IT & TELECOMMUNICATIONS IMPACT ON DEVELOPING ECONOMIES

BILL LUTHER
FEDERAL COMMUNICATIONS COMMISSION
WASHINGTON, D.C.

TOPICS FOR DISCUSSION

- POLICY OBJECTIVES
- INTERNET WHAT DOES IT MEAN?
- UNIVERSAL SERVICE AND UNIVERSAL ACCESS
- INTERNET CONCERNS
- IP TELEPHONY AND THE PSTN
- DIGITAL DIVIDE
- SATELLITE AND INTERNET INDUSTRIES
- WTO AGREEMENT
- IP VIA SATELLITE
- WWW SITES
- SATELLITE PROBLEM

POLICY OBJECTIVES

- FOSTER COMPETITIVE AND INNOVATIVE INTERNET AND MULTIMEDIA INDUSTRIES
- MINIMIZE REGULATION AND ENACT FLEXIBLE REGULATORY POLICIES

• PROMOTE MARKET ACCESS AND ADOPTION OF OPEN, NON-DISCRIMINATORY, TRANSPARENT POLICIES

INTERNET

THE INTERNET HAS ENABLED THE CREATION OF BUSINESSES WITHOUT MUCH CAPITAL. IT HAS **ENLARGED THE COMPETITION - -**NOT ONLY THE SHOP DOWN THE STREET BUT THE SHOP HALFWAY AROUND THE WORLD. GEOGRAPHICAL BOUNDARIES ARE DISAPPEARING.

THE INTERNET REVOLUTION

- A RECENT U.S. STUDY (OCT. 2000) CALCULATED THAT USE OF INTERNET E-MAIL INCREASED PRODUCTIVITY OVER THE LAST YEAR BY A VALUE OF \$13,000 PER EMPLOYEE.
- THE SAME STUDY FOUND THAT EMPLOYEES SAVE 326 HOURS PER YEAR BY USING E-MAIL (THERE ARE ABOUT 2100 HOURS IN THE U.S. GOVT. WORK YEAR)
- NOT WITHOUT A DOWNSIDE, THE SAME STUDY FOUND THAT EACH EMPLOYEE WASTES 115 HOURS PER YEAR WITH PERSONAL E-MAIL AND SPAM.

DAILY E-MAIL GROWTH

1999 - 3.5 BILLION

2003 - 11 BILLION

DOMAINS

.AERO .INFO

.ARPA .INT

.BIZ .MIL

.COM .NET

.COOP .MUSEUM

.(COUNTRY CODES) .NAME

.EDU .ORG

.GOV .PRO

UNIVERSAL SERVICE AND UNIVERSAL ACCESS

- IT IS UNDERSTOOD THAT MARKET SOLUTIONS WILL NOT ENSURE THE EXPANSION OF NETWORKS TO ECONOMICALLY LESS VIABLE AREAS
- UNIVERSAL SERVICE OR UNIVERSAL ACCESS OBLIGATIONS AND FUNDING ARE A NATIONAL POLICY ISSUE

INTERNET CONCERNS

FRAUD CYBERSTALKING SECURITY GAMBLING MONEY LAUNDERING DRUG TRAFFICKING **PORNOGRAPHY TAXES SPAM QUALITY** IPR

IP TELEPHONY AND THE GLOBAL TELECOM MARKET

YEAR 2000 - GLOBAL
TELECOMMUNICATIONS MARKET WAS
\$1 TRILLION

YEAR 2000 - GLOBAL INTERNET PROTOCOL TELEPHONY MARKET OF \$500 MILLION

(FIVE TEN-THOUSANDTHS OR 0.05%)

WORLD TELECOMMUNICATION POLICY FORUM ON IP TELEPHONY

7 - 9 MARCH 2001, GENEVA

- IMPLICATIONS OF IP TELEPHONY FOR DEVELOPING COUNTRIES WITH RESPECT TO POLICIES AND REGULATORY FRAMEWORKS, AND TECHNICAL AND ECONOMIC ASPECTS
- ASSISTING CONSEQUENTIAL ADAPTATION TO CHANGES IN THE TELECOMMUNICATIONS ENVIRONMENT DUE TO IP TELEPHONY
- ASSISTING IN MEETING THE HUMAN RESOURCE DEVELOPMENT CHALLENGES PRESENTED BY NEW TELECOMMUNICATION TECHNOLOGIES SUCH AS IP TELEPHONY

PSTN AND IP TELEPHONY

- PSTN IS BASED ON CIRCUIT-SWITCHED TECHNOLOGY, EVOLVED AS A VOICE NETWORK (HIGHLY REGULATED)
- INTERNET BASED ON PACKET-SWITCHED TECHNOLOGY, EVOLVED AS A DATA NETWORK (LARGELY UNREGULATED)
- INTERNET IN 2000 WAS 3 % OF GLOBAL INTERNATIONAL TRAFFIC TOTAL

PSTN AND IP TELEPHONY RELATIVE COSTS

- IP TELEPHONY CAN BE OFFERED AT PRICES SIGNIFICANTLY BELOW THOSE FOR PSTN TELEPHONY
- PSTN PRICING IS DISTANCE-SENSITIVE - - PRICING OF IP TELEPHONY IS LARGELY INDEPENDENT OF DISTANCE (LIKE SATELLITE COMMUNICATIONS)
- IP TELEPHONY TODAY MEANS A TRADE-OFF BETWEEN QUALITY AND COST

VoIP VS CIRCUIT **NETWORK COST**

SOLUTION

INVESTMEN CAPACITY T

ADVANTAGES

TD A DITIONAL TELL CO.	CLASS 5 SWITCH	US \$20 MILLION	20,000 LINES	QUALITYRELIABILITY
TRADITIONAL TELCO SWITCH				PROVEN TECHNOLO GY
IP TELEPHONY	INTERNET POP	US \$0.1 MILLION	400,000 MINUTES PER MONTH	 EFFICIENCY NEW SERVICES POTENTIAL SCALABILIT Y
IP TELEPHONY	IP FULL OPERATION	US \$3 TO 5 MILLION	35 MILLION MINUTES PER MONTH	

IP TELEPHONY PERMITTED

ANGOLA

ANTIGUA AND BARBUDA

ARGENTINA

AUSTRALIA

AUSTRIA

BELGIUM

BHUTAN

CANADA

CHINA

CONGO

COSTA RICA

CYPRUS

CZECH REPUBLIC

DENMARK

DOMINICAN REPUBLIC

ESTONIA

ETHIOPIA

FINLAND

FRANCE

GAMBIA

GERMANY

GREECE

GUATEMALA

GUYANA

HONG KONG SAR

HUNGARY

ICELAND

IRELAND

ITALY

JAPAN

KENYA

KOREA (REP)

KYRGYZSTAN

LUXEMBOURG

MADAGASCAR

MALAYSIA

MALTA

MEXICO

MOLDOVA

MONGOLIA

NEPAL

NETHERLANDS

NEW ZEALAND

PERU

PHILIPPINES

POLAND

PORTUGAL

SINGAPORE

SLOVAK REPUBLIC

SPAIN

SRI LANKA

ST. LUCIA

ST. VINCENT

SWEDEN

SWITZERLAND

TONGA

UGANDA

UNITED KINGDOM

UNITED STATES

VIET NAM

EUROPEAN COMMISSION INTERNET POLICY

INTERNET TELEPHONY IN GENERAL FALLS OUTSIDE THE DEFINITION OF VOICE TELEPHONY AND NO SPECIAL LICENSE IS REQUIRED

DIGITAL DIVIDE

• ONLY 5 TO 6 % OF THE WORLD HAS ACCESSED INTERNET AND 90 % OF THEM ARE IN INDUSTRIALIZED COUNTRIES.

• AFRICA AND MIDDLE EAST ACCOUNT FOR JUST 1 % OF INTERNET USERS.

PROBLEM AND SOLUTIONS

PROBLEM:

TECHNOLOGY HAS WIDENED THE DIGITAL DIVIDE BETWEEN DEVELOPED AND DEVELOPING COUNTRIES.

SOLUTION: *

- 1. COUNTRIES SHOULD IMPROVE THEIR EDUCATIONAL SYSTEMS, AND
- 2. EXPAND THEIR TELECOMMUNICATIONS NETWORKS

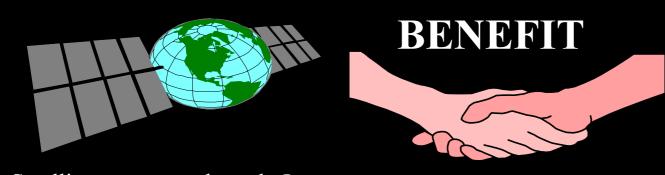
^{*}ILO at the World Economic Forum, Davos, 2001

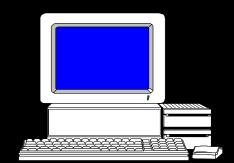
DATA AND TEXT VS VOICE

- SOME COUNTRIES HAVE CHOSEN TO PROMOTE INTERNET FOR TEXT AND DATA SERVICES BUT NOT FOR VOICE
- MOTIVE MAY BE TO PROTECT INCUMBENT OPERATORS FROM POTENTIAL COMPETITION
- THOSE OPERATORS MAY BE ILL-PREPARED FOR THE FUTURE GLOBAL ENVIRONMENT

CONVERGENCE TO INTERNET

• TREND IS TOWARDS THE CONSOLIDATION OF VOICE, VIDEO AND DATA SERVICES IN THE INTERNET

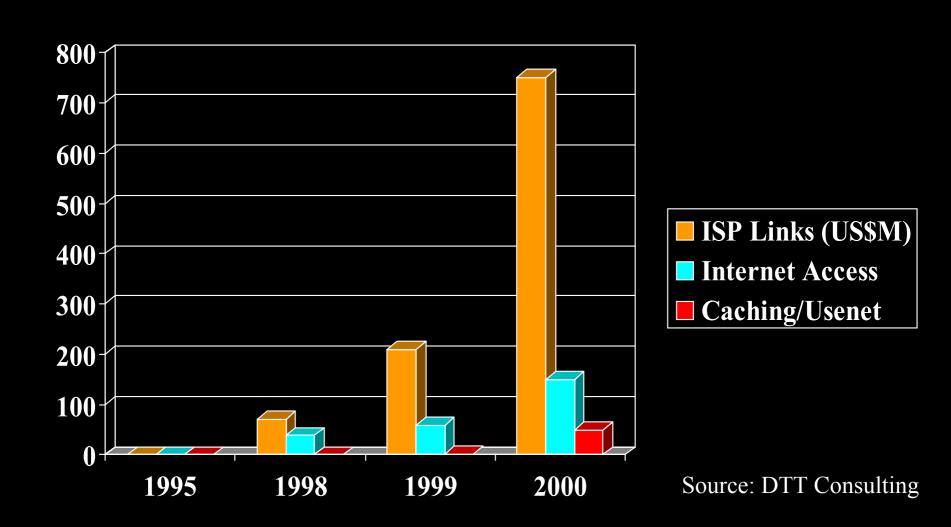

• PROGRESS TOWARD THIS
CONSOLIDATION WILL BE VIA
DEVELOPMENTS SUCH AS UBIQUITOUS
BANDWIDTH, INCREASED EASE OF USE,
GREATER CONNECTIVITY AND
IMPROVED SECURITY


NEW INTERNET MULTIMEDIA APPLICATIONS

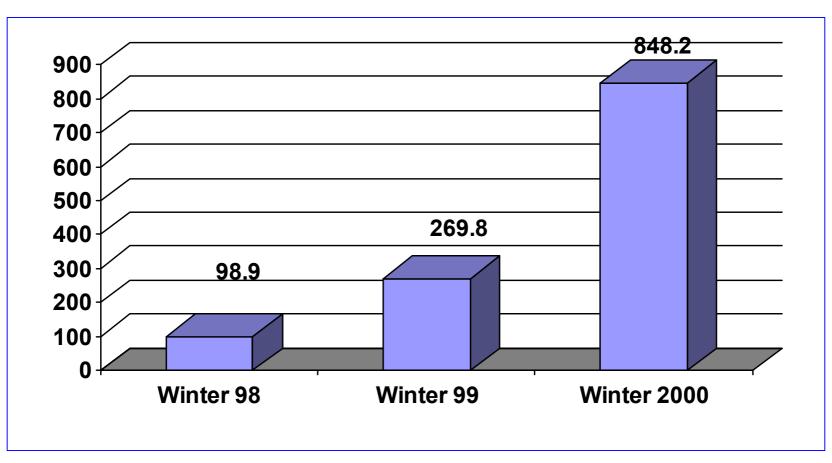
SOFTWARE TO DOWNLOAD:

- MUSIC
- PHOTOGRAPHS
- GAMES AND ENTERTAINMENT TO MOBILE WIRELESS DEVICES
- LOCATION-BASED MAPPING

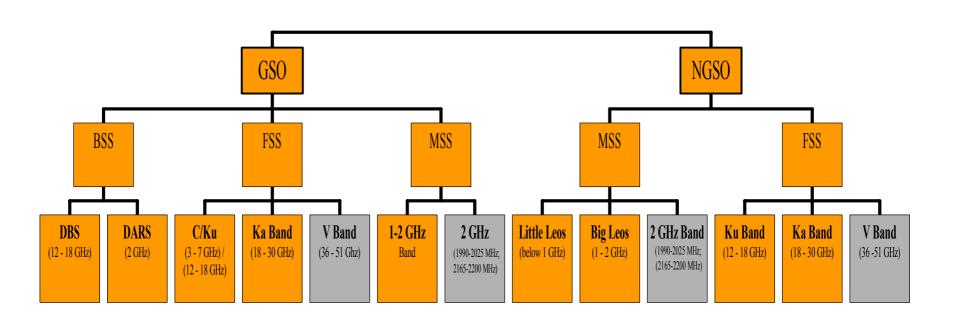
SATELLITE AND INTERNET INDUSTRIES STAND TO MUTUALLY

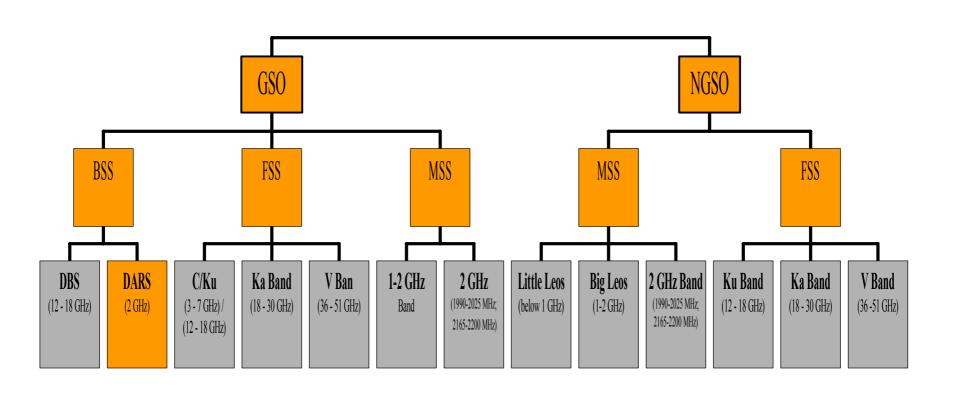

- Satellites represent the only Internet access alternative in many rural areas and developing nations.
- Satellites provide instant infrastructure to ISPs.
- Satellites provide a cost advantage over wireline networks in areas with sparse population.
- Satellites provide an efficient means of Internet access for customers with asynchronous Internet usage patterns and from the ability to multicast content.
- Satellites allow residential and business customers to bypass the local loop with speeds higher than the transmission rate received through a standard phone line.

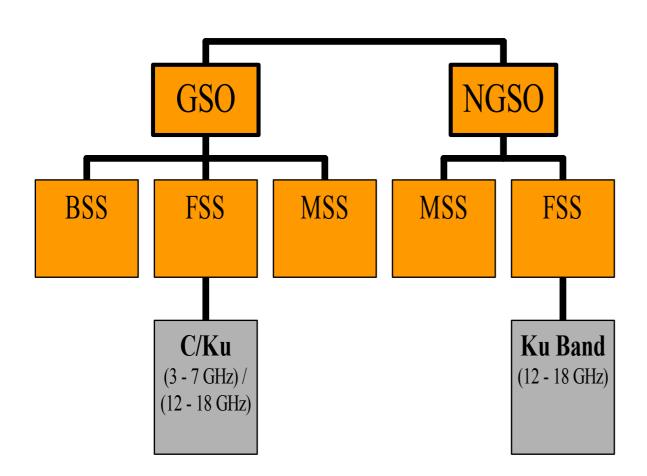
- Internet transmission represents fastest growing segment of the FSS industry. (Source: Merrill Lynch)
- Internet traffic over satellites doubles every six months. (Source: Industry Reports).
- Internet traffic is projected to constitute a major revenue stream for the new generation of satellite systems in the Ka and V bands.


WTO AGREEMENT

- OPENS MARKETS FOR BASIC TELECOMMUNICATION SERVICES, INCLUDING SATELLITE SERVICES OTHER THAN DTH, DBS, AND DARS SERVICES
- OPENS MARKETS FOR SATELLITE SERVICES IN 49 COUNTRIES WHICH REPRESENT 80% OF TOTAL GLOBAL MARKET FOR SATELLITE SERVICES.
- AGREEMENT SHOULD FOSTER INTERNET VIA SATELLITE INDUSTRY.

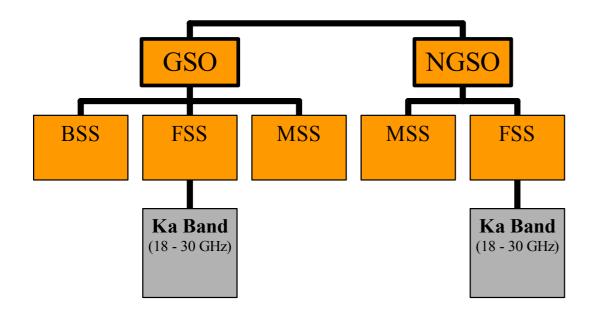

IP VIA SATELLITE: A SERVICE EMERGES


VALUE OF IP VIA SATELLITE MARKET


INDUSTRY STRUCTURE BY BANDS

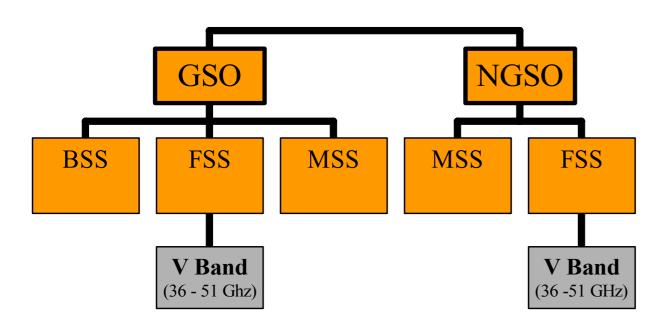
BANDS CURRENTLY OFFERING OR EXPECTING TO OFFER SOME TYPE OF INTERNET SERVICE

C & Ku BAND

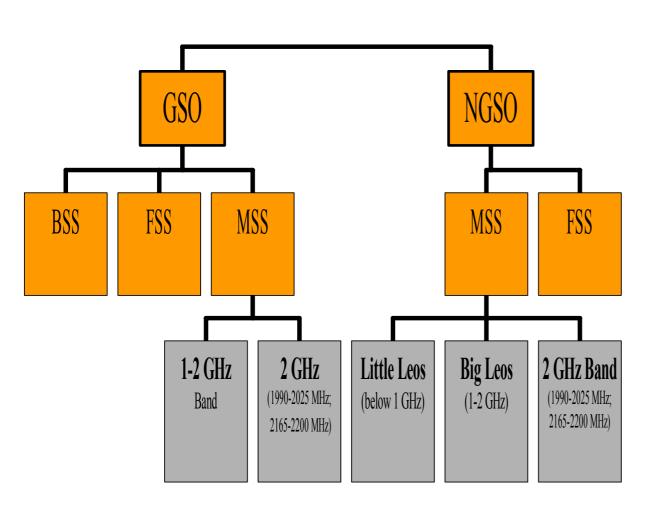


- C and Ku Bands used by GSO satellites account for most of the Internet traffic today.
- Thirty-three 36 MHz equivalent transponders devoted to Internet service.

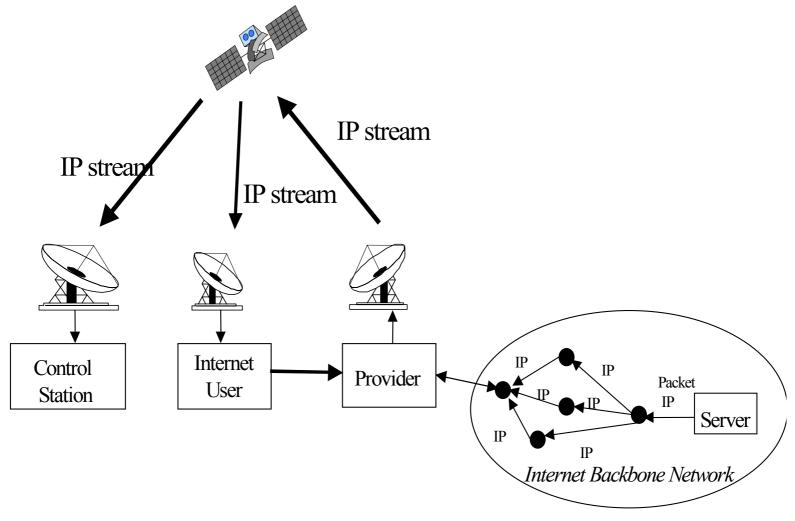
(Source: DTT consulting).


- LMGT estimates 70% of new transponder leases are Internet related.
- Direct-to-consumer Internet access quickly emerging.

Ka BAND


- Alternative to highly congested C and Ku Bands.
- Ka band systems promise advanced, high speed networks at speeds 64 Mbps and over.
- Proposed services: high speed Internet & Intranet access; data trunking; video conferencing; distance learning; tele-medicine; private data networks.
- Currently 14 licensed systems
- Teledesic (LEO System)
- 13 GEO Systems
- 2nd licensing round is underway.

V BAND


- 16 applicants requesting V band spectrum (8 GSO only; 6 NGSO only; 2 GSO & NGSO)
- Proposed speeds of 64 Mbps and higher.
- Proposed services similar to Ka band offerings, including high speed Internet access & Intranet; data trunking; video-conferencing.
- Industry analysts believe the V band systems are likely to supplement the Ka systems currently in development.

MOBILE SATELLITE SERVICE BANDS

- Little and Big Leo
 Systems propose to offer
 two-way email
 messaging services, and
 plan to transmit paging
 messages over the
 Internet.
- Systems underway for 2nd GHz band. (3 GSO; 6 NGSO)
- •Highest data rate proposed at 2 GHz band is 384 Kbps.

SATELLITE DTV AND IP

INTERNET ACCESS VIA SATELLITE (GSO)

GILAT - - FIRST TO SERVICE (V-SAT)

STARBAND - - NOVEMBER 2000

DIRECT PC - - DECEMBER 2000

BOEING CONNEXION (AIRCRAFT) - - PENDING

WWW SITES OF INTEREST

WWW.CNN.COM

WWW.ERO.DK

WWW.IARU.ORG

WWW.ITU.INT

WWW.FCC.GOV

WWW.RSSI.RU

WWW.SPACECOM.AF.MIL

WWW.SEC.NOAA.GOV

STRATEGIS.IC.GC.CA

SATELLITE PROBLEM

GIVEN:

Diameter of Earth = 8000 miles

Geostationary orbit above Earth = 22,300 miles

QUESTIONS:

- 1. If you are standing still at the equator, are you moving at all? YES NO
- 2. If you are moving, at what speed and direction?
- 3. Is a geostationary satellite hovering above the equator actually moving? YES NO
- 4. If the satellite is moving, at what speed and direction?
- 5. What is the geostationary arc distance of one (1) degree?

•••••

<u>Hints</u>: circumference = 2π (radius); distance = (rate)(time); Use proportionality

1 mile = 1.6 kilometer; π = 3.14