TOSHIBA-TREL

Principles of Spread Spectrum and CDMA

Mike Fitton

Overview of Presentation

- Why consider Spread Spectrum ?
- What is Spread Spectrum & CDMA ?
- Frequency Hopping Spread Spectrum
 - Impact of channel
 - Current systems
- Direct Sequence Spread Spectrum
 - Spreading Codes
 - Analytical Performance Model
 - Rake Processing
 - Near Far Effect (Power Control)
 - Handover
- Conclusions & Discussion

Why Consider Spread Spectrum ?

- Spread Spectrum has been adopted as the air interface standard for 3rd Generation Mobile Systems (IMT2000):
 - Europe (ETSI): UMTS (W-CDMA & TD-CDMA)
 - Japan (ARIB): Wideband CDMA
 - USA (TIA TR45.5) CDMA 2000
- 2nd Generation standard deployed in US and Korea
 - IS95 (Qualcomm CDMA)

What is Spread Spectrum?

TOSHIBA-TREL

Frequency Hopping Spread Spectrum

Classification of Spread Spectrum Systems Frequency Hopping (FH)

- Narrow band message signal is modulated with a carrier frequency which is rapidly shifted
- The hop frequency is indicated by a spreading function.
- This spreading function is also available at the receiver and enables it to retune to the correct channel for each 'hop'.

Frequency Hopping

7 —

The effects of frequency hopping

- inherent *frequency* diversity
- Interference diversity

8 •

The effects of frequency hopping

 Randomises the propagation channel which is observed

_

9

Hop rates in an FH system

- Fast frequency hopping
 - Data symbol spread over several hop frequencies
 - Symbol diversity
 - Very resistant to jamming and interference, often used in military systems
- Slow frequency hopping
 - Several data symbols on each hop frequency
 - Codeword diversity with interleaving
 - More likely to have successful retransmission with ARQ
 - Less complex

Current FH system

- Bluetooth Wireless Personal Area Network.
 - Robust to interference (ISM band).
 - Maximise likelihood of successful retransmissions.
 - 1,600 hops/second.
 - Based on IEEE 802.11 WLAN specifications.
- Frequency Hopped Spread Spectrum is a candidate system for Wireless Local Loop.
- The GSM specification includes the possibility of full or limited frequency hopping.
 - FH randomises the interference observed and eases frequency planning.

TOSHIBA-TREL

Direct Sequence Spread Spectrum

Classification of Spread Spectrum Systems

Direct Sequence (DS)

- Secondary modulation in the form of pseudo-noise is applied to an already modulated narrowband message, thereby spreading the spectrum.
- At the receiver, the incoming waveform is multiplied by an identical synchronised spreading waveform in order to recover the message.

Direct Sequence Spread Spectrum

Data and spreading modulation

- Data modulation
 - Uplink: generally BPSK (data only) or QPSK (data on I and control information on Q)
 - Downlink: QPSK (half channels on I and half on Q)
- Spreading modulation (called *secondary modulation*)
 - Choice depends processing gain required, available bandwidth (normally BPSK or QPSK).
 - Certain schemes are more tolerant to amplifier non-linearities
 - For PSK modulated signal it is assumed that at least a bandwidth of at least 88% of the chipping rate must be transmitted (3dB point)
 - MSK can be utilised to confine the power spectral density

Spreading Codes

- Maximal length sequences
 - good auto- and cross-correlation
 - small code set
- Gold codes and Kasami sequences are derived from M-sequences with similar correlation properties, and a larger code set.
- Offsets in a long code (e.g. an m-sequence) can be employed if the mobiles are synchronised (as is used in IS95).

Orthogonal Spreading Codes

- Walsh and Hadamard sequences
 - zero correlation between codes when aligned
 - cross-correlation non-zero when time shifted
 - fixed spreading factor (codes of different length are not orthogonal)
- Orthogonal Variable Spreading Factor (OVSF) codes
 - permit orthogonal codes for different rate services
- Both types of code lose orthogonality when shifted due to channel dispersion

- e.g. 40% loss of orthogonality in a large macrocell

Code Division Multiple Access: CDMA

Processing Gain in Direct Sequence

TOSHIBA-TREL Processing Gain in Direct Sequence

20 -

Multi-User DS/SS System - CDMA

UsersChannelReceiver for jth user $N_0^{'} = N_0 + (M-1)E_b/PG$ $M = PG\left(\left(\frac{N_0^{'}}{E_b}\right)_M - \frac{N_0}{E_b}\right)$ $\frac{E_b}{N_0^{'}} = \frac{E_b/N_0}{1 + \frac{(M-1)}{PG}E_b/N_0}$ Main and the set of th

Theoretical CDMA Capacity

- DS-CDMA capacity is inversely proportional to the energy per bit per noise power density which is tolerated
- A standard DS-CDMA system is *interference limited* by intra-cell interference
- Therefore increase capacity by:
 - voice activity detection
 - antenna sectorisation
 - adaptive antennas
 - interference cancellation

The Multipath Environment

- The received signal is made up of a sum of attenuated, phase-shifted and time delayed versions of the transmitted signal.
- Propagation modes include diffraction, transmission and reflection.

- Path diversity can be exploited by separating out the multipath components, co-phasing and summing them.
- Number of paths resolved (Lm) depends on the total multipath delay (Tm) and the chip period (Tc)

RAKE receiver

• One method of realising path diversity is with a RAKE and a bank of correlators

Coherent RAKE receiver structure

 A RAKE receiver can also be visualised as a matched filter (which resolves the propagation paths) and a channel estimation filter (to recover coherent channel information)

^{*} Reproduced from Adachi et al in IEEE Comms magazine September 1997

Diversity and diversity combining

- Diversity: providing multiple versions of the transmitted signal. Commonly:
 - multiple antennas
 - multiple paths
- Diversity combining pre-detection
 - *switched*: blindly switch to another
 - selection: best branch is chosen
 - equal gain combining: all branch summed
 - *maximal ratio*: branches summed and weighted depending on their quality

post-detection

Improvement with increased diversity order

• Significant improvement in spectrum efficiency occurs with increasing diversity order (path diversity in this case).

28 •

Path diversity at low chip rates

- At 1.25Mcps (IS95) only one or two bins are available for combining.
- Considerable variation in each bin due to the vector summation of many paths.

* Reproduced from M.Beach and S.Allpress, Radiowave Propagation, IEE Press

Path diversity at higher chip rates

- At 10Mcps more bins are available for combining, improving performance.
- Fading in each bin is more deterministic as less paths are present.

^{*} Reproduced from M.Beach and S.Allpress, Radiowave Propagation, IEE Press

The near-far effect in CDMA

- Everyone on same frequency at the same time.
- A MS close to the BS will "drown out" other MSs unless it reduces it's power.
- Power control is required.

CDMA Power Control

- Power control required on uplink, desired on downlink.
- Open loop control can be used to remove shadowing (as the channel is reciprocal).
- Closed loop control is required to remove the fast fading
 - BS receives MS signal and calculates the SIR
 - BS sends MS a transmit power control (TPC) signal to increase or decrease its power
- TPC issues include rate and step size

Uplink closed loop power control algorithms

- Sigma-delta scheme used
- Command rate must be sufficient to track channel changes
- Trade-off in step size between tracking and accuracy

33 -

34 —

W-CDMA in UMTS

W-CDMA is used in FDD mode in UMTS

- On the downlink it is possible to use orthogonal spreading codes to reduce interference. A scrambling code is used to separate the cells
- On the uplink, low cross correlation codes are used to separate the mobiles. A single mobile can use *multi-code* transmission: each service is mapped onto several bearers, each of which is spread by an orthogonal code.

TD-CDMA (UMTS TDD mode)

• There are a number of time slots, and a number of codes in each time slot. For example 16 time slots and 8 or 9 codes in UMTS TDD mode.

- Codes are orthogonal on DL
- UL codes must either be synchronised or some form of multiuser detection used in BS

Comparison of DS and FH CDMA

- DS-CDMA
 - Flexible support of variable data rate
 - High capacity is possible with enhancements (interference cancellation, adaptive antennas, etc)
 - Suffers from near-far effect power control required
- FH-CDMA
 - Suitable for ad hoc networks (no near-far problem)
 - Robust to interference
 - Limited data rate

37 -

Conclusions

- Spread spectrum systems provide a robust means of communication
 - FH and DS are used for WLANs in the ISM band at 2.4GHz due to their interference resistance
- It can be applied to multi-user systems in the form of Code Division Multiple Access
 - Users share the same frequency at the same time, and are separated by their unique code.
- Both approaches are applied in many communications systems today
 - The flexibility and bandwidth of DS-CDMA make it suitable for high capacity, cellular systems supporting many applications
 - The robustness of Frequency Hopping make it suitable for ad hoc networks, such as WLAN and WPAN