

IEEE 802.11 MAC Functionality

- ★ Digital Signal Processor (Theseus)
- ★ IEEE 802.11 MAC chip (Hermes)

- ★ Digital Signal Processor (Theseus)
- ★ IEEE 802.11 MAC chip (Hermes)

communication

Avaya Wireless implementation of **IEEE 802.11**

- ★ Protocol functions programmed in FW, so flexible.
- \star For use in station and access points (additional FW loaded when operating as access point)
- ★ Functions can be added over time, via upgrade utilities

* ACK protocol

- ★ Medium reservation (RTS/CTS)
- ★ Fragmentation
- ★ Multi-channel roaming
- ★ Automatic data-rate fall-back
- ★ Cell size / Multi-rate applications
- ★ In-cell relay
- ★ Power Management
- ★ Wired Equivalent Privacy (WEP)
- ★ Wireless Distribution System (WDS)

Accessing the medium CSMA/CD

- ★ Adapters that can detect collisions (e.g. Ethernet adapters)
- ★ Initiate transmission as soon as carrier drops

★ Carrier Sensing: listen to the media to determine if it is free

- ★ When collision is detected station defers
- ★ When defer timer expires: repeat carrier sensing and start transmission

Accessing the medium CSMA/CA

- ★ Wireless LAN adapters cannot detect collisions:
- ★ Carrier Sensing listen to the media to determine if it is free
- ★ Collision Avoidance minimize chance for collision by starting (random) back-off timer, when medium is sensed free, and prior to transmission

CSMA/CA with MAC - level Acknowledgment

- ★ Collisions still can occur (interference; incapability of sensing other carrier)
- ★ IEEE 802.11 defines "low-level" ACK protocol
- ★ Provides faster error recovery
- ★ Makes presence of high level error recovery less critical

- ★ ACK protocol
- ★ Medium reservation (RTS/CTS)
- ★ Fragmentation
- ★ Multi-channel roaming
- ★ Automatic data-rate fall-back
- ★ Cell size / Multi-rate applications
- ★ In-cell relay
- ★ Power Management
- ★ Wired Equivalent Privacy (WEP)
- ★ Wireless Distribution System (WDS)

- ★ Situation that occurs in larger cells (typical outdoor)
- ★ Loss of performance
- ★ Error recovery required

★ IEEE 802.11 defines:

- ★ MAC level RTS/CTS protocol (Request to Send / Clear to Send)
- Can be switched off to reduce overhead (when no hidden nodes exist)
- ★ More robustness, and increased reliability
- ★ No interruptions when large files are transmitted

- ★ ACK protocol
- ★ Medium reservation (RTS/CTS)
- ★ Fragmentation
- ★ Multi-channel roaming
- ★ Automatic data-rate fall-back
- ★ Cell size / Multi-rate applications
- ★ In-cell relay
- ★ Power Management
- ★ Wired Equivalent Privacy (WEP)
- ★ Wireless Distribution System (WDS)

★ IEEE 802.11 defines:

- MAC level function to transmit large messages as smaller frames (user definable)
- ★ Improves performance in RF polluted environments
- ★ Can be switched off to avoid the overhead in RF clean environments

- ★ ACK protocol
- ★ Medium reservation (RTS/CTS)
- ★ Fragmentation
- ★ Multi-channel roaming
- ★ Automatic data-rate fall-back
- ★ Cell size / Multi-rate applications
- ★ In-cell relay
- ★ Power Management
- ★ Wired Equivalent Privacy (WEP)
- ★ Wireless Distribution System (WDS)

- ★ Avaya Wireless IEEE 802.11 systems, support multi-channel roaming
- ★ Access points are set to a fixed frequency
- ★ Stations do not need to be configured for a fixed frequency ★ Stations switch frequency when roaming between access points
- ★ Stations "associate" dynamically to the access point with best signal, on power on
- ★ This implies
- ★ Easier configuration
- ★ Faster installation

- ★ ACK protocol
- ★ Medium reservation (RTS/CTS)
- ★ Fragmentation
- ★ Multi-channel roaming
- ★ Automatic data-rate fall-back
- ★ Cell size / Multi-rate applications
- ★ In-cell relay
- ★ Power Management
- ★ Wired Equivalent Privacy (WEP)
- ★ Wireless Distribution System (WDS)

---Automatic rate select

- ★ Avaya Wireless PC Card, dynamically switches data-rate
- ★ Fall back to lower data-rate when communications quality decreases
- out of range situations
- Interference
- ★ Fall-back scheme:
- 11 Mbps, 5.5 Mbps, 2 Mbps, 1 Mbps
- ★ This implies
- ★ Operating at larger distances
- ★ Robustness in RF polluted areas

---Automatic rate select

- ★ Avaya Wireless PC Card in AP-1000 and AP-500 is capable of supporting different data-rates "simultaneously":
- e.g. operates at "High" speed in communication to nearby station and at "Low"
- ★ Data rate capability is maintained in "station association

speed to station that is further away.

★ Speed of IEEE Management - and Control frames use fixed "Multi-cast Rate parameter" speed determined as "IEEE Basic Rates", and controlled by

- ★ ACK protocol
- ★ Medium reservation (RTS/CTS)
- **★** Fragmentation
- ★ Multi-channel roaming
- ★ Automatic data-rate fall-back
- ★ Cell size / Multi-rate applications
- ★ In-cell relay
- ★ Power Management
- ★ Wired Equivalent Privacy (WEP)
- ★ Wireless Distribution System (WDS)

Cell size / Multi Rate applications

- ★ Cell-size can be influenced by "Distance between APs" parameter
- ★ Distance between APs = Large
- large cell
- ★ Distance between APs = Medium
- medium size cell
- ★ Distance between APs = Small
- small cell
- ★ Cell-size influences capacity per station in the cell
- ★ small cell physically accommodates smaller number of stations than large cell
- ★ bandwidth per station in small cell greater than in large cell
- ★ Cell size influences data-rate
- ★ larger distance between station and access-point may lead to lower data-rate

Cell size / Multi Rate applications

- ★ Mixture of cell-sizes accommodate mixed applications:
- ★ Office workers:
- High physical station density
- High bandwidth requirement
- Small cell operating at high data rate
- Distance between APs is small
- ★ Warehouse operations (such as forklift truck)
- Low physical station density
- Low bandwidth requirement (transaction processing)
- Large cell operating at low data rate
- Distance between APs is large

- ★ ACK protocol
- ★ Medium reservation (RTS/CTS)
- ★ Fragmentation
- ★ Multi-channel roaming
- ★ Automatic data-rate fall-back
- ★ Cell size / Multi-rate applications
- ★ In-cell relay
- ★ Power Management
- ★ Wired Equivalent Privacy (WEP)
- ★ Wireless Distribution System (WDS)

★ IEEE 802.11, in-cell relay:

- ★ Provides cells that are app. twice as large as with pre-IEEE wireless systems

Single radio module when used in the AP-1000 or AP-500 acts as repeater

★ Communication flows via access-point so overall transmission time increases relative to pre-IEEE 802.11(or direct station to station communication)

★ This implies:

- ★ Larger cell size and consequently less need for access points and interconnecting infrastructure
- ★ Reduced performance in peer to peer communication within one cell compared to pre-IEEE 802.11

In-cell Relay

through air twice) **In-cell relay:**Larger cell (diameter = d >a) Lower throughput (data travels

Higher throughput (data travels through air once) No in-cell relay: Smaller cell (diameter = a<d)

- ★ ACK protocol
- ★ Medium reservation (RTS/CTS)
- ★ Fragmentation
- ★ Multi-channel roaming
- ★ Automatic data-rate fall-back
- ★ Cell size / Multi-rate applications
- ★ In-cell relay
- ★ Power Management
- ★ Wired Equivalent Privacy (WEP)
- ★ Wireless Distribution System (WDS)

--Power Management

- IEEE 802.11, supports power management:
- ★ nothing to send: station in sleep mode

★ out-bound traffic stored in Access Point (out-bound = from AP to STA)

- ★ station wake up only for Traffic Information Map (TIM)
- ★ if messages: stay awake to receive them

★ This implies:

- ★ Prolonged battery life
- ★ Increase usability in hand-held equipment
- ★ Works best in application that have limited bandwidth requirements (transaction processing)

- ★ ACK protocol
- ★ Medium reservation (RTS/CTS)
- **★** Fragmentation
- ★ Multi-channel roaming
- ★ Automatic data-rate fall-back
- ★ Cell size / Multi-rate applications
- ★ In-cell relay
- ★ Power Management
- ★ Wired Equivalent Privacy (WEP)
- ★ Wireless Distribution System (WDS)

Wired Equivalent Privacy

- ★ Optional security functionality (factory "installed")
- ★ Encryption based on RC4 (1988 RSA algorithm)
- ★ Stream cipher 64 or 128 bits key
- ★ Used by Netscape, Microsoft, Oracle and Lotus (80 million users)
- ★ Used for data encryption
- ★ Used for shared key station authentication

- ★ ACK protocol
- ★ Medium reservation (RTS/CTS)
- ★ Fragmentation
- ★ Multi-channel roaming
- ★ Automatic data-rate fall-back
- ★ Cell size / Multi-rate applications
- ★ In-cell relay
- ★ Power Management
- ★ Wired Equivalent Privacy (WEP)
- ★ Wireless Distribution System (WDS)

Wireless Distribution System

★ IEEE 802.11, WDS means

 \star Multiple wireless "ports" inside the access-point, to wirelessly interconnect cells (access-points connecting to other access-points)

★ pre-IEEE 802.11, did not support WDS:

★ Three ports exist in one access-point (one Ethernet, and two wireless cells)

One wireless backbone extension can be made (using two radio modules in the access-point)

★ WDS allows:

- igstar Extending the existing infrastructure with wireless backbone links
- \star Totally wireless system without any wired backbones, needed in locations where large areas are to be covered and wiring is not possible

Module summary

- ★ ACK protocol
- ★ Medium reservation (RTS/CTS)
- ★ Fragmentation
- ★ Multi-channel roaming
- ★ Automatic data-rate fall-back
- ★ Cell size / Multi-rate applications
- ★ In-cell relay
- ★ Power Management
- ★ Wired Equivalent Privacy (WEP)
- ★ Wireless Distribution System (WDS)

