLATE locale category. An equivalence
class expression is allowed only in string1, or
in string2 when it is being used by the combined
-d and -s options. The characters belonging to
the equivalence class are placed in the array in
an unspecified order.

[x*n] Represents n repeated occurrences of the charac-
ter x. Because this expression is used to map
multiple characters to one, it is only valid
when it occurs in string2. If n is omitted or
is 0, it is interpreted as large enough to
extend the string2-based sequence to the length
of the string1-based sequence. If n has a lead-
ing 0, it is interpreted as an octal value.
Otherwise, it is interpreted as a decimal value.

USAGE 
See largefile(5) for the description of the behavior of tr
when encountering files greater than or equal to 2 Gbyte
(2**31 bytes).

EXAMPLES 
1. The following example creates a list of all words in

file1 one per line in file2, where a word is taken to be
a maximal string of letters.

tr -cs "[:alpha:]" "[\n*]" <file1 >file2

2. The next example translates all lower-case characters in
file1 to upper-case and writes the results to standard
output.

tr "[:lower:]" "[:upper:]" <file1

Note that the caveat expressed in the corresponding exam-
ple in XPG3 is no longer in effect. This case conversion
is now a special case that employs the tolower and
toupper classifications, ensuring that proper mapping is
accomplished (when the locale is correctly defined).



 - 347 - 

3. This example uses an equivalence class to identify
accented variants of the base character e in file1, which
are stripped of diacritical marks and written to file2.

tr "[=e=]" e <file1 >file2

ENVIRONMENT 
See environ(5) for descriptions of the following environment
variables that affect the execution of tr: LC_COLLATE,
LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS
The following exit values are returned:

0 All input was processed successfully.

>0 An error occurred.

ATTRIBUTES 
See attributes(5) for descriptions of the following attri-
butes:

/usr/bin/tr
__________________________________
| ATTRIBUTE TYPE| ATTRIBUTE VALUE|
|_______________|_________________|
| Availability | SUNWcsu |
| CSI | Enabled |
|_______________|_________________|

/usr/xpg4/bin/tr
__________________________________
| ATTRIBUTE TYPE| ATTRIBUTE VALUE|
|_______________|_________________|
| Availability | SUNWxcu4 |
| CSI | Enabled |
|_______________|_________________|

SEE ALSO 
ed(1), sed(1), sh(1), tolower(3C), toupper(3C), ascii(5),
attributes(5), environ(5), largefile(5), xpg4(5)



 - 348 - 

NOTES 
Unlike some previous versions, the tr correctly processes
NUL characters in its input stream. NUL characters can be
stripped by using tr -d '\000'.



 - 349 - 

troff 
troff - typeset or format documents

SYNOPSIS 
troff [ -a ] [ -f ] [ -Fdir ] [ -i ] [ -mname ] [ -nN ]

[ -olist ] [ -raN ] [ -sN ] [ -Tdest ] [ -uN ] [ -z ]
[ filename ] ...

DESCRIPTION 
troff formats text in the filenames for typesetting or laser
printing. Input to troff is expected to consist of text
interspersed with formatting requests and macros. If no
filename argument is present, troff reads standard input. A
minus sign (-) as a filename indicates that standard input
should be read at that point in the list of input files.

The output of troff is usually piped through dpost(1) to
create a printable postscript file (see EXAMPLES).

OPTIONS 
The following options may appear in any order, but all must
appear before the first filename.

-a Send an ASCII approximation of formatted output to
standard output.

-f Do not print a trailer after the final page of output
or cause the postprocessor to relinquish control of the
device.

-Fdir
Search directory dir for font width or terminal tables
instead of the system default directory.

-i Read standard input after all input files are
exhausted.

-mname
Prepend the macro file /usr/share/lib/tmac/name to the
input filenames. Note: most references to macro pack-
ages include the leading m as part of the name; for
example, the man(5) macros reside in



 - 350 - 

/usr/share/lib/tmac/an. The macro directory can be
changed by setting the TROFFMACS environment variable
to a specific path. Be certain to include the trailing
'/' (slash) at the end of the path.

-nN Number the first generated page N.

-olist
Print only pages whose page numbers appear in the
comma-separated list of numbers and ranges. A range
N-M means pages N through M; an initial -N means from
the beginning to page N; and a final N- means from N to
the end.

-q Quiet mode in nroff; ignored in troff.

-raN Set register a (one-character names only) to N.

-sN Stop the phototypesetter every N pages. On some dev-
ices, troff produces a trailer so you can change
cassettes; resume by pressing the typesetter's start
button.

-Tdest
Prepare output for typesetter dest. The following
values can be supplied for dest:
post A PostScript printer; this is the default value.
aps Autologic APS-5.

-uN Set the emboldening factor for the font mounted in
position 3 to N. If N is missing, then set the embol-
dening factor to 0.

-z Suppress formatted output. Only diagnostic messages
and messages output using the .tm request are output.

OPERANDS
filename The file containing text to be processed by

troff.

EXAMPLES 
The following example shows how to print an input text file
mytext, coded with formatting requests and macros. The
input file contains equations and tables and must go through
the tbl(1) and eqn(1) preprocessors before it is formatted
by troff with ms macros, processed by dpost(1), and printed



 - 351 - 

by lp(1):

tbl mytext | eqn | troff -ms | dpost | lp

FILES
/tmp/trtmp temporary file
/usr/share/lib/tmac/* standard macro files
/usr/lib/font/* font width tables for alternate

mounted troff fonts
/usr/share/lib/nterm/* terminal driving tables for nroff

ATTRIBUTES 
See attributes(5) for descriptions of the following attri-
butes:

__________________________________
| ATTRIBUTE TYPE| ATTRIBUTE VALUE|
|_______________|_________________|
| Availability | SUNWdoc |
|_______________|_________________|

SEE ALSO 
checknr(1), col(1), dpost(1), eqn(1), lp(1), man(1),
nroff(1), tbl(1), attributes(5), man(5), me(5), ms(5)

NOTES 
troff is not 8-bit clean because it is by design based on
7-bit ASCII.



 - 352 - 

uniq 
uniq - report or filter out repeated lines in a file

SYNOPSIS 
uniq [-c|-d|-u] [-f fields] [-s char] [input_file

[output_file]]
uniq [-c|-d|-u] [-n] [+m]

[input_file [output_file]]

DESCRIPTION 
The uniq utility will read an input file comparing adjacent
lines, and write one copy of each input line on the output.
The second and succeeding copies of repeated adjacent input
lines will not be written.

Repeated lines in the input will not be detected if they are
not adjacent.

OPTIONS 
The following options are supported:

-c Precede each output line with a count of the
number of times the line occurred in the input.

-d Suppress the writing of lines that are not
repeated in the input.

-f fields Ignore the first fields fields on each input
line when doing comparisons, where fields is a
positive decimal integer. A field is the maxi-
mal string matched by the basic regular expres-
sion:

[[:blank:]]*[^[:blank:]]*

If fields specifies more fields than appear on
an input line, a null string will be used for
comparison.

-s chars Ignore the first chars characters when doing
comparisons, where chars is a positive decimal
integer. If specified in conjunction with the



 - 353 - 

-f option, the first chars characters after the
first fields fields will be ignored. If chars
specifies more characters than remain on an
input line, a null string will be used for com-
parison.

-u Suppress the writing of lines that are repeated
in the input.

-n Equivalent to -f fields with fields set to n.
+m Equivalent to -s chars with chars set to m.

OPERANDS
The following operands are supported:

input_file A path name of the input file. If input_file is
not specified, or if the input_file is -, the
standard input will be used.

output_file A path name of the output file. If output_file
is not specified, the standard output will be
used. The results are unspecified if the file
named by output_file is the file named by
input_file.

EXAMPLES 
The following example lists the contents of the uniq.test
file and outputs a copy of the repeated lines.

example% cat uniq.test
This is a test.
This is a test.
TEST.
Computer.
TEST.
TEST.
Software.

example% uniq -d uniq.test
This is a test.
TEST.
example%

The next example outputs just those lines that are not
repeated in the uniq.test file.



 - 354 - 

example% uniq -u uniq.test
TEST.
Computer.
Software.
example%

The last example outputs a report with each line preceded by
a count of the number of times each line occurred in the
file.

example% uniq -c uniq.test
2 This is a test.
1 TEST.
1 Computer.
2 TEST.
1 Software.

example%

ENVIRONMENT 
See environ(5) for descriptions of the following environment
variables that affect the execution of uniq: LC_CTYPE,
LC_MESSAGES, and NLSPATH.

EXIT STATUS
The following exit values are returned:

0 Successful completion.

>0 An error occurred.

ATTRIBUTES 
See attributes(5) for descriptions of the following attri-
butes:

__________________________________
| ATTRIBUTE TYPE| ATTRIBUTE VALUE|
|_______________|_________________|
| Availability | SUNWesu |
| CSI | Enabled |
|_______________|_________________|

SEE ALSO 
comm(1), pack(1), pcat(1), sort(1), uncompress(1), attri-
butes(5), environ(5)



 - 355 - 

vi 
vi, view, vedit - screen-oriented (visual) display editor
based on ex

SYNOPSIS 
/usr/bin/vi [ - | -s ] [-l] [-L] [-R] [ -r [ filename]]

[ -t tag ] [-v] [-V] [-x] [ -wn ] [-C]
[ +command | -c command ] filename...

/usr/bin/view [ - | -s ] [-l] [-L] [-R] [ -r [ filename]]
[ -t tag ] [-v] [-V] [-x] [ -wn ] [-C]
[ +command | -c command ] filename...

/usr/bin/vedit [ - | -s ] [-l] [-L] [-R] [ -r [ filename]]
[ -t tag ] [-v] [-V] [-x] [ -wn ] [-C]
[ +command | -c command ] filename...

/usr/xpg4/bin/vi [ - | -s ] [-l] [-L] [-R] [ -r [ filename]]
[ -t tag ] [-v] [-V] [-x] [ -wn ]
[-C] [ +command | -c command ] filename...

/usr/xpg4/bin/view [ - | -s ] [-l] [-L] [-R]
[ -r [ filename]] [ -t tag ] [-v] [-V] [-x] [ -wn ]
[-C] [ +command | -c command ] filename...

/usr/xpg4/bin/vedit [ - | -s ] [-l] [-L] [-R]
[ -r [ filename]] [ -t tag ] [-v] [-V] [-x] [ -wn ]
[-C] [ +command | -c command ] filename...

DESCRIPTION 
vi (visual) is a display-oriented text editor based on an
underlying line editor ex. It is possible to use the com-
mand mode of ex from within vi and to use the command mode
of vi from within ex. The visual commands are described on
this manual page; how to set options (like automatically
numbering lines and automatically starting a new output line
when you type carriage return) and all ex line editor com-
mands are described on the ex(1) manual page.

When using vi, changes you make to the file are reflected in
what you see on your terminal screen. The position of the
cursor on the screen indicates the position within the file.



 - 356 - 

The view invocation is the same as vi except that the
readonly flag is set.

The vedit invocation is intended for beginners. It is the
same as vi except that the report flag is set to 1, the
showmode and novice flags are set, and magic is turned off.
These defaults make it easier to learn how to use vi.

OPTIONS 
Invocation Options

The following invocation options are interpreted by vi (pre-
viously documented options are discussed in the NOTES sec-
tion of this manual page):

- | -s Suppress all interactive user feedback. This
is useful when processing editor scripts.

-l Set up for editing LISP programs.

-L List the name of all files saved as the result
of an editor or system crash.

-R Readonly mode; the readonly flag is set,
preventing accidental overwriting of the file.

-r filename Edit filename after an editor or system crash.
(Recovers the version of filename that was in
the buffer when the crash occurred.)

-t tag Edit the file containing the tag and position
the editor at its definition.

-v Start up in display editing state using vi.
You can achieve the same effect by simply typ-
ing the -vi command itself.

-V Verbose. When ex commands are read by means
of standard input, the input will be echoed to
standard error. This may be useful when pro-
cessing ex commands within shell scripts.

-x Encryption option; when used, vi simulates the
X command of ex and prompts the user for a
key. This key is used to encrypt and decrypt
text using the algorithm of the crypt command.
The X command makes an educated guess to
determine whether text read in is encrypted or



 - 357 - 

not. The temporary buffer file is encrypted
also, using a transformed version of the key
typed in for the -x option.

-wn Set the default window size to n. This is
useful when using the editor over a slow speed
line.

-C Encryption option; same as the -x option,
except that vi simulates the C command of ex.
The C command is like the X command of ex,
except that all text read in is assumed to
have been encrypted.

+command | -c command
Begin editing by executing the specified edi-
tor command (usually a search or positioning
command).

/usr/xpg4/bin/vi
If both the -t tag and the -c command options are given, the
-t tag will be processed first. That is, the file containing
the tag is selected by -t and then the command is executed.

OPERANDS
The following operands are supported:

filename A file to be edited.

COMMAND SUMMARY

vi Modes
Command Normal and initial mode. Other modes return

to command mode upon completion. ESC
(escape) is used to cancel a partial command.

Input Entered by setting any of the following
options: a A i I o O c C s S R. Arbitrary
text may then be entered. Input mode is nor-
mally terminated with ESC character, or,
abnormally, with an interrupt.

Last line Reading input for : / ? or !; terminate by
typing a carriage return; an interrupt can-
cels termination.

Sample commands
In the descriptions, CR stands for carriage return and ESC



 - 358 - 

stands for the escape key.

<- |�v |�^ -> arrow keys move the cursor
h j k l same as arrow keys
itextESC insert text
cwnewESC change word to new
easESC pluralize word (end of word; append s;

escape from input state)
x delete a character
dw delete a word
dd delete a line
3dd delete 3 lines
u undo previous change
ZZ exit vi, saving changes
:q!CR quit, discarding changes
/textCR search for text
^U ^D scroll up or down
:cmdCR any ex or ed command

Counts before vi commands
Numbers may be typed as a prefix to some commands. They are
interpreted in one of these ways.
line/column number z G |
scroll amount ^D ^U
repeat effect most of the rest

Interrupting, canceling
ESC end insert or incomplete cmd
DEL (delete or rubout) interrupts

File manipulation
ZZ if file modified, write and exit; otherwise,

exit
:wCR write back changes
:w!CR forced write, if permission originally not

valid
:qCR quit
:q!CR quit, discard changes
:e nameCR edit file name
:e!CR reedit, discard changes
:e + nameCR edit, starting at end
:e +nCR edit starting at line n
:e #CR edit alternate file
:e! #CR edit alternate file, discard changes
:w nameCR write file name
:w! nameCR overwrite file name
:shCR run shell, then return
:!cmdCR run cmd, then return



 - 359 - 

:nCR edit next file in arglist
:n argsCR specify new arglist
^G show current file and line
:ta tagCR position cursor to tag

In general, any ex or ed command (such as substitute or glo-
bal) may be typed, preceded by a colon and followed by a
carriage return.

Positioning within file
^F forward screen
^B backward screen
^D scroll down half screen
^U scroll up half screen
nG go to the beginning of the specified line (end

default),
where n is a line number

/pat next line matching pat
?pat previous line matching pat
n repeat last / or ? command
N reverse last / or ? command
/pat/+n nth line after pat
?pat?-n nth line before pat
]] next section/function
[[ previous section/function
( beginning of sentence
) end of sentence
{ beginning of paragraph
} end of paragraph
% find matching ( ) { or }

Adjusting the screen
^L clear and redraw window
^R clear and redraw window if ^L is -> key
zCR redraw screen with current line at top of

window
z-CR redraw screen with current line at bottom of

window
z.CR redraw screen with current line at center of

window
/pat/z-CR move pat line to bottom of window
zn.CR use n-line window
^E scroll window down 1 line
^Y scroll window up 1 line

Marking and returning
`` move cursor to previous context



 - 360 - 

'' move cursor to first non-white space in line
mx mark current position with the ASCII lower-case

letter x
`x move cursor to mark x
'x move cursor to first non-white space in line

marked by x

Line positioning
H top line on screen
L last line on screen
M middle line on screen
+ next line, at first non-white
- previous line, at first non-white
CR return, same as +
|�v or j next line, same column
|�^ or k previous line, same column

Character positioning
^ first non white-space character
0 beginning of line
$ end of line
l or -> forward
h or <- backward
^H same as <- (backspace)
space same as -> (space bar)
fx find next x
Fx find previous x
tx move to character prior to next x
Tx move to character following previous x
; repeat last f, F, t, or T
, repeat inverse of last f, F, t, or T
n| move to column n
% find matching ( { ) or }

Words, sentences, paragraphs
w forward a word
b back a word
e end of word
) to next sentence
} to next paragraph
( back a sentence
{ back a paragraph
W forward a blank-delimited word
B back a blank-delimited word
E end of a blank-delimited word

Corrections during insert



 - 361 - 

^H erase last character (backspace)
^W erase last word
erase your erase character, same as ^H (backspace)
kill your kill character, erase this line of input
\ quotes your erase and kill characters
ESC ends insertion, back to command mode
CTRL-C interrupt, suspends insert mode
^D backtab one character; reset left margin of

autoindent
^^D caret (^) followed by control-d (^D);

backtab to beginning of line;
do not reset left margin of autoindent

0^D backtab to beginning of line; reset left margin
of autoindent

^V quote non-printable character

Insert and replace
a append after cursor
A append at end of line
i insert before cursor
I insert before first non-blank
o open line below
O open above
rx replace single char with x
RtextESC replace characters

Operators
Operators are followed by a cursor motion, and affect all
text that would have been moved over. For example, since w
moves over a word, dw deletes the word that would be moved
over. Double the operator, for example, dd to affect whole
lines.
d delete
c change
y yank lines to buffer
< left shift
> right shift
! filter through command

Miscellaneous Operations
C change rest of line (c$)
D delete rest of line (d$)
s substitute chars (cl)
S substitute lines (cc)
J join lines
x delete characters (dl)
X delete characters before cursor (dh)



 - 362 - 

Y yank lines (yy)

Yank and Put
Put inserts the text most recently deleted or yanked; how-
ever, if a buffer is named (using the ASCII lower-case
letters a - z), the text in that buffer is put instead.
3yy yank 3 lines
3yl yank 3 characters
p put back text after cursor
P put back text before cursor
"xp put from buffer x
"xy yank to buffer x
"xd delete into buffer x

Undo, Redo, Retrieve
u undo last change
U restore current line
. repeat last change
"dp retrieve d'th last delete

USAGE 
See largefile(5) for the description of the behavior of vi
and view when encountering files greater than or equal to 2
Gbyte (2**31 bytes).

ENVIRONMENT 
See environ(5) for descriptions of the following environment
variables that affect the execution of vi: LC_CTYPE,
LC_TIME, LC_MESSAGES, and NLSPATH.

FILES
/var/tmp default directory where temporary

work files are placed; it can be
changed using the directory option
(see the ex(1) set command)

/usr/share/lib/terminfo/?/*
compiled terminal description data-
base

/usr/lib/.COREterm/?/* subset of compiled terminal
description database

ATTRIBUTES 
See attributes(5) for descriptions of the following attri-
butes:



 - 363 - 

/usr/bin/vi
/usr/bin/view
/usr/bin/vedit

__________________________________
| ATTRIBUTE TYPE| ATTRIBUTE VALUE|
|_______________|_________________|
| Availability | SUNWcsu |
| CSI | Not enabled |
|_______________|_________________|

/usr/xpg4/bin/vi
/usr/xpg4/bin/view
/usr/xpg4/bin/vedit

__________________________________
| ATTRIBUTE TYPE| ATTRIBUTE VALUE|
|_______________|_________________|
| Availability | SUNWxcu4 |
| CSI | Enabled |
|_______________|_________________|

SEE ALSO 
intro(1), ed(1), edit(1), ex(1), attributes(5), environ(5),
largefile(5), standards(5)

Solaris Advanced User's Guide

AUTHOR
vi and ex were developed by The University of California,
Berkeley California, Computer Science Division, Department
of Electrical Engineering and Computer Science.

NOTES 
Two options, although they continue to be supported, have
been replaced in the documentation by options that follow
the Command Syntax Standard (see intro(1)). A -r option
that is not followed with an option-argument has been
replaced by -L and +command has been replaced by -c command.

The message file too large to recover with -r option, which
is seen when a file is loaded, indicates that the file can
be edited and saved successfully, but if the editing session
is lost, recovery of the file with the -r option will not be
possible.



 - 364 - 

The editing environment defaults to certain configuration
options. When an editing session is initiated, vi attempts
to read the EXINIT environment variable. If it exists, the
editor uses the values defined in EXINIT, otherwise the
values set in $HOME/.exrc are used. If $HOME/.exrc does not
exist, the default values are used.

To use a copy of .exrc located in the current directory
other than $HOME, set the exrc option in EXINIT or
$HOME/.exrc. Options set in EXINIT can be turned off in a
local .exrc only if exrc is set in EXINIT or $HOME/.exrc.

Tampering with entries in /usr/share/lib/terminfo/?/* or
/usr/share/lib/terminfo/?/* (for example, changing or remov-
ing an entry) can affect programs such as vi that expect the
entry to be present and correct. In particular, removing
the "dumb" terminal may cause unexpected problems.

Software tabs using ^T work only immediately after the
autoindent.

Left and right shifts on intelligent terminals do not make
use of insert and delete character operations in the termi-
nal.

The standard Solaris version of vi will be replaced by the
POSIX.2-conforming version (see standards(5)) in the future.
Scripts which use the ex family of addressing and features
should use the /usr/xpg4/bin version of these utilities.



 - 365 - 

wc 
wc - display a count of lines, words and characters in a
file

SYNOPSIS 
wc [ -c | -m | -C ] [ -lw ] [ file...]

DESCRIPTION 
The wc utility reads one or more input files and, by
default, writes the number of newline characters, words and
bytes contained in each input file to the standard output.

The utility also writes a total count for all named files,
if more than one input file is specified.

wc considers a word to be a non-zero-length string of char-
acters delimited by white space (for example, SPACE, TAB ).
See iswspace(3C) or isspace(3C).

OPTIONS 
The following options are supported:

-c Count bytes.

-m Count characters.

-C Same as -m.

-l Count lines.

-w Count words delimited by white space characters or new
line characters. Delimiting characters are Extended
Unix Code (EUC) characters from any code set defined by
iswspace().

If no option is specified the default is -lwc (count lines,
words, and bytes.)

OPERANDS
The following operand is supported:

file A path name of an input file. If no file operands



 - 366 - 

are specified, the standard input will be used.

USAGE 
See largefile(5) for the description of the behavior of wc
when encountering files greater than or equal to 2 Gbyte
(2**31 bytes).

ENVIRONMENT 
See environ(5) for descriptions of the following environment
variables that affect the execution of wc: LC_CTYPE,
LC_MESSAGES, and NLSPATH.

EXIT STATUS
The following exit values are returned:

0 Successful completion.

>0 An error occurred.

ATTRIBUTES 
See attributes(5) for descriptions of the following attri-
butes:

__________________________________
| ATTRIBUTE TYPE| ATTRIBUTE VALUE|
|_______________|_________________|
| Availability | SUNWcsu |
| CSI | Enabled |
|_______________|_________________|

SEE ALSO 
cksum(1), isspace(3C), iswalpha(3C), iswspace(3C),
setlocale(3C), attributes(5), environ(5), largefile(5)



 - 367 - 

which 
which - locate a command; display its pathname or alias

SYNOPSIS 
which [ filename ] ...

DESCRIPTION 
which takes a list of names and looks for the files which
would be executed had these names been given as commands.
Each argument is expanded if it is aliased, and searched for
along the user's path. Both aliases and path are taken from
the user's .cshrc file.

FILES
~/.cshrc source of aliases and path values
/usr/bin/which

ATTRIBUTES 
See attributes(5) for descriptions of the following attri-
butes:

__________________________________
| ATTRIBUTE TYPE| ATTRIBUTE VALUE|
|_______________|_________________|
| Availability | SUNWcsu |
|_______________|_________________|

SEE ALSO 
csh(1), attributes(5)

DIAGNOSTICS
A diagnostic is given for names which are aliased to more
than a single word, or if an executable file with the argu-
ment name was not found in the path.

NOTES 
which is not a shell built-in command; it is the UNIX com-
mand, /usr/bin/which

BUGS



 - 368 - 

Only aliases and paths from ~/.cshrc are used; importing
from the current environment is not attempted. Must be exe-
cuted by csh(1), since only csh knows about aliases.

To compensate for ~/.cshrc files in which aliases depend
upon the prompt variable being set, which sets this variable
to NULL. If the ~/.cshrc produces output or prompts for
input when prompt is set, which may produce some strange
results.



 - 369 - 



 - 370 - 

who 
who - who is on the system

SYNOPSIS 
/usr/bin/who [ -abdHlmpqrstTu ] [ file ]
/usr/bin/who -q [ -n x ] [ file ]
/usr/bin/who am i
/usr/bin/who am I

/usr/xpg4/bin/who [ -abdHlmpqrtTu ] [ file ]
/usr/xpg4/bin/who -q [ -n x ] [ file ]
/usr/xpg4/bin/who -s [ -bdHlmpqrtu ] [ file ]
/usr/xpg4/bin/who am i
/usr/xpg4/bin/who am I

DESCRIPTION 
The who utility can list the user's name, terminal line,
login time, elapsed time since activity occurred on the
line, and the process-ID of the command interpreter (shell)
for each current UNIX system user. It examines the
/var/adm/utmp file to obtain its information. If file is
given, that file (which must be in utmp(4) format) is exam-
ined. Usually, file will be /var/adm/wtmp, which contains a
history of all the logins since the file was last created.

The general format for output is:

name [state] line time [idle] [pid] [comment] [exit]

where:

name user's login name.
state capability of writing to the terminal.
line name of the line found in /dev.
time time since user's login.
idle time elapsed since the user's last activity.
pid user's process id.
comment comment line in inittab(4).
exit exit status for dead processes.

OPTIONS 
The following options are supported:



 - 371 - 

-a Process /var/adm/utmp or the named file with -b,
-d, -l, -p, -r, -t, -T, and -u options turned on.

-b Indicate the time and date of the last reboot.

-d Display all processes that have expired and not
been respawned by init. The exit field appears
for dead processes and contains the termination
and exit values (as returned by wait(3B)), of the
dead process. This can be useful in determining
why a process terminated.

-H Output column headings above the regular output.

-l List only those lines on which the system is wait-
ing for someone to login. The name field is LOGIN
in such cases. Other fields are the same as for
user entries except that the state field does not
exist.

-m Output only information about the current termi-
nal.

-n x Take a numeric argument, x, which specifies the
number of users to display per line. x must be at
least 1. The -n option may only be used with -q.

-p List any other process which is currently active
and has been previously spawned by init. The name
field is the name of the program executed by init
as found in /sbin/inittab. The state, line, and
idle fields have no meaning. The comment field
shows the id field of the line from /sbin/inittab
that spawned this process. See inittab(4).

-q (quick who) display only the names and the number
of users currently logged on. When this option is
used, all other options are ignored.

-r Indicate the current run-level of the init pro-
cess.

-s (default) List only the name, line, and time
fields.

/usr/bin/who



 - 372 - 

-T Same as the -s option, except that the state idle,
pid, and comment, fields are also written. state
is one of the following characters:

+ The terminal allows write access to other
users.

- The terminal denies write access to other
users.

? The terminal write-access state cannot be
determined.

/usr/xpg4/bin/who
-T Same as the -s option, except that the state field

is also written. state is one of the characters
listed under the /usr/bin/who version of this
option.

If the -u option is used with -T, the idle time is
added to the end of the previous format.

-t Indicate the last change to the system clock
(using the date utility) by root. See su(1M) and
date(1).

-u List only those users who are currently logged in.
The name is the user's login name. The line is
the name of the line as found in the directory
/dev. The time is the time that the user logged
in. The idle column contains the number of hours
and minutes since activity last occurred on that
particular line. A dot (.) indicates that the
terminal has seen activity in the last minute and
is therefore ``current''. If more than twenty-
four hours have elapsed or the line has not been
used since boot time, the entry is marked old.
This field is useful when trying to determine
whether a person is working at the terminal or
not. The pid is the process-ID of the user's
shell. The comment is the comment field associ-
ated with this line as found in /sbin/inittab (see
inittab(4)). This can contain information about
where the terminal is located, the telephone
number of the dataset, type of terminal if hard-
wired, and so forth.

OPERANDS
The following operands are supported:



 - 373 - 

am i
am I In the "C" locale, limit the output to describing

the invoking user, equivalent to the -m option.
The am and i or I must be separate arguments.

file Specify a path name of a file to substitute for
the database of logged-on users that who uses by
default.

ENVIRONMENT 
See environ(5) for descriptions of the following environment
variables that affect the execution of who: LC_CTYPE,
LC_MESSAGES, LC_TIME, and NLSPATH.

EXIT STATUS
The following exit values are returned:

0 Successful completion.

>0 An error occurred.

FILES
/sbin/inittab script for init.
/var/adm/utmp current user and accounting information
/var/adm/wtmp historic user and accounting information

ATTRIBUTES 
See attributes(5) for descriptions of the following attri-
butes:

/usr/bin/who
__________________________________
| ATTRIBUTE TYPE| ATTRIBUTE VALUE|
|_______________|_________________|
| Availability | SUNWcsu |
|_______________|_________________|

/usr/xpg4/bin/who
__________________________________
| ATTRIBUTE TYPE| ATTRIBUTE VALUE|
|_______________|_________________|
| Availability | SUNWxcu4 |
|_______________|_________________|



 - 374 - 

SEE ALSO 
date(1), login(1), mesg(1), init(1M), su(1M), wait(3B),
inittab(4), utmp(4), attributes(5), environ(5), xpg4(5)

NOTES 
Super-user: After a shutdown to the single-user state, who
returns a prompt; since /var/adm/utmp is updated at login
time and there is no login in single-user state, who cannot
report accurately on this state. who am i, however, returns
the correct information.


	awk
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	USAGE
	EXAMPLES
	ENVIRONMENT
	ATTRIBUTES
	SEE ALSO
	NOTES

	bc
	SYNOPSIS
	DESCRIPTION
	USAGE
	OPTIONS
	EXAMPLES
	ENVIRONMENT
	ATTRIBUTES
	SEE ALSO
	NOTES

	chgrp
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	USAGE
	ENVIRONMENT
	ATTRIBUTES
	SEE ALSO
	NOTES

	chmod
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	USAGE
	EXAMPLES
	ENVIRONMENT
	ATTRIBUTES
	SEE ALSO
	NOTES

	chown
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	USAGE
	ENVIRONMENT
	ATTRIBUTES
	SEE ALSO
	NOTES

	cp
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	USAGE
	EXAMPLES
	ENVIRONMENT
	ATTRIBUTES
	SEE ALSO
	NOTES

	cron
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	SEE ALSO

	csh
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	shell options.  This allows the passing of OPTIONS
	USAGE
	With no arguments, setenv displays all ENVIRONMENT
	and  word  arguments,  setenv sets the ENVIRONMENT
	In addition, the shell sets  the  PWD  ENVIRONMENT
	ATTRIBUTES
	SEE ALSO
	NOTES

	cut
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	USAGE
	EXAMPLES
	ENVIRONMENT
	ATTRIBUTES
	SEE ALSO

	date
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	EXAMPLES
	ENVIRONMENT
	ATTRIBUTES
	SEE ALSO
	NOTES

	df
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	USAGE
	EXAMPLES
	ENVIRONMENT
	ATTRIBUTES
	SEE ALSO
	NOTES

	diff
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	USAGE
	EXAMPLES
	ENVIRONMENT
	ATTRIBUTES
	SEE ALSO
	NOTES

	env
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	EXAMPLES
	ENVIRONMENT
	ATTRIBUTES
	SEE ALSO

	expr
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	ENVIRONMENT
	ATTRIBUTES
	SEE ALSO
	NOTES

	find
	SYNOPSIS
	DESCRIPTION
	USAGE
	EXAMPLES
	ENVIRONMENT
	ATTRIBUTES
	SEE ALSO
	NOTES

	grep
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	USAGE
	EXAMPLES
	ENVIRONMENT
	ATTRIBUTES
	SEE ALSO
	NOTES

	kill
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	USAGE
	EXAMPLES
	ENVIRONMENT
	ATTRIBUTES
	SEE ALSO
	NOTES

	ksh
	SYNOPSIS
	DESCRIPTION
	ENVIRONMENT
	USAGE
	ATTRIBUTES
	SEE ALSO
	NOTES

	ln
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	USAGE
	ENVIRONMENT
	ATTRIBUTES
	SEE ALSO
	NOTES

	ls
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	USAGE
	EXAMPLES
	ENVIRONMENT
	ATTRIBUTES
	SEE ALSO
	NOTES

	make
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	USAGE
	EXAMPLES
	ENVIRONMENT
	ATTRIBUTES
	SEE ALSO

	man
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	USAGE
	ENVIRONMENT
	ATTRIBUTES
	SEE ALSO
	NOTES

	more
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	USAGE
	ENVIRONMENT
	ENVIRONMENT
	ATTRIBUTES
	SEE ALSO
	NOTES

	mv
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	USAGE
	ENVIRONMENT
	ATTRIBUTES
	SEE ALSO
	NOTES

	nroff
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	EXAMPLES
	ENVIRONMENT
	ATTRIBUTES
	SEE ALSO

	od
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	ENVIRONMENT
	ATTRIBUTES
	SEE ALSO

	printf
	SYNOPSIS
	DESCRIPTION
	USAGE
	EXAMPLES
	ENVIRONMENT
	ATTRIBUTES
	SEE ALSO

	ps
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	EXAMPLES
	ENVIRONMENT
	ATTRIBUTES
	SEE ALSO
	NOTES

	regexp
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO

	rm
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	USAGE
	EXAMPLES
	ENVIRONMENT
	ATTRIBUTES
	SEE ALSO
	NOTES

	script
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	NOTES
	ATTRIBUTES
	SEE ALSO

	sed
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	USAGE
	EXAMPLES
	ENVIRONMENT
	ATTRIBUTES
	SEE ALSO

	shutdown
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	EXAMPLES
	ATTRIBUTES
	SEE ALSO

	sleep
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	ENVIRONMENT
	ATTRIBUTES
	SEE ALSO
	NOTES

	sort
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	USAGE
	EXAMPLES
	ENVIRONMENT
	ATTRIBUTES

	spell
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	ENVIRONMENT
	ATTRIBUTES
	SEE ALSO
	NOTES

	sum
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	USAGE
	ENVIRONMENT
	ATTRIBUTES
	SEE ALSO
	NOTES

	tar
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	USAGE
	EXAMPLES
	ENVIRONMENT
	ATTRIBUTES
	SEE ALSO
	NOTES

	tr
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	USAGE
	EXAMPLES
	ENVIRONMENT
	ATTRIBUTES
	SEE ALSO
	NOTES

	troff
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	EXAMPLES
	ATTRIBUTES
	SEE ALSO
	NOTES

	uniq
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	EXAMPLES
	ENVIRONMENT
	ATTRIBUTES
	SEE ALSO

	vi
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	USAGE
	ENVIRONMENT
	ATTRIBUTES
	SEE ALSO
	NOTES

	wc
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	USAGE
	ENVIRONMENT
	ATTRIBUTES
	SEE ALSO

	which
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	SEE ALSO
	NOTES

	who
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	ENVIRONMENT
	ATTRIBUTES
	SEE ALSO
	NOTES


