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Chapter 3

Basic Min-plus and M ax-plus
Calculus

In this chapter we introduce the basic results from Min-plus that are needed for the
next chapters. Max-plus algebra is dual to Min-plus algebra, with similar concepts
and resultswhen minimum is replaced by maximum, and infimum by supremum. As
basic results of network cal culus use more min-plus algebra than max-plus algebra,
we present here in detail the fundamentals of min-plus calculus. We briefly discuss
the care that should be used when max and min operations are mixed at the end of
the chapter. A detailed treatment of Min- and Max-plus algebrais provided in [26],
here we focus on the basic results that are needed for the remaining of the book.
Many of the results below can also be found in [11] for the discrete-time setting.

3.1 Min-plusCalculus

In conventional algebra, the two most common operations on elementsof Z or R are
their addition and their multiplication. In fact, the set of integers or reals endowed
with these two operations verify a number of well known axioms that define alge-
braic structures: (Z, 4, x) isacommutative ring, whereas (R, +, x ) isafield. Here
we consider another algebra, where the operations are changed as follows: addition
becomes computation of the minimum, multiplication becomes addition. We will
see that this defines another algebraic structure, but let us first recall the notion of
minimum and infimum.

3.1.1 Infimum and Minimum

Let S be anonempty subset of R. S is bounded from below if there isa number M
suchthat s > M for all s € S. The completeness axiom states that every nonempty
subset S of R that is bounded from below has a greatest lower bound. We will call
it infimumof S, and denote it by inf S. For example the closed and open intervals
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126 CHAPTER 3. BASIC MIN-PLUSAND MAX-PLUS CALCULUS

[a,b] and (a,b) have the same infimum, which is a. Now, if S contains an element
that is smaller than all its other elements, this element is called minimumof S,
and is denoted by min S. Note that the minimum of a set does not always exist. For
example, (a, b) hasno minimumsincea ¢ (a, b). Onthe other hand, if the minimum
of aset S exists, itisidentical to itsinfimum. For example, min[a, b] = infla, b] =
a. One easily shows that every finite nonempty subset of R has aminimum. Finally,
let us mention that we will often use the notation A to denote infimum (or, when it
exists, the minimum). For example, a A b = min{a, b}. If S is empty, we adopt the
convention that inf S = +oc.
If fisafunctionfrom S to R, we denote by f(S) itsrange:

f(8) = {t such that t = f(s) for somes € S}.
We will denote the infimum of this set by the two equivalent notations
inf f(S) = mf{f(s)}-
We will also often use the following property.

Theorem 3.1.1 (“Fubini” formula for infimum). LetS be a nonempty subset of
R, and f be a function fromS to R. Let{S, },.cn be a collection of subsets &,
whose union isS. Then

it (7(60) = i { inf (o) -

seS neN

Proof: By definition of an infimum, for any sets S,,,

inf {U Sn} = inf {inf S, }.

On the other hands, sinceU,,S,, = S,

f(U&>=Uf@J

neN neN

so that

inf{f(s)} = inff(S)=1inff (U Sn>

SES
neN

— inf{ U f(Sn)} = Inf {inf f (Sa)}

neN

- L ren



3.1. MIN-PLUSCALCULUS 127

3.1.2 Dioid (RU {+0o}, A, +)

In traditional algebra, oneis used to working with the algebraic structure (R, +, x),
that is, with the set of reals endowed with the two usual operations of addition and
multiplication. These two operations possess a number of properties (associativity,
commutativity, distributivity, etc) that make (R, +, x ) acommutative field. Asmen-
tioned above, in min-plus algebra, the operation of ‘addition’ becomes computation
of the infimum (or of the minimum if it exists), whereas the one of ‘ multiplication’
becomes the classical operation of addition. We will aso include +oc in the set of
elements on which min-operations are carried out, so that the structure of interest is
now (R U {400}, A, +). Most axioms (but not all, as we will see later) defining a
field till apply to this structure. For example, distribution of addition with respect
to multiplication in conventional (‘ Plus-times') algebra

(34+4)x5=(3x5)+(4x5)=15+20=35
translates in min-plus algebra as
(BA4)+5=(3+5)A(44+5)=8A9=28.
In fact, one easily verifiesthat A and + satisfy the following properties:
e (Closureof A) Foral a,b e RU{+o0},a Abe RU{+o0}.
o (Associativity of A) Fordl a,b,c € RU{+oc0}, (aAD)Ac=aA (bAc).

o (Existence of a zero element for A) Thereissomee = 400 € RU {400}
suchthatforal a € RU{+},aNe=a.

e (Idempotency of A) Foradla € RU {+c0},aAa =a.

e (Commutativity of A) Forall a,b € RU{+oc0},aAb=bAa.

e (Closureof +) Fordl a,b € RU {400}, a+b € RU{+oo}.

e (Associativity of +) Foral a,b,c € RU{+o0}, (a+b)+c=a+ (b+c).

e (Thezeroelement for A isabsorbingfor +) Foral a € RU{+oc},a+e=
e=e+a.

e (Existence of a neutral element for +) Thereissomeu =0 € RU {+o0}
suchthat forall a € RU{+o0},a+u=a=1u+a.

o (Distributivity of + with respectto A) Forall a,b,c € RU{+0o0}, (aAb)+
c=(a+c)AN(b+c)=cH+ (anD).

A set endowed with operations satisfying all the above axioms is called a dioid.
Moreover as + is also commutative (for al a,b € RU {+cc}, a4+ b = b+ a), the
structure (RU {400}, A, +) isacommutative dioid. All the axioms defining adioid
are therefore the same axioms as the ones defining a ring, except one: the axiom of
idempotency of the ‘addition’, which in dioids replaces the axiom of cancellation of
‘addition’ in rings (i.e. the existence of an element (—a) that ‘added’ to a gives the
zero element). We will encounter other dioids later on in this chapter.



128 CHAPTER 3. BASIC MIN-PLUSAND MAX-PLUS CALCULUS

3.1.3 A Catalog of Wide-sense Increasing Functions

A function f is wide-sense increasing if and only if f(s) < f(t) fordl s < t.
We will denote by G the set of non-negative wide-sense increasing sequences or
functions and by F denote the set of wide-sense increasing sequences or functions
suchthat f(t) = 0 for ¢t < 0. Parameter ¢ can be continuous or discrete: in the latter
case, f = {f(t),t € Z} is caled a sequence rather than a function. In the former
case, we take the convention that the function f = {f(¢),t € R} isleft-continuous.
The range of functions or sequences of 7 and G isR™ = [0, +oc].

Notation f + g (respectively f A g) denotes the point-wise sum (resp. minimum)
of functions f and g:

(f+9)@) = [f(t)+9()
(fAg)t) = f(t)Ag(t)
Notation f < (=, >)g meansthat f(t) < (=, >)g(t) for all .
Some examples of functions belonging to F and of particular interest are the

following ones. Notation [z]™ denotes max{xz,0}, [=] denotes the smallest integer
larger than or equal to x.

Definition 3.1.1 (Peak rate functions Ag).

Rt ift>0
Ar(t) = { 0  otherwise

for someR > 0 (the ‘rate’).

Definition 3.1.2 (Bur st delay functions o).

_f 4o ift>T
or(t) = { 0 otherwise

for someT" > 0 (the ‘delay’).

Definition 3.1.3 (Rate-latency functions 8g. ).

R(t—-T) ift>T
_ _ + _
Brr(t) =Rt -T]" = { 0 otherwise

for someR > 0 (the ‘rate’) andT" > 0 (the ‘delay’).

Definition 3.1.4 (Affine functions , ;).

@[ rtHb >0
LASCA N ) otherwise

for somer > 0 (the ‘rate’) andb > 0 (the ‘burst’).
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Definition 3.1.5 (Step Function vr).

1 ift>T
vr(t) = Lty = { 0 otherwise

for someT” > 0.

Definition 3.1.6 (Staircase Functions ur, ;).

[ [HE ift>0
ur.r(t) = { 0 otherwise

for someT" > 0 (the ‘interval’) and0 < 7 < T (the ‘tolerance’).

These functions are also represented in Figure 3.1. By combining these basic
functions, one obtains more general piecewise linear functions belonging to F. For
example, the two functionsrepresented in Figure 3.2 are written using A and + from
affine functions and rate-latency functions as follows, withr; > ro > ... > r; and
by <by<...<by

i = Vribr AN Vroby N oo Vrp by = 12132]{7“‘,57:} (31)
fo = ArA{Braor +RT} AN{Brar +2RT} A ...
= 1I>1£ {ﬁR,%T + iRT} . (3.2

Wewill encounter other functions|later in the book, and obtain other representations
with the min-plus convolution operator.

3.1.4 Pseudo-inverse of Wide-sense Increasing Functions

It iswell known that any strictly increasing function is left-invertible. That is, if for
any t; < to, f(t1) < f(t2), then thereis afunction f~! such that f=1(f(t)) =
t for al ¢t. Here we consider slightly more general functions, namely, wide-sense
increasing functions, and we will see that a pseudo-inverse function can defined as
follows.

Definition 3.1.7 (Pseudo-inverse). Let f be a function or a sequence &f. The
pseudo-inverse of is the function

f~Y(x) = inf {t such that f(t) > z}. (3.3

For example, one can easily compute that the pseudo-inverses of the four func-
tions of Definitions 3.1.1t0 3.1.4 are

A2 o= Auyr
opt = AT
Brr = M/RT
Yo = Bure-

The pseudo-inverse enjoys the following properties:
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Peak rate function Burst-delay function

4 5.()=0 fort<T
T zwfort>T

\

\

T

Affine function

vy (=0 fort=0
b0 — 4 b fort>0

Rate-latency function
A By O=RILTI+ )

R
b
T t t
Staircase function Step function
Av_ () =[(t+0/T] Au@®=1 =0 fort<T

T T T 1 fort>T
4 [ —
3+ e
2 —e
1 iy

Tt 2Tt 3Tt t T t

Figure 3.1: A catalog of functions of F: Peak rate function (top left), burst-
delay function (top right), rate-latency function (center left), affine function
(center right), staircase function (bottom left) and step function (bottom

right).
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Af0O A 0

t

t T 2T3T

Figure 3.2: Two piecewise linear functions of F as defined by (3.1) (left) and
(3.2) (right).
Theorem 3.1.2 (Properties of pseudo-inversefunctions). Let f € F, z,t > 0.

e (Closure) f~' € Fandf~1(0) = 0.

o (Pseudo-inversion) We have that

[z = [Ha)<t (3.4)
Flay<t = f)za (35)

e (Equivalent definition)
f~Y(x) = sup {t such that f(t) < x}. (3.6)

Proof: Define subset S, = {t¢ such that f(¢t) > x} C R™. Then (3.3) becomes
f~Yx) = infS,. (Closure) Clearly, from (3.3), f~'(x) = 0 for x < 0 (and in

particular f=1(0) = 0). Now, let 0 < x7 < 2. Then S, 2 S,,, which implies
that inf S, < inf S,, and hencethat f~(x1) < f~!(z2). Therefore £~ iswide-
sense increasing. (Pseudo-inversion) Suppose first that f(¢) > z. Thent € S,,, and

soislarger than theinfimum of S, whichis £ ~*(z): this proves (3.4). Suppose next
that f~!(z) < t. Thent > inf S,, which impliesthat t € S,, by definition of an
infimum. Thisin turn yieldsthat f(¢) > « and proves (3.5). (Equivalent definition)

Define subset S, = {t such that f(t) < z} C Rt.Pickt € S, andi € S,. Then
f(t) < f(t), and since f iswide-sense increasing, it impliesthat ¢ < ¢. Thisistrue
foranyt € S, andi € S,, hencesup S, < infS,. AsS, US, = R, we cannot
have sup S, < inf S,. Therefore

supS, = inf S, = f~1(z).
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3.1.5 Concave, Convex and Star-shaped Functions

As an important class of functionsin min-plus calculus are the convex and concave
functions, it is useful to recall some of their properties.

Definition 3.1.8 (Convexity in R™). Letwu be any real such that < u < 1.
e SubsetS C R™ is convex if and only ifix + (1 — u)y € Sforall z,y € S.

e Function f from a subseD C R™ to R is convex if and only if (uz + (1 —
w)y) < uf(z) + (1 —u)f(y)forall z,y € D.

e Functionf from a subseD C R” to R is concave if and only i f is convex.

For example, the rate-latency function (Fig 3.1, center left) is convex, the piece-
wise linear function f; given by (3.1) is concave and the piecewise linear function
f2 given by (3.2) is neither convex nor concave.

There are a number of properties that convex sets and functions enjoy [72].
Here are afew that will be used in this chapter, and that are adirect consequence of
Definition 3.1.8.

e The convex subsets of R are theintervals.
e If S; and S, are two convex subsets of R™, their sum
S=85+8S={seR"|s=s1+s2forsomes; € S; and sy € S»}
is a'so convex.

e Function f from aninterval [a, b] to R is convex (resp. concave) if and only if
fluz + (1 —u)y) < (resp. ) uf(z) + (1 —u) f(y) for all x,y € [a, 0] and
alue[0.1].

e The pointwise maximum (resp. minimum) of any number of convex (resp.
concave) functionsis a convex (resp. concave) function.

o If Sisaconvex subset of R"*!, n > 1, the function from R™ to R defined by
f(z) = inf{p € R such that (z,u) € S}
iS Convex.
o If fisaconvex function from R™ to R, the set S defined by
S = {(x,p) € R""* such that f(z) < u}

isconvex. Thisset is called the epigraph of f. It impliesin the particular case
wheren = 1 that theline segment between {a, f(a)} and {b, f(b)} liesabove
the graph of the curvey = f(x).



3.1. MIN-PLUSCALCULUS 133

The proof of these propertiesis given in [72] and can be easily deduced from Def-
inition 3.1.8, or even from a simple drawing. Chang [11] introduced star-shaped
functions, which are defined as follows.

Definition 3.1.9 (Star-shaped function). Function f € F is star-shaped if and
only if f(t)/t is wide-sense decreasing for alt> 0.

Star-shaped enjoy the following property:

Theorem 3.1.3 (Minimum of star-shaped functions). Let f, g be two star-shaped
functions. Therh = f A g is also star-shaped.

Proof: Consider somet > 0. If h(t) = f(¢), then for dl s > t, h(t)/t =
ft)/t > f(s)/s > h(s)/s. The same argument holds of course if h(t) = g(t).
Therefore h(t)/t > h(s)/s for all s > t, which showsthat  is star-shaped. O

We will see other properties of star-shaped functionsin the next sections. Let us
conclude this section with an important class of star-shaped functions.

Theorem 3.1.4. Concave functions are star-shaped.

Proof: Let f beaconcavefunction. Thenforany v € [0,1] andz,y > 0, f(uz+
(I—wy) >uf(z)+(1—u)f(y). Takex = ¢,y = 0andu = s/t,with0 < s < ¢.
Then the previous inequality becomes f(s) > (s/t)f(t), which shows that f(¢)/t
is adecreasing function of ¢. O

On the other hand, a star-shaped function is not necessarily a concave function.
We will see one such examplein Section 3.1.7.

3.1.6 Min-plus Convolution

Let f(¢) be areal-valued function, whichiszerofor ¢ < 0. If ¢ € R, theintegral of
this function in the conventional algebra (R, +, x) is

[ stspas

which becomes, for a sequence f(¢) wheret € Z,

In the min-plus algebra (R U {+o0}, A, +), where the *addition’ is A and the ‘ mul-
tiplication’ is 4+, an ‘integral’ of the function f becomes therefore

{7(s)}

inf
s€R such that 0<s<t

which becomes, for a sequence f(t) wheret € Z,
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SEZ sucl?%llqgt Ogsgt{f(s)}'
We will often adopt a shorter notation for the two previous expressions, which is
onf {f(s)},

with s € Z or s € R depending on the domain of f.
A key operation in conventional linear system theory isthe convolution between
two functions, which is defined as

+oo

(f@g)t) = / £t — )g(s)ds

— 00

and becomes, when f(t) and g(t) are two functions that are zero for ¢t < 0,

(f )t /ftfs

In min-plus calculus, the operation of convolution is the natural extension of the
previous definition:

Definition 3.1.10 (Min-plus convolution). Let f and g be two functions or se-
guences ofF. The min-plus convolution gf and g is the function

(f@9)(t) = ink {7t =) +g(s)}. @)

(Ift<0,(f®g)(t) =0).

Example. Consider the two functions -, , and g 7, with0 < r < R, and let us
compute their min-plus convolution. Let usfirst computeitfor 0 < ¢ < 7.

(Vrp ® BrT)() = ol {vp(t—s)+R[s—T|"}
= inf {3p(t =) +0} =7p(0) +0=0+0=0

Now, if t > T, one has
(Yrp @ Br,7)(t)
_ _ _ 7+
= oinf< {yrp(t—s)+R[s—T]"}

= O<1£1£T{fyrbt—s)+R[s— 1T A insf<t{’yr7b(t—s)+R[s—T]+}

/\mf{’y,bt—s)—l—Rs— 1"}

= OgilsliT{bJrr(tfs)+O}/\Tl<nsf<t{b+r(tf5)+R(57T)}
N0+ R(t—T)}

= {b—l—r(t—T)}/\{b+rt—RT+Ti<r;f<t{(R—r)s}}/\{R(t—T)}

= {b+rt-T)}AN{b+rt-T)} AN {Rt-T)}
= {b+rt-T)}A{Rt-T)}.
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The result is shown in Figure 3.3. Let us now derive some useful properties for the

A Grp® Br7O)

Figure 3.3: Function v,., ® Bg,r when 0 < r < R.

computation of min-plus convolution.

Theorem 3.1.5 (General propertiesof ®). Letf,g,h € F.
e Rulel (Closureof ®) (f ® g) € F.
e Rule2 (Associativityof ®) (f®g)@h=f® (g®h).

e Rule 3 (The zero element for A is absorbing for ®) The zero element fox
belonging toF is the functiore, defined ag(t) = +oo for all ¢t > 0 and
e(t)=0forallt <0.0nehasf @ c =e¢.

e Rule 4 (Existence of a neutral element for ®) The neutral element i&, as
f®d=f.

e Rule5 (Commutativityof ®) f®g=9gQ f.
e Rule6 (Distributivity of @ with respecttoA) (fAg)®@h = (f@h)A(gRh).
¢ Rule7 (Addition of aconstant) ForanyK € R™, (f+K)®g = (f®g)+K.

The proof of these rules is easy. We prove the two first rules, the proof of the
five others are | eft to the reader.

Proof: (Rulel) Since f iswide-sense increasing,

[t —s)+g(s) < fta —s) +g(s)

forall 0 <t; <ty andal s € R. Therefore
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inf {f(t = 5) + 9(s)} < inf {F(t2 — 5) + g(s)}
andas f(t) = g(t) = 0 whent < 0, thisineguality is equivalent to

JnE {f(t=s) + g9} < il {f(t2—5)+ ()}

which showsthat (f ® g)(t1) < (f ® g)(t2) foral 0 < ¢; < t2. (Rule 2) One has

(Fog)ah)b) = inf{ in {f(t—s—u>+g<u>}+h<s>}

0<s<t | 0<u<t—s

= inf { inf {f(t—u’)+g(u’—s)+h(8)}}

0<s<t | s<u/<t
= ol {oé?ﬁu, {ft—u)+g(u' —s)+ h(S)}}
= dnf {f(t —u)+ dnf {g(u' — )+ h(s)}}
= of {fE-u)+(g@h) ()}
= (f®(g@h)(®).

U

Rules 1 to 6 establish a structure of acommutative dioid for (F, A, ®), whereas

Rules 6 and 7 show that ® is a linear operation on (R*, A, +). Now let us also

complete these results by two additional rulesthat are helpful in the case of concave
or convex functions.

Theorem 3.1.6 (Properties of @ for concave/convex functions). Let f, g € F.

e Rule 8 (Functions passing through the origin) If f(0) = ¢(0) = 0 then
f®g < fAg.Moreover, iff andg are star-shaped, thefi® g = f A g.

e Rule 9 (Convex functions) If f and g are convex therf ® g is convex. In
particular if f, g are convex and piecewise linedrg g is obtained by putting
end-to-end the different linear piecesoéind g, sorted by increasing slopes.

Since concave functions are star-shaped, Rule 8 also impliesthat if f, g are con-
cavewith f(0) = ¢g(0) =0,then f® g = f Ag.

Proof: (Rule8) As f(0) = g(0) =0,
(f@g)t)=gt) A mf {f(t—s)+g(s)}AfE) < f)Ag(1). (38

Suppose now that, in addition, f and g are star-shaped. Then for any t > 0 and
0<s<tf(t—s)=>(1-s/t)f(t)andg(s) > (s/t)g(t), sothat

[t =s)+g(s) = f(t) + (s/t)(g(t) — f(2))-
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Now, as0 < s/t < 1, f(t) + (s/t)(g(t) — f(£)) > f(t) A g(t) sothat

f(t—=s5)+g(s) = f(t) Ng(t)

foral 0 < s < t. Combining thisinequality with (3.8), we obtain the desired result.
(Rule 9) The proof uses properties of convex setsand functionslisted in the previous

subsection. The epigraphs of f and g are the sets

S = {(s1,1) € R? such that f(s1) < 1}
S = {(s2,p2) € R? such that g(s2) < p2}

Since f and g are convex, their epigraphs are also convex, and so istheir sum S =
S1 + S22, which can be expressed as

§ = {(t, ) € R?| for some (s,€) € [0,4] x [0, ], f(t — 5) < pu— &, 9(s) < £}

As S isconvex, function h(t) = inf{u € R such that (¢, u) € S} isaso convex.
Now h can be recast as

h(t)
= inf{; € R | for some(s, &) € [0,] x [0, ], f(t —5) < j1 — &, g(s) < €}
= inf{u € R|forsomes € [0,¢], f(t — s) + g(s) < u}
= if{f(t—s)+9(s),s €[0,1]}
= (fog)®),

which provesthat (f ® g) is convex.

If f and g are piecewise linear, one can construct the set S = S; + Sz, whichiis
the epigraph of f ® g, by putting end-to-end the different linear pieces of f and g,
sorted by increasing slopes [22].

Indeed, let i’ denote the function that results from this operation, and let us
show that 4’ = f ® g¢. Suppose that there are a total of n linear pieces from f
and g, and label them from 1 to n according to their increasing slopes: 0 < r; <
ro < ... < r,. Figure 3.4 shows an example for n = 5. Let T; denote the length
of the projection of segment 7 onto the horizontal axis, for 1 < ¢ < n. Then the
length of the projection of segment i onto the vertical axisisr;T;. Denote by S’ the
epigraph of 2/, which is convex, and by 9S8’ its boundary. Pick any point (¢, h/(t))
on thishoundary 9S’. We will show that it can always be obtained by adding a point
(t—s, f(t—s)) of theboundary 0S; of S; and apoint (s, g(s)) of the boundary 0S5
of S;. Let k be the linear segment index to which (¢, h’(¢)) belongs, and assume,
with no loss of generdlity, that this segment is a piece of f (that is, k C 0S;). We
can express i/ (t) as

k—1 k—1
= Tk(t — Z Ti) + Z riT;. (3.9
i=1 i=1
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Figure 3.4: Convex, piecewise linear functions f (and its epigraph S; (top
left)), ¢ (and its epigraph S, (top right)), and f ® ¢ (and its epigraph S =
S1 + Sz (bottom)).
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Now, let s be the sum of the lengths of the horizontal projections of the segments
belonging to g and whose index islessthan k, that is,

iCOS8,,1<i<k—1
Then we can compute that

k—1 k—1
t—s = t—> T,+> Ti— > T
=1 =1

1COS,,1<i<k—1

k—1
= t-Y T+ > T
i=1

iCOS1,1<i<k—1

and that
k-1
flt—s) = rk(t—ZTi)-i- Z riT;
i=1 iCOS1,1<i<k—1

g(S) = Z TiTi~

iC8S,,1<i<k—1

The addition of the right hand sides of these two equationsisequal to 2’(t), because

of (3.9), and therefore f(t — s) + g(s) = h/(t). This shows that any point of 95’

can be broken down into the sum of a point of 9S; and of apoint of S5, and hence

that S’ = 8S; + 98,3, which in turn impliesthat S’ = S; + S = S. Therefore

N=f®g. O
Thelast ruleis easy to prove, and states that ® isisotone, namely:

Theorem 3.1.7 (Isotonicity of ®). Let f,g, f',g € F.
e Rule 10 (Isotonicity) If f < gand f' < g'thenf® f < g® 4.
We will use the following theorem:

Theorem 3.1.8. For f and g in F, if inaddition g is continuous, then for any ¢ there
is some t, such that

(f ®@9)(t) = filto) + g(t — o) (3.10)

where fi(to) = supg,<,y f(s) is the limit to the left of f at to. If f is left-
continuous, then f;(to) = f(to).

Proof: Fix t. Thereisasequence of times0 < s,, < ¢ such that
inf (f(to) +g(t — to)) = Hm (f(sn) +(t = 50)) (3.12)

Since0 < s, < t, wecan extract a sub-segquence that converges towards some value
to. We take a notation shortcut and write lim,, .., s, = to. If f is continuous, the
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right hand-side in 3.11 is equal to f;(to) + g(t — to) which shows the proposition.
Otherwise f has a discontinuity at ¢y. Define § = f(to) — fi(to). We show that we
can again extract a subsequence such that s,, < tq. Indeed, if thiswould not be true,
we would have s,, > t, for al but a finite number of indices n. Thus for n large
enough we would have

f(sn) > filto) +9

and by continuity of g:
4]
g(t —sn) = g(t —to) — 5

2

thus 5

f(sn) +g(t —sn) > filto) + gt —to) + 3
Now

fito) + gt — to) > inf (f(s) + g(t - 5))
thus 5

Flsn) +9(t = sn) = inf (f(s) +9(t = 9)) + 3

which contradicts 3.11. Thus we can assume that s,, < t, for n large enough and
thuslim,, o0 f(sn) = fi(to)- O

Finally, let us mention that it will sometimes be useful to break down a some-
what complex function into the convolution of a number of simpler functions. For
example, observe that the rate-latency function Sz r can be expressed as

Br,r = 0T @ AR- (312)

3.1.7 Sub-additive Functions

Another class of functions will be important in network calculus are sub-additive
functions, which are defined as follows.

Definition 3.1.11 (Sub-additive function). Let f bea function or a sequence of F.
Then f is sub-additive if and only if (¢t +s) < f(t) + f(s) for all s,t > 0.

Note that this definition is equivalent to imposing that f < f ® f.If f(0) =0,
itisequivalent toimposing that f ® f = f.

We will seein the following theorem that concave functions passing through the
origin are sub-additive. So the piecewise linear function f; given by (3.1), being
concave and passing through the origin, is sub-additive.

The set of sub-additive functions is however larger than that of concave func-
tions: the piecewise linear function f> given by (3.2) is not concave, yet one check
that it verifies Definition 3.1.11 and hence is sub-additive.

Contrary to concave and convex functions, it isnot always obvious, from aquick
visual inspection of the graph of afunction, to establish whether it is sub-additive or
not. Consider thetwo functions S r+ K’ and g 1+ K", represented respectively
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on theleft and right of Figure 3.5. Although they differ only by the constants K’ and
K", whicharechosensothat 0 < K" < RT < K’ < +o0o, wewill see B 1 + K’
is sub-additive but not 3 7 + K”. Consider first Brr + K'. If s +¢ < T, then

A BrT() +K’ A BrT() +K”

RT |
K ” | g

Figure 3.5: Functions Sr,r + K’ (left) and B+ + K" (right). The only differ-
ence between them is the value of the constant: K" < RT < K'.
s,t <Tand
BR,T(S + t) + K' =K <2K' = (ﬁR7T(S) + K/) + (ﬁR7T(t) + K/)
On the other hand, if s +¢ > T, then, since K’ > RT,

Brr(t+s)+K = Rt+s-T)+K'
R(s+t—T)+ K+ (K' — RT)
(R(t =T)+ K') + (R(s = T) + K')
(Brr(t) + K') + (Brr(s) + K'),

which provesthat 3+ K’ is sub-additive. Consider next Sz, + K”. Pick s = T
andt > T.Then,since K" < RT,

A

IN

Brr(t+s)+ K" =
Brr(t+T)+K'"=Rt+K"=R(t—-T)+RT +K"
>Rt-T)+ K"+ K'"=Brrt)+K")+ (Brr(s)+ K"),

which provesthat 8r 1 + K" isnot sub-additive.
Let uslist now some properties of sub-additive functions.

Theorem 3.1.9 (Properties of sub-additive functions). Let f,g € F.

e (Star-shaped functions passing through the origin) If f is star-shaped with
£(0) = 0, then f is sub-additive.

e (Sum of sub-additive functions) If f and ¢ are sub-additive, sois (f + g).
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e (Min-plusconvolution of sub-additivefunctions) If f and g are sub-additive,
0is(f ® g).

Thefirst property also implies that concave functions passing through the origin
are sub-additive. The proof of the second property is simple and Ieft to the reader,
we prove the two others.

Proof:  (Star-shaped functions passing through the origin) Let s,¢ > 0 be given.
If sort =0, oneclearly hasthat f(s+t) = f(s)+ f(t). Assumenext that s, ¢ > 0.
As f is star-shaped,

s
s+t

) = i)

fls+1)

whichsumuptogive f(s)+ f(t) > f(s+t). (Min-plus convolution of sub-additive
functions) Let s, ¢ > 0 be given. Then

(f@g)(s)+(feg)(t)
= Ogigfgs {f(s—u)+g(u)} + ng;t {ft=v)+g(v)}

= inf inf {f(s—u)+ f(t—0v)+gu)+g(v)}

0<u<s 0<v<t

S R
- Oﬁujr%fés+t{f(s+t_ (u+v)) +g(u+o)}
= (f®g)t+s).

|

The minimum of any number of star-shaped (resp. concave) functions is till
a star-shaped (resp. concave) function. If one of them passes through the origin, it
is therefore a sub-additive function: for example, as already mentioned earlier, the
concave piecewise linear function f; given by (3.1) is sub-additive. On the other
hand the minimum of two sub-additive functions is not, in general, sub-additive.
Teke for example the minimum between a rate latency function Sz, r and function
f2 given by (3.2), when R' = 2R/3. with R, T as defined in (3.2). Both functions
are sub-additive, but one can check that 5z A f2 isnot.

Thefirst property of the previous theorem tells us that all star-shaped functions
are sub-additive. One can check for examplethat G -+ K’ isastar-shaped function
(which is not concave), but not 8z, + K. One can also wonder if, conversely, all
sub-additive functions are star-shaped. The answer is no: take again function f,
given by (3.2), which is sub-additive. It is not star-shaped, because f(27")/2T =
R/2 <2R/3 = f(3T)/3T.
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3.1.8 Sub-additive Closure

Given afunction f € F,if f(0) = 0,then f > f ® f > 0. By repeating this oper-
ation, we will get a sequence of functions that are each time smaller and converges
to some limiting function that, as we will seg, is the largest sub-additive function
smaller than f and zeroin ¢ = 0, and is called sub-additive closure of f. Theformal
definition is as follows.

Definition 3.1.12 (Sub-additive closure). Let f be a function or a sequence of F.
Denote f(") the function obtained by repeating (n — 1) convolutions of f with itself.
By convention, f(9) = &y, sothat (V) = f, ) = f® f, etc. Then the sub-additive
closure of f, denoted by f, is defined by

?:%AfA(f@f)A(f@f@f)A...:Tigfo{ﬂm}. (3.13)

Example. Let us compute the sub-additive closure of the two functions g+ + K’
and Sr 1 + K", represented respectively on the left and right of Figure 3.5. Note
first that Rule 7 of Theorem 3.1.5 and Rule 9 of Theorem 3.1.6 yield that for any
K >0,

(Brr + K)® (Brr + K) = (Br,r ® Br1) + 2K = BR2r + 2K.

Repeating this convolution n times yields that for all integersn > 1
(Brr + K)™ = Brar +nk.

Now, if K = K/’ > RT andt < nT,

Brnr +nK' = nK' >(n—-1)RT+K' =R(nT -T)+ K’

> Rit-T)"+K' =prpr+ K,
whereasif ¢t > nT
Brnr +nK' = R(t—nT)+nK' =R(t—T)+ (n—1)(K' - RT) + K’
> R(t-T)+K'=ppr+K

sothat (Brr + K')™ > Brr + K’ for al n > 1. Therefore (3.13) becomes

Brr + K’ = do A TILI;% {(5R,T + K')(")} =00 A (Brr + K'),

and is shown on the left of Figure 3.6. On the other hand, if K = K" < RT, the
infimum in the previous equation is not reached in n = 1 for every ¢ > 0, so that
the sub-additive closure is now expressed by

W = 50 A H;fl {(/BR,T + KI/)(TE)} — 50 A lgfi{(ﬁR,nT +’I’LKH)},

and is shown on the right of Figure 3.6.

Among all the sub-additive functions that are smaller than f and that are zero in
t = 0, thereisonethat isan upper bound for al others; itisequal to f, asestablished
by the following theorem.
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‘ BrT(t) + K’ 4 BrT(t) +K”

4K"—
Kl SK”_
RT- 2}5:
} » t ||t +—f+—pt
T T 2T3T4T

Figure 3.6: The sub-additive closure of functions 8z r + K’ (left) and 8g 1 +
K" (right), when K" < RT < K'.

Theorem 3.1.10 (Sub-additive closure). Let f be a function or a sequence of 7,
and let f beits sub-additive closure. Then (i) f < f, f € F and f is sub-additive.
(i) if function g € F is sub-additive, with g(0) = 0and g < f,theng < f.

Proof: (i) It is obvious from Definition 3.1.12, that f < f. By repeating (n — 1)
times Rule 1 of Theorem 3.1.5, one hasthat f(™) € F foraln > 1. As f(©) =
S0 € Ftoo, f = inf,>o{f™} € F. Let us show next that f is sub-additive. For
any integersn, m > 0, and for any s,¢ > 0,

frEts) = (Mo )t = _inf (S +s —u)+ [ (W)

0<u<t+s

< @)+ ()

s0 that

Ft+s) = it (O} = it (O +s))

< Inf {F0) + F ()

= f{f O+ imf (£ ()} = () + F(s)
which shows that f is sub-additive. (i) Next, suppose that ¢ € F is sub-additive,
g(0) = 0 and g < f. Suppose that for somen > 1, f(") > g¢. Clearly, this holds
for n = 0 (because ¢(0) = 0 impliesthat g < dp = f(©)) and for n = 1. Now, this
assumption and the sub-additivity of ¢ yield that forany 0 < s < ¢, f(")(t — s) +
f(s) > g(t —s) + g(s) > g(t) and hence that f("+1)(¢) > g(t). By recursion on
n, f™ > gforaln >0, and therefore f = inf,>o{ ™} > g. O

Corollary 3.1.1 (Sub-additive closure of a sub-additive function). Let f € F.
Then the three following statements are equivalent: (i) f(0) = 0 and f is sub-

additive (i) f ® f = £ (iii) 7 = f.
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Proof: (i) = (ii) follows immediately from from Definition 3.1.11. (ii) = (iii):
first note that f @ f = f implies that ") = f for al n > 1. Second, note
that (f ® £)(0) = f(0) + £(0), which implies that f(0) = 0. Therefore f =
inf,>o{f™} = do A f = f. (iii) = (i) follows from Theorem 3.1.10. O

The following theorem establishes some additional useful properties of the sub-
additive closure of afunction.

Theorem 3.1.11 (Other propertiesof sub-additiveclosure). Let f,g € F
o (Isotonicity) If f < gthen f < 7.
e (Sub-additive closure of aminimum) f A g = f ® 3.

e (Sub-additive closure of a convolution) f @ g > f ® g.If £(0) = g(0) =0
thenfog=F07.

Proof:  (Isotonocity) Suppose that we have shown that for somen > 1, f(® >
g™ (Clearly, thisholdsfor n = 0 and for n. = 1). Then applying Theorem 3.1.7 we
get

f(n+1) _ f(n) ®f> g(n) ®g= g(fH-l)7

which implies by recursion on n that f < g. (Sub-additive closure of a minimum)
One easily shows, using Theorem 3.1.5, that

fFA9B =(f@HAFR9NA(GD9).

Suppose that we have shown that for some n > 0, the expansion of (f A g)(™ is

(fAg)™ =
0 A (£ @ g) A (£ @ gD A g0 =
, (n—k) g (k)
St {7 e gl

Then

(fAgtmtt) = (f/\g)®(ng)(”)={f@(ng)(”’}A{g@(f/\g)<")}

= i (n+1—k) (k)} . { (n—k) (k+1)}
inf {f ®g /\Oguklgn f ®g

0<k<n

- (n+1-k) w>} i { (n+1-k') <M>}
L S egWha e {0 e

— ; (n+1-k) w@
it {rer ey

which establishes the recursion for all n > 0. Therefore
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_ : (n—k) <k)}:~ ~ {Wk) (k)}
Thg = it {0 @g®} =t {70 e
— 1) (k)| — ) (k)
i {0047} = ot {1 .0

— W) — Fo inf Lo — Feor g
,gzlg{f@@g } f®,g21{){g }=f®g.

(Sub-additive closure of a convolution) Using the same recurrence argument as
above, one easily showsthat (f @ g)™ = £ © ¢(™ and hence that

fTRag — )l _ () & (")

fog = mf{(f®g) }—Tg){f ®g }

> inf {f(n)® g(m>}

n,m>0

(gf { f<”>}) ® ( inf {g(m>}) ~F®7. (3.14)

If £(0) = g(0) = 0,Rule8inTheorem 3.1.6 yieldsthat f ®g < fAg, and therefore

that f ® g < f A g. Now we have just shown abovethat f A g = f ® g, so that
feg<fog.

Combining this result with (3.14), weget f@ g = f @ 7. O

Let us conclude this section with an example illustrating the effect that a differ-
ence in taking ¢ continuous or discrete may have. This example is the computation
of the sub-additive closure of

2 if t>0
1®) _{ 0 if ¢<0
Supposefirst that ¢ € R. Then we compute that
(f@f)#) = inf { (t—s)?+ s} = (t/2)* + (t/2)* =t*/2
astheinfimumisreached in s = /2. By repeating this operation n times, we obtain

7o) = it {(E =92+ (FUT) )} =

0<s<t

mf { $)2+s*/(n—1)} =t*/n
astheinfimumisreachedin s = t(1 — 1/n). Therefore
ft) = Tl&%{tz/n} = nlirrgo t2/n = 0.
Consequently, if t € R, the sub-additive closure of function f is

f=0,
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f(t)

£

(1) >t 1

123

Figure 3.7: The sub-additive closure of f(t) = t\(¢), when t € R (left) and
when ¢ € Z (right).

as shown on the left of Figure 3.7.

Now, if ¢ € Z, the sequence f(¢) is convex and piecewise linear, as we can
always connect the different successive points (¢,¢2) for al t = 0,1,2,3,...: the
resulting graph appears as a succession of segments of slopes equal to (2¢ + 1) (the
first segment in particular has slope 1), and of projections on the horizontal axis
having a length equal to 1, as shown on the right of Figure 3.7. Therefore we can
apply Rule 9 of Theorem 3.1.6, which yields that f ® f is obtained by doubling
the length of the different linear segments of f, and putting them end-to-end by
increasing slopes. The analytical expression of the resulting sequenceis

(F® £)(E) = min {(t -5+ )} = [£2/2].

Sequence f = f ® f isagain convex and piecewise linear. Note the first segment
has slope 1, but has now a double length. If we repeat n times this convolution, it
will result in a convex, piecewise linear sequence f(™)(t) whose first segment has
slope 1 and horizontal length n:

fMt)y=t if0<t<n,

as shown on the right of Figure 3.7. Consequently, the sub-additive closure of se-
quence f is obtained by letting n — oo, and is therefore f(t) = ¢ for ¢ > 0.
Therefore, if t € Z,

7=\

3.1.9 Min-plus Deconvolution

The dual operation (in asensethat will clarified later on) of the min-plus convolution
isthe min-plus deconvolution. Similar considerations asthe ones of Subsection 3.1.1
can be made on the difference between asup and a max. Notation Vv stands for sup
or, if it exists, for max: a V b = max{a, b}.
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Definition 3.1.13 (Min-plus deconvolution). Let f and g be two functions or se-
quences of F. The min-plus deconvolution of f by g isthe function

(fogl) = sup {ft+u)—gu)}. (3.15)

If both f(¢) and ¢(¢) areinfinite for some ¢, then Equation (3.15) is not defined.
Contrary to min-plus convolution, function (f @ ¢)(t) is not necessarily zero for
t < 0, and hence this operation is not closed in F, as shown by the following
example.

Example. Consider again the two functions ., and Gr, 7, with0 < r < R, and
let us compute the min-plus deconvolution of ~,.;, by Sr 7. We have that

(Vb @ Br,T) (1)

= sup{yp(t+u)— Ru—T]"}
u>0

= sup {yp(t+u)—Rlu—T]"} Vsup {y,(t+u) — Ru—T]"}
0<u<T u>T

= sup {ys(t+uw)}Vsup{ys(t+u)— Ru+ RT}
0<u<T w>T

= {vs(t+T)}Vsup {vp(t+u) — Ru+ RT}. (3.16)

u>T

Let us first compute this expression for ¢t < —T'. Then ~,.,(t + T') = 0 and (3.16)
becomes

(Yrp @ Br,1)(t)

= 0V sup {y(t+u)— Ru+ RT}
T<u<l—t

V sup {vyru(t+u) — Ru+ RT}
u>—t
OV sup {0—Ru+ RT}V sup {b+r(t+u) — Ru+ RT}

T<u<l—t u>—t

= OVOV{b+Rt+RT}=[+Rt+T)".

Let us next compute (v, @ Br,r)(t) for t > —T. Then (3.16) becomes

(b @ Br7)(®) = {b+r(t+T)}Vsup{b+r(t+u)— Ru+ RT}

u>T

= {b+rt+D)}Vv{b+rt+DT)}=0+r{t+T).

Theresult is shown in Figure 3.8.
L et us now state some properties of @ (Other propertieswill be given in the next
section).

Theorem 3.1.12 (Propertiesof ©). Let f,g,h € F.
e Rulell (Isotonicityof @) If f < g, thenfoh<gohandho f>h0g.
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A rp D BrT)()

-T t
Figure 3.8: Function v,.;, @ Sr,r when 0 < r < R.

e Rule 12 (Composition of ©) (f @ g) @ h= f @ (g ® h).

e Rule 13 (Composition of @ and ®) (f ® g) @ g < f @ (9 @ g).

e Rule 14 (Duality between @ and ®) f @ g < hifandonlyif f < g ® h.

e Rule 15 (Self-deconvolution) (f © f) is a sub-additive function of F such
that (f @ f£)(0) = 0.

Proof: (Rulell)If f < g,thenforany h € F

(f®h)(t)=i1;%{f(t+U)—h(U)} < il;l()){g(tﬂ%)—h(u)}:(9®h)(t)

(h®f)(t)=ilip0{h(t+U)—f(U)} > ili%{h(“rw—g(u)}:(h®9)(t)~

(Rule 12) One computes that

(fogloh)(t) = sup{(f@g)(t+u)—h(u)}

u>0

= sup {suwp (7t k) - g0}~ h(w) |

u>0 (v>0

= sup{sup {1(e+) — o0 = 0}~ h(w) |

u>0 (v'>u

= sup sup {f(t+1') = {g(v' — ) + h(u)}}
u>0v'>u

= sup sup {f(t+0) = {g(v' —u) + h(u)}}
v’ >0 0<u<v’

— sup {0 - int {0 = o)+ n)
v >0 0<u<o’

= s {f(t+0)) — (9@ W)W} = (f © (9 h))(D):

v’ >0



150 CHAPTER 3. BASIC MIN-PLUSAND MAX-PLUS CALCULUS

(Rule 13) One computes that

sup {(f®g)(t+u)—g(u)}

= sup, i (S 0 4 ) o)}

= sup inf {f(t—s")+g(s"+u)—g(u)}
u>0 —u<s' <t

- . . / _
< igpooglg’fgt{f(t s') +g(s" +u) —g(u)}

(feg)@g)(t)

< sup inf {f(t — ') +sup{g(s' +v) — 9(”)}}

u>00<s'<t v>0

= inf {f(ts’)+sup{g(5'+v)g(v)}}

0<s'<t v>0
= ogi?/fgt {fit=5)+ (g9 (s} =(f®(g@9)D)

(Rule 14) Supposefirst that (f @ g)(s) < h(s) for dl s. Takeany s,v > 0. Then

fls+v) —g(v) <sup {f(s +u) = g(u)} = (f @ 9)(s) < h(s)

u>0

or equivaently,
fls+v) < g(v) + h(s).

Lett = s + v. Theformer inequality can be written as
f(t) < g(t —s)+h(s).

Asitisverified for al ¢ > s > 0, it is also verified in particular for the value of
s that achieves the infimum of the right-hand side of thisinequality. Thereforeit is

equivalent to
F6) < b {g(t = 5) +hls)} = (9 h)(1)

for al ¢t > 0. Suppose now that for al v, f(v) < (g ® h)(v). Pick any ¢ € R. Then,
sinceg,h € F,

flv) < inf {g(v—s)+h(s)} = inf {g(v —s) + h(s)} < g(t —v) + h(?).

T 0<s<w
Let u =t — v, theformer inequality can be written as
f(t+u) —g(u) < h(t).

Asthisistruefor al u, itisalso verified in particular for the value of v that achieves
the supremum of the left-hand side of thisinequality. Thereforeit is equivalent to

sup {f(t+u) —g(u)} < h(t).
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Now if u < 0, g(u) = 0, so that sup,, o{f(t +v) — g(u)} = f(¢) and the former
inequality isidentical to

sup {f(t +u) — g(u)} < h(t)

u>0

for al ¢. (Rule 15) It isimmediate to check that (f @ f)(0) = 0O and that f © f is
wide-senseincreasing. Now,

(fofls)+{on
= ig%{f(t—i—u) — f(u)} +il§3{f(s+v) - f(w)}

= sup{f(t+u) = f(u)} + sup {f(s +t+w)— f(t+w)}

u>0 w>—t

> sup {sup{f(t+u) —fw)+ f(s+t+w) —f(t+w)}}
w>0 Lu>0

> S}g%{f(Hw)—f(w)+f(s+t+w)—f(t+w)}

= (fofis+1).

O
L et us concludethis section by aspecial property that appliesto self-deconvolution
of sub-additive functions.

Theorem 3.1.13 (Self-deconvolution of sub-additivefunctions). Let f € F. Then
f(0) =0and f issub-additiveifand only if f @ f = f.

Proof: (=) If fissub-additive, thenforal ¢t,u > 0, f(t+u) — f(u) < f(¢) and
thereforefor al ¢t > 0,

(f @ N)(t) =sup{f(t+u) — f(u)} < f(?).

u>0

On the other hand, if f(0) = 0,

(fonN) :ig%{f(tJrU) — f(uw)} = f(t) = £(0) = £(B).

Combining both equations, wegetthat f© f = f. (<) Supposenow that f© f = f.
Then f(0) = (f© f)(0) = 0andforany t,u > 0, f(t) = (fO f)(t) = f(t+u)—
f(u) sothat f(t) + f(u) > f(t + u), which showsthat f is sub-additive. O

3.1.10 Representation of Min-plus Deconvolution by Time In-
version

Min-plus deconvolution can be represented in the time inverted domain by min-
plus convolution, for functions that have a finite lifetime. Function ¢ € G has a
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finite lifetime if there exist some finite Ty and T such that g(¢) = 0 if ¢ < T and
g(t) = g(T) for t > T. Call G the subset of G, which contains functions having a
finite lifetime. For function g € G, we use the notation g(+400) as ashorthand for
sup,cr{g(t)} = lims 4o g(t).

Lemma3.1.1. Let f € F besuchthatlim;_,,, f(t) = +oo.Foranyg € G.gof
isalsoing and (g @ f)(+00) = g(+00).

Proof: Define L = g(4o00) and call T a number such that g(¢t) = L for¢t > T.
f(0) > 0impliesthat g © f < g(+00) = g(L). Thus

(9o f)(t) < Lfort>T. (3.17)

Now since lim; .1, f(t) = 400, thereissome Ty > T such that f(¢) > L for
alt>T,.Now lett > 2T1. If u > T3, then f(u) > L. Otherwise, u < T; thus
t—u>t—Ty >Tythusg(t —u) > L. Thusinall cases f(u) + g(t —u) > L.
Thus we have shown that

(g® f)(t) > Lfort > 27T7. (3.18)
Combining (3.17) and (3.18) shows the lemma. |

Definition 3.1.14 (TimeInversion). For afixed T’ € [0, +oc], the inversion opera-
tor & isdefined on G by:

Or(f)(9) = g(+00) — g(T —t)

Graphically, time inversion can be obtained by a rotation of 180° around the
point (£, 9(+2°°)). Itissimpleto check that & (g) isin G, that timeinversionissym-
metrical (B (P (g)) = g) and preserves the total value (®1(g)(+o0) = g(+00)).
Lastly, for any o and T', o isan arrival curvefor g if and only if « isan arrival curve

for &1 (g).

Theorem 3.1.14 (Representation of Deconvolution by Time Inversion). Let g €
G,andlet T besuchthat g(T) = g(+0). Let f € F besuchthat lim;_, o f(¢) =
~+o00. Then

go f=2r(P7r(9) @ f) (319

The theorem saysthat ¢ @ f can be computed by first inverting time, then com-
puting the min-plus convolution between f, and the time-inverted function g, and
then inverting time again. Figure 3.9 shows a graphical illustration.
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9(t)
f(t)

a(t)

M2

;@)

T/2 T

®; @0

(@, @@ £)()

(@ (D@ ® 1)V =2 N

am2 f/ (@9 ® 1))
/ t

T/2 T

Figure 3.9: Representation of the min-plus deconvolution of g by f = .,
by time-inversion. From top to bottom: functions f and g, function ®r(g),
function ®1(g) ® f and finally function g © f = &7 (®7(g) ® f).
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Proof:  The proof consists in computing the right handside in Equation (3.19).
Cal g = @7 (g). We have, by definition of the inversion

o7 (Pr(g) @ f) = er(§® f) = (9@ f)(+00) = (g & [)(T — 1)
Now from Lemma 3.1.1 and the preservation of total value:
(9 ® f)(+00) = §(+00) = g(+00)
Thus, the right-handside in Equation (3.19) is equal to
9(+00) = (4 J)(T = 1) = g(oc) — Il {§(T ~ 1 —u) + f(w))
Again by definition of the inversion, it is equal to

9(+o0) = Inf{g(+o00) — g(t +u) + f(u)} = sup{g(t +u) — f(u)}-

3.1.11 Vertical and Horizontal Deviations

The deconvol ution operator allowsto easily expresstwo very important quantitiesin
network calculus, which are the maximal vertical and horizontal deviations between
the graphs of two curves f and g of F. The mathematical definition of these two
quantitiesis as follows.

Definition 3.1.15 (Vertical and horizontal deviations). Let f and g be two func-
tions or sequences of F. The vertical deviation v(f, g) and horizontal deviation
h(f,g) are defined as

v(f,g) = sup{f(t)—g(t)} (3.20)

>0
h(f,g) = sup{inf{d > 0such that f(¢) < g(t+d)}}. (3.22)
>0

Figure 3.10 illustrates these two quantities on an example.
Note that (3.20) can be recast as

v(f,9) = (f ©9)(0) (322)

whereas (3.20) is equivalent to requiring that h(f, g) isthe smallest d > 0 such that
foralt >0, f(t) < g(t + d) and can therefore be recast as

h(f,g) = inf {d > 0 such that (f © g)(—d) < 0}.

Now the horizontal deviation can be more easily computed from the pseudo-inverse
of g. Indeed, Definition 3.1.7 yields that
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A a(t)
(f.9)
f(t)

v(f.9)

>t

Figure 3.10: The horizontal and vertical deviations between functions f and
g.

g~ '(f(t)) = inf{A such that g(A) > f(t)}
inf {d > 0 such that g(t +d) > f(¢t)} + ¢

so that (3.21) can be expressed as
h(f.9) = sup {g7H(f®) =t} = (g7 () @ M)(0). (323)

We have therefore the following expression of the horizontal deviation between f
and g:

Proposition 3.1.1 (Horizontal deviation).

h(f,g) = sup {o7(f(t) —t}.

3.2 Max-plus Calculus

Similar definitions, leading to similar properties, can be derived if we replace the
infimum (or minimum, it is exists) by a supremum (or maximum, if it exists).
We use the notation Vv for denoting sup or max. In particular, one can show that
(RU{—o0},V,+) isdsoadioid, and construct a max-plus convolution and decon-
volution, which are defined as follows.

3.2.1 Max-plus Convolution and Deconvolution

Definition 3.2.1 (Max-plus convolution). Let f and g be two functions or se-
quences of F. The max-plus convolution of f and g isthe function

(f®g)(t) = sup {f(t—s)+g(s)}- (3.24)

0<s<t
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(Ift <0, (f@g)(t) = 0).

Definition 3.2.2 (Max-plus deconvolution). Let f and ¢ be two functions or se-
guences of F. The max-plus deconvolution of f by g isthe function

(fBg)(t) = int {f(t+u) — g(w)}. (329

3.2.2 Linearity of Min-plus Deconvolution in Max-plus Algebra

Min-plus deconvolution is, in fact, an operation that islinear in (R, v, +). Indeed,
one easily shows the following property.

Theorem 3.2.1 (Linearity of @ in max-plusalgebra). Let f,g,h € F.
e Rule 16 (Distributivity of @ with respectto V) (fVg)oh = (foh)V(goh).
e Rulel7 (Addition of aconstant) Forany K € R, (f+K)2g = (fog)+K.

Min-plus convolution is not, however, alinear operationin (R, v, +), because
in general
(fVg)@h#(f@h)V(gah).
Indeed, teke f = Bspr, g = Ar and h = Agp for some R,T" > 0. Then using
Rule 9, one easily computes (see Figure 3.11) that

f®h = [3r1r ® Mg = PorT
g®h = ArR®Mr=Ar
(fVg)®@h = (B3rrVAR)®Apr = Borsr/aV AR

# BerrVAR=(f®@h)V(9®@h).

Conversely, we have seen that min-plus convolutionisalinear operationin (R+, A, +),
and one easily shows that min—plus deconvolution is not linear in (R™, A, +). Fi-
nally, let us mention that one can also replace + by A, and show that (R U {400} U
{—o0},V,A) isaso adioid. Remark However, as we have seen above, as soon as
the three operations A, Vv and + are involved in a computation, one must be careful
before applying any distribution.

3.3 Exercises

Exercise3.1. 1. Compute o ® ¢ for any function «
2. Expressthe rate-latency function by means of § and A functions.

Exercise 3.2. 1. Compute ), 5; when 3; is a rate-latency function

2. Compute 1 ® (2 with 31 (t) = R(t — T)" and 52(t) = (rt + b)1 (>0}

Exercise3.3. 1. Is® distributive with respect to the min operator ?
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((feh)v(g®n)(t) ((Fva)®h))(1)
A 2R A "

7) =1 I EERRREE :
' 3RT/2F" /

\

T 2T 't 3T/4 3T/2 t

Figure 3.11: Function (f ® h) V (¢ ® h) (left) and (f Vv g) ® h (right) when
f=D0Bsrr, g =Arand h = Ay for some R, T > 0.
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Chapter 4

Min-plus and M ax-plus System
Theory

In Chapter 3 we have introduced the basic operations to manipulate functions and
sequences in Min-Plus or Max-Plus algebra. We have studied in detail the opera-
tions of convolution, deconvolution and sub-additive closure. These notions form
the mathematical cornerstone on which afirst course of network calculus has to be
built.

In this chapter, we move one step further, and introduce the theoretical tools to
solve more advanced problems in network calculus developed in the second half
of the book. The core object in Chapter 3 were functions and sequences on which
operations could be performed. We will now place ourselves at the level of operators
mapping an input function (or sequence) to an output function or sequence. Max-
plus system theory is developed in detail in [26], here we focus on the results that
are needed for the remaining chapters of the book. Asin Chapter 3, we focus here
Min-Plus System Theory, as Max-Plus System Theory follows easily by replacing
minimum by maximum, and infimum by supremum.

4.1 Min-plusand Max-plus Operators

4.1.1 Vector Notations

Up to now, we have only worked with scalar operations on scalar functionsin F or
G. In this chapter, we will aso work with vectors and matrices. The operations are
extended in a straightforward manner.

Let J be afinite, positive integer. For vectors 7, 2/ € Rt 7, we define Z A 7’ as
the coordinate-wise minimum of z'and z’, and similarly for the + operator. We write
7 < 2 with the meani ng that z; < z; for 1 < j < .J. Note that the comparison

so defined is not a total order, that is, we cannot guarantee that either Z < 2/ or

159
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2/ < Zholds. For aconstant K, we note Z + K the vector defined by adding K to
all elements of 2.

We denote by G7 the set of J-dimensional wide-sense increasing real-valued
functions or sequences of parameter ¢, and 7 the subset of functions that are zero
fort < 0.

For sequences or functions Z(t), we note similarly (Z A 4)(t) = Z(t) A ¥(t)
and (¥ + K)(t) = Z(t) + K for dl ¢t > 0, and write ¥ < ¢ with the meaning that
Z(t) < g(t) for al t.

For matrices A, B € Rt7 x RT/, we define A A B asthe entry-wise minimum
of A and B. For vector 7 € RT 7, the multiplication’ of vector 7 ¢ Rt/ by matrix
A is—remember that in min-plus algebra, multiplication is the + operation — by

A+7Z,

and has entries min; < j< s(a;; + 2;). Likewise, the ‘product’ of two matrices A and
Bisdenoted by A + B and hasentries ming < j<(a;; + bjx) for1 <,k < J.
Hereisan example of a‘multiplication’ of avector by a matrix, when J = 2

5 3 2 4
a0
and an example of amatrix ‘multiplication’ is
5 3 2 4 4 3
[1 3]*[1 0}_{3 3]'
We denote by F7* the set of J x J matrices whose entries are functions or
sequences of £, and similarly for G7°.

The min-plus convolution of amatrix A € F7* by avector 7 € 7 isthe vector
of 7/ defined by

(A® 2)(t) = inf {A(t—s)+ 2(s)}

0<s<t
and whose J coordinates are thus

nin {ai; ® 2;}(8) = inf | min {a;;(t —s) + 2(s)}-

Likewise, A ® B isdefined by
(A B)(t) = inf {A(t—s) + B(s)}

and has entriesmin; < j< j(a;; ® b;) for1 <4,k < J.
For example, we have

|: Ar 00 :| ® |: Yr/2,b :| — |: )\TA’YT/Q,b :|
o0 5T 52T 53T
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0o Or dor  Ap d37 Grr |
Finaly, we will also need to extend the set of wide-sense increasing functions
G to include non decreasing functions of two arguments. We adopt the following
definition (adightly different definition can be found in [11]).

Definition 4.1.1 (Bivariate wide-sense increasing functions). We denote by G the
set of bivariate functions (or sequences) such that for all s’ < sandanyt < t/

flt,s) < [f(t,s)
ft,s) < f(t',s).

We call such functions bivariate wide-sense increasing functions.

|: A 00 :| ® |: Yr/2,6 Yrb :| _ |: )\T‘/\,)/T/Zb Ar

In the multi-dimensional case, we denote by G the set of .J x J matrices whose
entries are wide-sense increasing bivariate functions. A matrix of A(t) € Fisa
particular case of amatrix H (t,s) € G7, with s set to afixed value.

4.1.2 Operators

A system is an operator IT mapping an input function or sequence ¥ onto an output
function or sequence i7 = I1(Z). We will always assumein thisbook that 7, 77 € G,
where J isafixed, finite, positive integer. This means that each of the J coordinates
x;(t), y;(t), 1 < j < J,isawide-senseincreasing function (or sequence) of ¢.

It is important to mention that Min-plus system theory applies to more general
operators, taking R’ to R7, where neither the input nor the output functions are
required to be wide-sense increasing. This requires minor modifications in the defi-
nitions and properties established in this chapter, see[26] for the theory described in
amore general setting. In this book, to avoid the unnecessary overhead of new no-
tations and definitions, we decided to expose min-plus system theory for operators
taking G to G”.

Most often, the only operator whose output may not bein 7 is deconvolution,
but all other operators we need will take F7 to F~.

Most of the time, the dimension of the input and output is J = 1, and the
operator takes F to F. We will speak of ascalar operator. In this case, we will drop
the arrow on the input and output, and write y = II(x) instead.

We write IT; < II, with the meaning that II; (Z) < IIy(Z) for al &, which in
turn has the meaning that I1; (Z) (t) < 5 (Z)(¢) for al t.

For a set of operators I1,, indexed by s in some set .S, we cal infycg II, the
operator defined by [inf,cs II](2(t)) = infses[Is(x(t))]. For S = {1,2} we
denote it with IT; A IIs.

We also denote by o the composition of two operators:

(I1; o Io)(Z) = II; (T (&)).

We leaveit to the alert reader to check that inf ;¢ g IT; and I1; o IT; do map functions
in G’ to functionsin G”.
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4.1.3 A Catalog of Operators

L et usmention afew examples of scalar operators of particular interest. Thefirst two
have already been studied in detail in Chapter 3, whereas the third wasintroduced in
Section 1.7. The fact that these operators map G7 into G follows from Chapter 3.

Definition 4.1.2 (Min-plus convolution C,).

C + F — F
2t) = y(t) = Col@)(t) = (0 ® 2)() = infococe {o(t — ) + 2(s)}

for someo € F.

Definition 4.1.3 (Min-plus deconvolution D).

D, : F — @G
z(t) — y@t) =Ds(z)(t) = (x @ 0)(t) = sup,>o {z(t +u) —o(uw)},

for someo € F.

Note that Min-plus deconvolution produces an output that does not always be-
long to F.

Definition 4.1.4 (Packetization Pp).

P. i F — F
2(t) — y(t) = Pr(2)(t) = PE(2(t)) = infien {L(0) 100 11)5a } »

for some wide-sense increasing sequence L (defined by Definition 1.7.1).

We will also need later on the following operator, whose name will be justified
later in this chapter.

Definition 4.1.5 (Linear idempotent operator h,).

he + F — F
2(t) = y(t) = ho(2)(t) = infocs<i {o(t) — als) + 2(s)} ,

for someo € F.

The extension of the scalar operators to the vector case is straightforward. The
vector extension of the convolution is for instance:

Definition 4.1.6 (Vector min-plus convolution Cs).

CE : f‘] — .7:‘]
) — gt) =Ce(@)) = (E@T)(t) = infocst {X(t — 5) +T(s)},

for some X € F7°.
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If the (4, j)th entry of ¥ is o5, the ith component of ¢(¢) reads therefore

vit) = Inf  min {o3;(t —s) +2;(s)}

L et us conclude with the shift operator, which we directly introduce in the vector
setting:

Definition 4.1.7 (Shift operator Sr).

S G7 — ¢’
I(t) — gt)=Sr@)) =21 -1T),

for someT € R.

Let usremark that Sy is the identity operator: Sy (Z) = 7.

4.1.4 Upper and Lower Semi-continuous Operators

We now study a number of properties of min-plus linear operators. We begin with
that of upper-semi continuity.

Definition 4.1.8 (Upper semi-continuous operator). Operator II is upper semi-
continuousif for any (finite or infinite) set of functions or sequences {%,, }, #,, € G,

I (i%f{fn}) = inf {T1(7,)} . (4.1)

We can check that C,, Cx, h, and St are upper semi-continuous. For example,
for Cs;, we check indeed that

Cs, (i%f{fn}) (t)

inf {Z(t —5)+ iréf{fn(s)}}

0<s<t

= inf inf{X(t —s)+ Z.(s)}

0<s<t n

= inf inf {X(t—s)+ Z.(s)}

n 0<s<t

= i%f {Cs(Zn)(t)} -

Likewise, noting that L(i + 1) < inf,en{x,} ifandonly if L(i + 1) < z,, for
al n € N, we get that

Lin+n gintoenton)y = 06 Lz 41 <en)

and thus we get that Py, is upper semi-continuous:

Po (inf{za}) = inf {LO)L 0641t o))}

= su {L) L L(it1)<int, {an} }
1€
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= 316111\1) {igf {L(i)l{L(i+1)§w’L}}}

= zHelgI {igf {L(i)l{L(y‘,+1)>xn}}}
= iI%f{Ziglg{L(i)l{L(i+1)>lvz}}}
= irﬁf {Pr(zn)}.

On the other hand, D,, is not upper semi-continuous, because its application to
an inf would involve the three operations sup, inf and 4, which do not commute, as
we have seen at the end of the previous chapter.

It is easy to show that if IT; and II, are upper semi-continuous, so are IT; A Il
and IT; o IIs.

The dual definition of upper semi-continuity is that of lower semi-continuity,
which is defined as follows.

Definition 4.1.9 (Lower semi-continuous operator). Operator IT is lower semi-
continuousif for any (finite or infinite) set of functions or sequences {7, }, 7, € G/,

1 (sup 2, } ) = sup {1167} (42)

It is easy to check that D, is lower semi-continuous, unlike other operators,
except St which is also lower semi-continuous.

4.1.5 |sotone Operators

Definition 4.1.10 (Isotone operator). Operator IT isisotone if ¥y < 2o always
impliesII(Z,) < II(#9).

All upper semi-continuous operators are isotone. Indeed, if 7y < @5, then Z; A
Zo = 2y and since I1 is upper semi-continuous,

H(fl) = H(fl N fg) = H(fl) N H(fQ) < H(fg)

Likewise, all lower semi-continuous operators are isotone. Indeed, if #; < Zs,
then #; VvV Z = Z5 and since IT islower semi-continuous,

(7)) < I(7) V II(To) = [I(Z; V &) = [I(i2).

4.1.6 Linear Operators

In classical systemtheory on (R, +, x), asystem IT islinear if its output to alinear
combination of inputs is the linear combination of the outputs to each particular
input. In other words, IT islinear if for any (finite or infinite) set of inputs {«;, }, and
for any constant k£ € R,
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and for any input = and any constant k € R,
Mk - z)=Fk - Ux).

The extension to min-plus system theory is straightforward. The first property
being replaced by that of upper semi-continuity, a min-plus linear operator is thus
defined as an upper semi-continuous operator that has the following property (“mul-
tiplication” by a constant):

Definition 4.1.11 (Min-plus linear operator). Operator II is min-plus linear if it
is upper semi-continuous and if for any # € G/ and for any k£ > 0,

(7 + k) =I1(Z) + k. 4.3)

One can easily check that C,,, Cx;, h, and St are min-pluslinear, unlike D, and
Pr. D, isnot linear because it is not upper semi-continuous, and Py, is not linear
because it failsto verify (4.3).

In classical linear theory, alinear system is represented by its impulse response
h(t,s), which is defined as the output of the system when the input is the Dirac
function. The output of such a system can be expressed as

TI(2)(t) = [ Ot $)a(s)ds

Its straightforward extension in Min-plus system theory is provided by the following
theorem [26]. To prove this theorem in the vector case, we need first to extend the
burst delay function introduced in Definition 3.1.2, to allow negative values of the
delay, namely, thevalue T' in

0 ift<T
5T(t){ o ift>T,

is now taking valuesin R. We also introduce the following matrix Dy € G/ x G”.

Definition 4.1.12 (Shift matrix). The shift matrix is defined by

or(t) oo 00 s 0
oo op(t) oo
Drp(t)=| oo 0o Op(t)
00 00 5;(()t)

for someT € R.
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Theorem 4.1.1 (Min-plus impulse response). II is a min-plus linear operator if
and only if there is a unique matrix H € G’ (called the impulse response), such
that for any 7 € G’ andany t € R,

I(Z)(t) = inﬂf@ {H(t,s)+Z(s)}. (4.9
sE
Proof:  If (4.4) holds, oneimmediately sees that TI is upper semi-continuous and
verifies (4.3), and therefore is min-plus linear. IT maps G to G because H € G”.
Suppose next that 1T is min-plus linear, and let us prove that there is a unique

matrix H(t,s) € G’ such that (4.4) holds.
Let usfirst notethat D, (t) + 7(s) = Z(s) forany s > t. Since ¥ € G/, we have

inf {Da(t) + (s)} = inf {(s)} = #(t).
On the other hand, al entries of D, (t) areinfinitefor s < t. We have therefore that
Héft {Ds(t) +Z(s)} =
We can combine these two expressions as
Z(t) = inf {D,(t) +3(s)},
or, dropping explicit dependence on ¢,

T= 12{{ {Ds +Z(s)}.

Let d, ; denote the jth column of D,

IS8
@
&,
\
(=%
@

e.¢]

where ¢, islocated at the jth position in this vector. Using repeatedly the fact I is
min-plus linear, we get that

mz = 1 (Sirel]fR {Ds + f(s)}>
= inf {I1(D, +3(s))}

= (o, {2+ 0})}



4.1. MIN-PLUSAND MAX-PLUS OPERATORS 167

= it { {1 (2 e0)}

= i { i, {n1(0) + o9} |-

H(t,s) = [ﬁl(t,s) o Ri(ts) .. EJ(t,s)] (4.5)

Defining

where B B
yts) =T (d.) (1) (4.6)

for all ¢+ € R, we obtain therefore that

seR | 1<5<T sER

(7)(t) = inf { min {ﬁj(t,s) + :cj(s)}} = inf {H(t,s) + @(s)}.

We still have to check that H (t,s) € G”. Since for any fixed s, IT (cfsj) €G’,we
have that for any ¢ < ¢/

—

Byt ) =1 (dos) (0) T (o) (€)= st 9),
hence H(t,s) < H(t',s). On the other hand, if s’ < s, one easily check that

dy; < d. . Therefore, since IT is isotone (because it is linear and thus upper semi-
continuous),

i(t,s) =11 (duy ) () <T0(dey ) (8) = Byt

and therefore H (t,s) < H(t,s') forany s > s'. Thisshowsthat H(t,s) € G”.

To prove uniqueness, suppose that there is another matrix H’ € G” that satisfies
(4.4), and let E’j denote its jth column. Thenforany v € Randany 1 < 5 < J,
taking & = Ju,j astheinput, we get from (4.6) that for ¢t € R

—

hi(tou) = II (J’u,j) (t) = inf {H’(t, s) + J’u,j(s)}

seR

— inf {f?j(t,s) +5u(s)} — inf {i?j(t,s)} = 7 (t, ).

seR s<u

Therefore H' = H. O
We will denote ageneral min-plus linear operator whose impulse response is H
by L. In other words, we have that

L(@)(t) = inf {H(t,5) +3(s)}
One can compute that the impulse response corresponding to Cy, is

Bt —-s) ifs<t
H(t"s)—{ (0) ifs>1t
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to h, is

o(t)—o(s) ifs<t
H(t’s):{o ifs>t

andto St is
H(t,s) = Dp(t — s).

In fact the introduction of the shift matrix allows us to write the shift operator as a
min-plus convolution: Sy = Cp,. if T > 0.

Let us now compute the impulse response of the compostion of two min-plus
linear operators.

Theorem 4.1.2 (Composition of min-pluslinear operators). Let Lz and Ly be
two min-plus linear operators. Then their composition Ly o Ly is also min-plus
linear, and its impulse repsonse denoted by H o H’ isgiven by

(H o H')(t,5) = inf {H(t,u) + H'(u,5)}

Proof: The composition Lz o L appliedto someZ € G is
Co(Lu(@)(t) = inf {H(t, w) + inf {H'(u,5) + f(s)}}
= infinf {H(t,u) + H'(u,s) + Z(s)}

= inf {igf {H(t,s)+ H'(u,s)} + f(s)} .

We can therefore write
LrgoLly = Lo .
Likewise, one easily shows that
LaNLyg =Lynm.
Finally, let us mention the dual definition of a max-plus linear operator.

Definition 4.1.13 (M ax-plus linear operator). Operator 1T is max-plus linear if it
islower semi-continuous and if for any € G’ and for any k£ > 0,

I(Z+k)=1(%) + k. 4.7)
Max-plus linear operators can also be represented by their impul se response.

Theorem 4.1.3 (Max-plus impulse response). 1T is a max-plus linear operator if
and only if there is a unique matrix H € G” (called the impulse response), such
that for any 7 € G/ andany t € R,

I(Z)(t) = ilelg {H(t,s)+Z(s)}. (4.8)
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One can easily check that D, and Sy are max-plus linear, unlike Csx, h, and
PL.
For example, D, (x)(t) can be written as

D, (z)(t) = iglé{w(tw)—a(w} = iglt){x(8> —o(s—t)} = igg{w(S)—U(s—t)}

which hasthe form (4.8) if H(¢,s) = —o(s — ).
Likewise, St (z)(t) can bewritten as

S (7) (t) = (¢~ T) = sup{#(s) ~ Dr(s — 1)

which hastheform (4.8) if H(t,s) = —D_p(s — t).

4.1.7 Causal Operators

A systemis causal if its output at time ¢ only depends on itsinput before time ¢.

Definition 4.1.14 (Causal operator). Operator I is causal if for any ¢, Z1(s) =
Zo(s) for all s < ¢ alwaysimpliesII(Z)(t) = I1(Z2)(t).

Theorem 4.1.4 (Min-plus causal linear operator). A min-pluslinear systemwith

impulse response H iscausal if H(t,s) = H(t,t) for s > t.

Proof: If H(t,s) = 0fors > ¢t andif Z1(s) = #2(s) for al s < ¢ then since
I, 72 € G,

La(@)(0) = g {H(ts)+5(5)
= inf {H(t,5) +F1(s)} A inf {H(t,5) +71(s)}
= inf (H(t,5) + ()} Ainf {H(t,) +71(5))
= inf (H(t,5) +71(5))
= il {H(s) +3a(s))
= inf {H(t,5) + Fa(s)} A dnf {H(t,0) + ()}
— nf {H(t,5) + Ba(s)} A nf {H(t,5) + Ta(s)}
= inf {H(t,5) + F2(s)} = Lua(@2)(2)

|

Co, Cs, hy and Py, are causal. St is causal if and only if T > 0. D, is hot

causal. Indeed if #1(s) = Z2(s) foral s < ¢, but that 71 (s) # Z2(s) foral s > ¢,
then
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Do(@)(t) = sup{z(t+u) —o(u)}
7 sup {Z2(t +u) —o(u)}
- Do‘(fl)(t)

4.1.8 Shift-invariant Operators

A system is shift-invariant, or time-invariant, if a shift of the input of 7" time units
yields a shift of the output of 7" time units too.

Definition 4.1.15 (Shift-invariant operator). Operator II is shift-invariant if it
commutes with all shift operators, i.e. if for any ¥ € G andfor any T' € R

(87 (%)) = Sp(II(T)).

Theorem 4.1.5 (Shift-invariant min-plus linear operator). Let £y and Ly be
two min-plus linear, shift-invariant operators.

(i) A min-plus linear operator Ly is shift-invariant if and only if its impulse
response H (t, s) depends only on the difference (¢ — s).

(it) Two min-pluslinear, shift-invariant operators £z and £ commute. If they
are also causal, the impulse response of their composition is

(HoH')(t,s)= inf {H{t—-s—u)+H (u)}=(H®H)-Ss).

0<u<t—s

Proof: (i) Let h,(t,s) and d. ;(¢) denote (respectively) the jth column of H (t, s)
and of D, (t). Notethat d ;(t) = S,(do;)(t). Then (4.6) yields that

—

Rits) = 1(dy) () =11(Su(d,) (1)
= 8 (Wdo,y)) (1) = (1)) (¢ = 5) = Byt = 5.0)

Therefore H (¢, s) can be written as afunction of asingle variable H (t — s).
(ii) Because of Theorem 4.1.2, theimpulseresponse of Ly o Ly is

(HoH')(t,s) = inf {H(t,u) + H'(u,s)}.

Since H(t,u) = H(t —u) and H'(u,s) = H'(u — s), and setting v = u — s, the
latter can be written as

(Ho H')(t,s) =inf{H(t—u)+ H'(u—2s)} =inf{H({t—s—v)+H'(v)}.
Similarly, the impulse response of Ly o Ly can be written as

(H' o H)(t,s) :i%f{H’(t—u)—&—H(u—s)} :igf{H(v)+H’(t—s—v)}
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where this time we have set v = ¢t — u. Both impulse responses are identical, which
shows that the two operators commute.

If they are causal, then their impulse response is infinite for ¢ > s and the two
previous relations become

(HoH')(t,s) = (H'oH)(t,s) = oglufgt {H(t—s—v)+H'(v)} = (HH')(t—s).

O
Min-plus convolution Cx, (including of course C, and Sr) is therefore shift-
invariant. In fact, it follows from this theorem that the only min-plus linear, causal
and shift-invariant operator is min-plus convolution. Therefore h, is not shift-
invariant.
Min-plus deconvolution is shift-invariant, as

Dy (Sr(2))(t) = sup{Sr(x)(t +u) —o(u)} =sup{a(t +u—-T) - o(u)}

u>0 u>0

= (2@0)t—T)=D,(x)(t —T)=Sr (D,) (x)(t).

Finally let us mention that Py, is not shift-invariant.

4.1.9 Idempotent Operators

An idempotent operator is an operator whose composition with itself produces the
same operator.

Definition 4.1.16 (Idempotent operator). Operator II is idempotent if its self-
compositionisIl, i.e. if
oIl =1I.

We can easily check that h, and P, are idempotent. If o is sub-additive, with
(0) = 0, thenC, o C, = C,, which shows that in this case, C, is idempotent too.
The same appliesto D,,.

4.2 Closure of an Operator

By repeatedly composing a min-plus operator with itself, we obtain the closure of
this operator. The formal definition is asfollows.

Definition 4.2.1 (Sub-additive closure of an operator). Let IT be a min-plus oper-
ator taking G’ — G”. Denote I1(™) the operator obtained by composing IT (n — 1)
timeswith itself. By convention, II(®) = Sy = Cp,, oIV =TI, I(?) = M oTI, etc.
Then the sub-additive closure of II, denoted by I, is defined by

ﬁ:SO/\H/\(HoH)/\(HoHoH)A...:ir;f(’){ﬂ(”)}. (4.9)



172 CHAPTER 4. MIN-PLUSAND MAX-PLUS SYSTEM THEORY

In other words,
TI(%) = & A TI(Z) ATI(TI(Z)) A . ..

It isimmediate to check that IT does map functionsin G to functionsin G.

The next theorem provides the impulse response of the sub-additive closure of
amin-plus linear operator. It follows immediately from applying recursively Theo-
rem4.1.2.

Theorem 4.2.1 (Sub-additive closure of alinear operator). Theimpulse response
of Ly is

H(t,s)=inf inf {H(t,u1)+ H(up,u2)+...+ H(uy,s)}. (4.10)

neEN Un,...,u2,u1
and Ly = L.

For amin-plus linear, shift-invariant and causal operator, (4.10) becomes

H(t—s)
= iggsgung.‘igizgulgt {H({t —u1)+ H(up —u2) + ...+ H(u, — 9)}
= 711161%; ogvng...iggggvlgt—s {Ht—s—wv1)+H(@w —v2)+ ...+ H(vy,)}
= ggg{H(")}(t —5) (4.11)

where H" = H@ H® ...® H (ntimes,n > 1) and H® = §.
In particular, if all entries o;;(¢) of X(t) are sub-additive functions, we find that

Cy, =Cs.

In the scalar case, the closure of the min-plus convolution operator C,, reduces
to the min-plus convolution of the sub-additive closure of o:

Co’ - CF-
If o isa“good” function (i.e., asub-additive function with o(0) = 0), thenC, = C,.

The sub-additive closure of the idempotent operators h, and P, are easy to
compute too. Indeed, since h, (z) < z and Pr(z) < z,

he = hy
and -
Pr="Pr.

The following result is easy to prove. We write II < IT’ to express that TI(#) <
(%) foral # € G7.

Theorem 4.2.2 (Sub-additive closure of an isotone operator). If IT and II" are
two isotone operators, and IT < IT’, then IT < IT'.
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Finaly, let us conclude this section by computing the closure of the minimum
between two operators.

Theorem 4.2.3 (Sub-additive closure of TI; A II). Let 11y, 15 be two isotone
operatorstaking G/ — G”7. Then

H1 A H2 = (H1 A 80) o (Hg A So) (412)

Proof: (i) Since Sy isthe identity operator,

Hl A\ H2 == (H1 o So) N (S[) o HQ)

> ((II;y ASp) 0 Sp) A (Sp o (T2 A Sp))

Z ((Hl A So) o (HQ A So)) A ((Hl A 80) o (H2 A So))
(IIy A Sp) o (Il A Sp).

Sincell; and I, areisotone, so are I1; ATl and (113 ASy ) o (TIa ASy ). Consequently,
Theorem 4.2.2 yields that

H1 A H2 Z (H1 A So) 9} (H1 AN So) (413)
(if) Combining the two inequalities

I ASy > IIiAIIa ASy
HZ/\SO > Hl/\HQ/\SO

we get that

(H1 A\ So) o (Hl N SO) > (Hl ANy A S()) o (Hl ANIly A S()) (414)

Let us show by induction that

(n) _ s (k)
((Hl /\HQ)/\SQ) _Orénklgn{(ﬂl /\H2) }

Clearly, the claim holds for n = 0, 1. Supposeit istrue up to somen € N. Then

(I, A TI3) /\SO)(n+1)
= ((II1 AIl2) A Sp) o (II1 ATI2) A So)(n)

= ((II1 AIl2) ASp) ( min {(Hl /\Hg)(k)}>

0<k<n

= ((H1 AN HQ) o Oglklgn {(Hl AN Hg)(k)}> N (80 o OISIlkléln {(Hl A Hg)(k)}>

= i (k) i (k)
i, (AT S A i {0 1)

_ ; (k)
oginglgﬂ {(Hl M) } '
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Therefore the claim holds for all » € N, and

(I} ATIo) A So) 3™
= min {(Hl AN Hg)(k)} .

((T1; ATI2) A Sp) o ((TTy ATIo) A So))™

0<k<2n
Consequently,
_ . . (k)
(L ATl A So) o (I, ATl A So) érelfmgr%ggn{(nl ATIL) }
- 3 (k)
AR
= I ATls
and combining this result with (4.13) and (4.14), we get (4.12). O

If one of the two operators is an idempotent operator, we can simplify the previ-
ous result a bit more. We will use the following corollary in Chapter 9.

Coroallary 4.2.1 (Sub-additive closure of IT1; A hys). Let I1; be an isotone operator
taking F — F,andlet M € F. Then

Hl/\hjw = (h,]v[OHl)Oh]w. (415)

Proof: Theorem 4.2.3 yields that

I A har = (I ASo) o by (4.16)
because hjy; < Sp. Theright hand side of (4.16) isthe inf over all integers n of
({1 A So} o har)™
which we can expand as
{II; ASp} ohpr o {II1 ASptohpro...o{Il;1 ASp} o hyy.
Since

h]WO{Hl /\So}ohjw = {hMoﬂlohM}/\hM
= ({hM o Hl} /\So) o hM

orgnqi<1 {(hM ° Hl)(q)} ol

the previous expression is equal to

min {(hM o Hl)(q)} oha.

0<g<n

Therefore we can rewrite the right hand side of (4.16) as
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(M ASy)ohy = inf{ min {(hMoHI)(q)}ohM}

neN | 0<qg<n

= ;rellf\;{(hMOH]_)(q)}OhM:(h]wOHl)OhM7

which establishes (4.15).
Therefore we can rewrite the right hand side of (4.16) as

(I, ASy) o hay = inf{min {(hMoﬂl)(’I)}ohM}

neN | 0<g<n

= hpyo inI£I {(hM ) Hl)(q)} ohpy = hpg o (har oIly) o hyy,
qe

which establishes (4.15). O
The dual of super-additive closure is that of super-additive closure, defined as
follows.

Definition 4.2.2 (Super-additive closure of an operator). Let IT be an operator
taking G’ — G”. The super-additive closure of II, denoted by II, is defined by

HZSO\/H\/(HOH)\/(HOHOH)\/...zsup{H(")}. (4.17)

n>0

4.3 Fixed Point Equation (Space M ethod)
4.3.1 Main Theorem

We now have the toolsto solve an important problem of network calculus, which has
some analogy with ordinary differential equationsin conventional system theory.

The latter problem reads as follows: let IT be an operator fromR” to R”, and let
@ € R7. What is then the solution #(¢) to the differential equation

dz -
< (0 =TI@)(0) (4.19
with the inital condition

Z(0) = a. (4.19)

Here Il is an operator taking G7 — G/, and @ € G”. The problemisnow to find
the largest function #(t) € G7, which verifies the recursive inequality

(1) < TI(@)(1) (4.20)

and the initial condition
() < a(t). (4.21)

The differences are however important: first we have inequalities instead of
equalities, and second, contrary to (4.18), (4.20) does not describe the evolution
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of the trajectory Z(t) with time ¢, starting from a fixed point @, but the successive
iteration of II on the whole trajectory Z(t), starting from a fixed, given function
at)eg’.

Thefollowing theorem providesthe solution this problem, under weak, technical
assumptions that are almost always met.

Theorem 4.3.1 (Space method). Let IT be an upper semi-continuous operator tak-
ing G/ — G”. For any fixed function @ € G”, the problem

Z < an1i(z) (4.22)

has one maximum solution in G/, given by #* = T1(a).
Thetheorem isprovenin [26]. We give here adirect proof that does not have the
pre-requisitesin [26]. It is based on a fixed point argument. We call the application
of thistheorem “ Space method”, because the iterated variableis not time ¢ (asin the

“Time method” described shortly later) but the full sequence Z itself. The theorem
applies therefore indifferently whether ¢t € Z or ¢t € R.

Proof: (i) Let usfirst show that IT(a) isasolution of (4.22). Consider the sequence
{#™} of decreasing sequences defined by

ST

o =
fn-l—l = a_fn A H(£n)a n > 0.

Then one checks that

I
7 = Inf {n}

isasolutionto (4.22) because #* < #, = a and becauseIT is upper-semi-continuous
so that

I(7") = I(inf {7n}) = mf{TI(7)} > mf{Zna} > nf {7} ="
Now, one easily checksthat Z,, = info<,,<,,{TI™(a)}, so
= inf{Z,} = inf inf {I"™ (@)} = inf {11 (@)} = T(a).

n>0 n>00<m<n

Thisalso showsthat 7* € G7.

(ii) Let Z beasolution of (4.22). Then ¥ < @ and since I isisotone, I1(Z) < I1(a).

From (4.22), © < II(Z), so that & < II(@). Suppose that for somen > 1, we

have shown that # < TI("~1)(&). Then as Z < TI(&) and as II is isotone, it yields

that # < TI(")(a@). Therefore ¥ < inf,,>o{I1(™ (@)} = TI(a@), which shows that

#* = II(a) isthe maximal solution. O
Similarly, we have the following result in Max-plus algebra.

Theorem 4.3.2 (Dual space method). Let IT be a lower semi-continuous operator
taking G’ — G”. For any fixed function @ € G7, the problem

7> avIIT) (4.23)

has one minimum solution, given by #* = I1(a).
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4.3.2 Examplesof Application

Let us now apply this theorem to five particular examples. We will first revisit the
input-output characterization of the greedy shaper of Section 1.5.2, and of the vari-
able capacity node described at the end of Section 1.3.2. Next we will apply it to
two window flow control problems (with a fixed length window). Finally, we will
revisit the variable length packet greedy shaper of Section 1.7.4.

I nput-Output Char acterization of Greedy Shapers

Remember that a greedy shaper is a system that delays input bits in a buffer, when-
ever sending a bit would violate the constraint o, but outputs them as soon as possi-
ble otherwise. If R istheinput flow, the output is thus the maximal function z € F
satisfying the set of inequalities (1.13), which we can recast as

z < RACy(x).

It isthus given by R* = C,(x) = C5(z) = 7 ® . If o isa“good” function, one
therefore retrieves the main result of Theorem 1.5.1.

Input-Output Characterization of Variable Capacity Nodes

The variable capacity node was introduced at the end of Section 1.3.2, where the
variable capacity ismodeled by acumulativefunction M (t), where M (t) isthetotal
capacity available to the flow between times 0 and ¢. If m(t) is the instantaneous
capacity available to the flow at time ¢, then M (¢) is the primitive of this function.
In other words, if ¢ € R,

M(t):/O m(s)ds (4.24)

and if t € Z theintegral is replaced by asum on s. If R isthe input flow and z is
the output flow of the variable capacity node, then the variable capacity constraint
imposesthat forall 0 < s <t

x(t) —a(s) < M(t) — M(s),
which we can recast using the idempotent operator hj; as
x < hy(z). (4.25)
On the other hand, the system is causal, so that
z < R. (4.26)

The output of the variable capacity node is therefore the maximal solution of system
(4.25) and (4.26). It isthus given by

R(t) = har (R)(t) = har(R)(t) = inf {M(t) — M(s) + R(s)}

0<s<t

because the sub-additive closure of an idempotent operator is the operator itself, as
we have seen in the previous section.
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Static window flow control —example 1

Let us now consider an example of afeedback system. This example isfound inde-
pendently in[10] and [64, 2]. A dataflow a(t) isfed viaawindow flow controller to
anetwork offering a service curve 3. The window flow controller limits the amount
of data admitted into the network in such away that the total backlog islessthan or
equal to W, where W > 0 (the window size) is afixed number (Figure 4.1).

controller
network —
a(t) L x() Oﬁ

y(t)

Figure 4.1: Static window flow control, from [10] or [64]

Call z(t) the flow admitted to the network, and y(t) the output. The definition
of the controller meansthat «(¢) is the maximum solution to

2(t) < alt)
{ o) < o6 + W (4.27)

We do not know the mapping IT : © — y = II(x), but we assume that IT is isotone,
and we assume that (t) > (8 ® x)(t), which can be recast as

II(z) > Ca(x). (4.28)
We also recast System (4.27) as
z <aA{ll(z)+ W}, (4.29)
and direclty apply Theorem 4.3.1 to derive that the maximum solution is

z = (II+ W)(a).

Since II is isotone, so is II + W. Therefore, because of (4.28) and applying
Theorem 4.2.2, we get that

x=(II+W)(a) > (Cs+ W)(a). (4.30)
Because of Theorem 4.2.1,
(Cs +W)(a) = Cprw(a) = Corppr(a) = (B+ W) @ a.

Combining this relationship with (4.30) we have that

yzfor=po (B ea)=(80B+W) (),
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which shows that the complete, closed-loop system of Figure 4.1 offersto flow a a
service curve [10]

Bwfcr =B @ (B+W). (4.31)

For example, if 3 = (g, then the service curve of the closed-loop system is

the function represented on Figure 4.2. When RT' < W, the window does not add

any restriction on the service guarantee offered by the open-loop system, asin this

case Byfc; = B. If RT > W on the other hand, the service curve is smaller than
the open-loop service curve.

APwicaa® =BO =RIETI* 4 Burca(®)

T 2T3T4T -
Casel: RT<W Case2: RT>W

Figure 4.2: The service curve S, Of the closed-loop system with static
window flow control, when the service curve of the open loop system is Sg
with RT < W (left) and RT > W (right).

Static window flow control —example 2

Let us extend the window flow control model to account for the existence of back-
ground traffic, which constraints the input traffic rate at time ¢, dx/dt(t) (if t € R)
or z(t) — xz(t — 1) (if t € Z), to be lessthat some given rate m(t). Let M (¢) denote
the primitive of this prescribed rate function. Then the rate constraint on x becomes
(4.25). Function M (t) is not known, but we assume that there is some function
~ € F such that

M(t) — M(s) = y(t—s)

forany 0 < s < t, which we can recast as
har > Cy. (4.32)

Thisis used in [43] to derive a service curve offered by the complete system to the
incoming flow z, which we shall also compute now by applying Theorem 4.3.1.

With the additional constraint (4.25), one has to compute the maximal solution
of
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z <aA{Il(z) + W} A hu(z), (4.33)
whichis

z= {4+ W} Ahy)(a). (4.34)

Asin the previous subsection, we do not know IT but we assume that it isisotone
and that IT > Cg. We also know that hy, > C,. A first approach to get a service
curve for y, is to compute a lower bound of the right hand side of (4.34) by time-
invariant linear operators, which commute as we have seen earlier in this chapter.
We get

{TI+W}Ahy >{Cs+W}IACy = C{ﬁ_;,_w}/\.y,
and therefore (4.34) becomes

x> Ciprwing (@) = Carmyay (@) = {B+ Wi Ay) ®@a
Because of Theorem 3.1.11,
{B+Winy=(B+W)e7

so that

y>pec > (ﬂ®(5+W)®7) ®a
and thus a service curve for flow a is

BRB+W)®7. (4.35)
Unfortunately, this service curve can be quite useless. For example, if for some
T>0,vt)=0for0 <t <T,then5(t) = 0foralt¢ > 0, and so the service
curveis zero.

A better bound is obtained by differing the lower bounding of %), by the time-
invariant operator C,, after having used the idempotency property in the computation
of the sub-additive closure of the right hand side of (4.34), via Corollary 4.2.1.
Indeed, this corollary allows usto replace (4.34) by

T = ((hM o (H + W)) o h]u) (a)
Now we can bound h,; below by C,, to obtain

(hago (IT+W))ohy = (CyoCprw)oCy

= Cyep+w) oCy
= Corr
= C

say+w ©Cy
YO (BRY+W)’
We abtain a better service curve than by our initial approach, where we had directly
replaced hys by C.,:
Pwfce =B@7@ (Bey+W). (4.36)

is a better service curve than (4.35).

For example, if 5 = Brr andy = Br 7, WithR > R and W < R/(T +
T"), then the service curve of the closed-loop system is the function represented on
Figure 4.3.
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A BO=R[t-T]* A YO =R[tT]F
R
R
T t T t %
A BOY©) A Bufea(t)

\
\

™=+T T+T’

Figure 4.3: The service curve Sz, of the closed-loop system with window
flow control (bottom right), when the service curve of the open loop system
is 8 = Brr (top left) and when v = Br o (top right), with R > R’ and
W< R(T+T).

Packetized greedy shaper
Our last example in this chapter is the packetized greedy shaper introduced in Sec-
tion 1.7.4. It amounts to computing the maximum solution to the problem

z < RAPL(z) ACy(z)

where R is the input flow, ¢ is a “good” function and L is a given sequence of

cumulative packet lengths.
We can apply Theorem 4.3.1 and next Theorem 4.2.2 to obtain

r =Py /\CU(R) =P OCU(R)

which is precisely the result of Theorem 1.7.4.

4.4 Fixed Point Equation (Time Method)

We conclude this chapter by another version of Theorem 4.3.1 that applies only to
the disrete-time setting. It amounts to compute the maximum solution Z = II(a) of
(4.22) by iterating on time ¢ instead of interatively applying operator II to the full

trgjectory a(t). We call this method the “time method” (see also [11]). It is valid
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Operator Cs D, Sr hy | PrL
Upper semi-continuous yes no yes | yes | yes
Lower semi-continuous no yes yes no | no
I sotone yes yes yes | yes | yes
Min-plus linear yes no yes | yes| no
Max-plus linear no yes yes no | no
Causd yes no yes(1) | yes | yes
Shift-invariant yes yes yes no | no
|dempotent no(2) | no(2) | no(3) | yes | yes

D (7T >0)

(2) (unless o isa‘good’ function)
(3) (unlessT = 0)

Table 4.1: A summary of properties of some common operators

under stronger assumptions than the space method, as we require here that operator
IT be min-plus linear.

Theorem 4.4.1. Let Il = Ly beamin-pluslinear operator taking FI — FJ, with
impulse response H € G For any fixed function @ € F, the problem

Z< AN Ly(L) (4.37)
has one maximum solution, given by
7(0) = d(0)
T a

(t) = @0)A inf {H(tu)+ 7 (u)).

0<u<t—1

Proof: Notethat the existence of a maximum solution is given by Theorem 4.3.1.
Define 2* by therecursioninthe Theorem. As H e G it followseasily by induction
that 2* is a solution to problem (4.37). Conversely, for any solution Z, Z(0) <
a(0) = 2*(0) andif Z(u) < Z*(u) foral 0 < u < ¢—1,itfollowsthat Z(t) < #*(¢t)
which shows that z* isthe maximal solution. O

45 Conclusion

This chapter has introduced min-plus and max-plus operators, and discussed their
properties, which are summarized in Table 4.5. The centra result of this chapter,
which will be applied in the next chapters, is Theorem 4.3.1, which enables us to
compute the maximal solution of a set of inqualities involving the iterative applica-
tion of an upper semi-continuous operator.
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Chapter 5

Optimal Multimedia
Smoothing

In this chapter we apply network cal culus to smooth multimedia data over anetwork
offering reservation based services, such as ATM or RSVP/IP, for which we know
one minimal service curve. One approach to stream video is to act on the quantiza-
tion levels at the encoder output: this is called rate control, see e.g. [24]. Another
approach is to smooth the video stream, using a smoother fed by the encoder, see
e.g. [65, 68, 56]. In this chapter, we deal with this second approach.

A number of smoothing algorithms have been proposed to optimize various per-
formance metrics, such as peak bandwidth requirements, variability of transmission
rates, number of rate changes, client buffer size [27]. With network calculus, we are
able to compute the minimal client buffer size required given a maximal peak rate,
or even amore complex (VBR) smoothing curve. We can a so compute the minimal
peak rate required given a given client buffer size. We will see that the scheduling
algorithm that must be implemented to reach these boundsis not unique, and we will
determine the full set of video transmission schedules that minimize these resources
and achieve these optimal bounds.

5.1 Problem Setting

A video stream stored on the server disk is directly delivered to the client, through
the network, as shown on Figure 5.1. At the sender side, a smoothing device reads
the encoded video stream R(t) and sends a stream z(¢) that must conform to an
arrival curve o, which we assume to be a ‘good’ function, i.e. is sub-additive and
such that o(0) = 0. The simplest and most popular smoothing curve in practiceisa
constant rate curve (or equivalently, a peak rate constraint) ¢ = A, for somer > 0.

We take the transmission start as origin of time: this implies that «(¢) = 0 for
t <0.

185
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Figure 5.1: Video smoothing over a single network.

At the receiver side, the video stream R will be played back after D units of
times, the playback delay: the output of the decoding buffer B must therefore be
R(t— D).

The network offers a guaranteed service to the flow z. If y denotes the output
flow, it is not possible, in general, to express y as a function of z. However we as-
sume that the service guarantee can be expressed by a service curve 3. For example,
as we have seen in Chapter 1, the IETF assumes that RSV P routers offer a rate-
latency service curve 3 of the form 3, «(t) = C[t — L]" = max{0,C(t — L)}.
Another exampleisanetwork which iscompletely transparent to the flow (i.e. which
doesnot incur any jitter to the flow nor rate limitation, evenif it can introduce afixed
delay, which we ignore in this chapter as we can aways take it into account sepa
rately). We speak of anull network. It offersa service curve 5(t) = do(t).

To keep mathematical manipul ations simple, we assume that the encoding buffer
sizeis large enough to contain the full data stream. On the other hand, the receiver
(decoding) buffer is amuch more scarce resource. Its finite size is denoted by B.

As the stream is pre-recorded and stored in the video server, it alows the
smoother to prefetch and send some of the data before schedule. We suppose that the
smoother isableto look ahead datafor up to d time units ahead. Thislook-ahead de-
lay can take valuesranging from zero (in the most restrictive case where no prefetch-
ing is possible) up to the length of the full stream. The sum of the look-ahead delay
and playback delay is called the total delay, andisdenoted by 7: T' = D + d.

These constraints are described more mathematically in Section 5.2.

We will then apply Theorem 4.3.1 to solve the following problems:

(i) wefirst compute, in Section 5.3, the minimal requirements on the playback delay
D, onthelook-ahead delay d, and on the client buffer size B guaranteeing alossless
transmission for given smoothing and service curves o and .

(ii) we then compute, in Section 5.4, all scheduling strategies at the smoother that
will achieve transmission in the parameter setting computed in Section 5.3. We call
the resulting scheduling “optimal smoothing”.

(iii) in the CBR case (¢ = A,), for a given rate r and for a rate-latency service
curve (6 = Br,c), we will obtain, in Section 5.5, closed-form expressions of the
minimal valuesof D, T = D + d and B required for lossless smoothing. We will
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also solve the dual problem of computing the minimal rate r needed to deliver video
for agiven playback delay D, look-ahead delay d and client buffer size B.

Wewill then compare optimal smoothing with greedy shaping in Section 5.6 and
with separate delay equalization in Section 5.7. Finally, we will repeat problems (i)
and (iii) when intermediate caching is allowed between a backbone network and an
access network.

5.2 Constraints I mposed by L ossless Smoothing

We can now formalize the constraints that completely define the smoothing problem
illustrated on Figure 5.1).

e Flow 2 € F: As mentioned above, the chosen origin of time is such that
x(t) = 0fort <0, or equivalently

2(t) < doft). (5.1)

e Smoothness constraint: Flow x is constrained by an arrival curve o(+). This
meansthat forall ¢ > 0

z(t) < (z @ 0)(t) = Co(2)(D). (5.2)

e Playback delay constraint (no playback buffer underflow): The data is
read out from the playback buffer after D unit of times at a rate given by
R(t — D). Thisimplies that y(t) > R(t — D). However we do not know
the exact expression of y as afunction of z. All we know is that the network
guarantees a service curve 3, namely that y(t) > (z ® 3)(t). The output
flow may therefore be as low as (z @ 3)(t), and hence we can replace y in
the previous inequality to obtain (z ® ()(t) > R(t — D). Using Rule 14 in
Theorem 3.1.12, we can recast this latter inequality as

z(t) = (R B)(t — D) = Da(R)(t — D) (5.3)
foralt > 0.

e Playback buffer constraint (no playback buffer overflow): The size of the
playback buffer islimited to B, and to prevent any overflow of the buffer, we
must imposethat y(¢t) — R(t — D) < B foral ¢t > 0. Again, we do not know
the exact value of y, but we know that it can be as high as z, but not higher,
because the network isacausal system. Therefore the constraint becomes, for
al¢ >0,

z(t) < R(t — D)+ B. (5.9

e L ook-ahead delay constraint: We suppose that the encoder can prefetch data
from the server up to d time units ahead, which trandates in the following
inequality:

z(t) < R(t + d). (5.5)
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5.3 Minimal Requirements on Delays and Playback
Buffer

Inequalities (5.1) to (5.5) can be recast as two sets of inequalities as follows:

z(t) < do(t) NR(t+d) A{R(t — D)+ B} ACy(z)(2) (5.6)
> (Rop)(t—D). (5.7)

There is a solution x to the smoothing problem if and only if it simultaneously
verifies (5.6) and (5.7). Thisis equivalent to requiring that the maximal solution of
(5.6) islarger than the right hand side of (5.7) for al .

Let usfirst compute the maximal solution of (5.6). Inequality (5.6) has the form

z < aACq(x) (5.8)

where
a(t) = 6o(t) N R(t +d) N{R(t — D) + B}. (5.9)

We can thus apply Theorem 4.3.1 to compute the unique maximal solution of (5.8),
which is xyax = C»(a) = 0 ® a because o isa‘good’ function. Replacing a by its
expression in (5.9), we compute that the maximal solution of (5.6) is

Tmax(t) = o) A0 @ R)(t +d)}y A{(c @ R)(t— D)+ B}.  (5.10)

We are now able to compute the smallest values of the playback delay D, of
the total delay T and of the playback buffer B ensuring the existence of a solution
to the smoothing problem, thanks to following theorem. The requirement on d for
reaching the smallest value of D istherefored =T — D.

Theorem 5.3.1 (Requirements for optimal smoothing). The smallest values of
D, T and B ensuring a lossless smoothing to a ‘good’ curve ¢ through a network
offering a service curve § are

Dpin = h(R,(B®0)=inf{t>0: (R0 (B®0c))(—t) <0} (5.11)

Twmin = h((ROR),(B®0)) (5.12)
= nf{t>0:(ROR) 2 (B®0a))(—t) <0}

Buin = v(ROR),(B0))=(R2R)(B®0))(0). (5.13)

where h and v denote respectively the horizontal and vertical distances given by
Definition 3.1.15.

Proof: The set of inequalities (5.6) and (5.7) has a solution if, and only if, the
maximal solution of (5.6) is larger or equal to the right hand side of (5.7) at all
times. This amounts to impose that for al ¢ € R
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(RoB)t—D)—ot) < 0
(RoB)(t—D)—(c@R)(t+d) < 0
(RoB)(t—D)—(c@R)(t—D) < B.

Using the deconvolution operator and its properties, the latter three inequalities can
be recast as

(Ro(B®0))(=D) <
(RoR)o (B®a)(-T) < 0
(ROR)o (B®0))(0) < B.

The minimal values of D, T and B satisfying these three inequalities are given by
(5.12), (5.12) and (5.13). These three inequalities are therefore the necessary and
sufficient conditions ensuring the existence of a solution to the smoothing problem.

U

5.4 Optimal Smoothing Strategies

An optimal smoothing strategy is a solution x(¢) to the lossless smoothing problem
where D, T = D + d and B take their minimal value given by Theorem 5.3.1. The
previous section shows that there exists at least one optimal solution, namely (5.10).
It is however not the only one, as we will seein this section.

54.1 Maximal Solution

The maximal solution (5.10) requires only the evaluation of an infimum at time ¢
over the past values of R and over the future values of R up to time ¢ + dyin, With
dmin = Tmin — Dmin- Of course, we need the knowledge of the traffic trace R(t) to
dimension Dy,;n, dmin and B, However, once we have these values, we do not
need the full stream for the computation of the smoothed input to the network.

5.4.2 Minimal Solution

To compute the minimal solution, we reformulate the lossless smoothing problem
dightly differently. Because of Rule 14 of Theorem 3.1.12, an inequality equivalent
to(5.2)is

z(t) > (x @ 0)(t) = Dy(x)(t). (5.14)

We use this equivalence to replace the set of inequalities (5.6) and (5.7) by the
equivalent set

8
=
S~—"

A

So(t) A R(t +d) A {R(t — D) + B}
(5.15)
(R B)(t — D)V Dy()(t). (5.16)

8
=
v
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One can then apply Theorem 4.3.2 to compute the minimal solution of (5.16), which
iSTmin = Do (b) = b@o whereb(t) = do(t) AR(t+d) AN{R(t— D)+ B}, because
o isa‘good function. Eliminating b from these expressions, we compute that the
minimal solution is

Tmin(t) = (RO (B® 0))(t — D), (5.17)

and compute the constraints on d, D and B ensuring that it verifies (5.15): one
would get the very same values of D, Tinin @nd By, given by (5.11) (5.12) and
(5.13).

It does achieve the values of D,,;, and B, given by (5.11) and (5.13), but
requires nevertheless the evaluation, at time ¢, of a supremum over all values of
R up to the end of the trace, contrary to the maximal solution (5.10). Min-plus
deconvolution can however be represented in the timeinverted domain by amin-plus
convolution, as we have seen in Section 3.1.10. As the duration of the pre-recorded
streamisusually known, the complexity of computing amin-plus deconvolution can
thus be reduced to that of computing a convolution.

54.3 Set of Optimal Solutions
Any function x € F such that
Lmin S X é Tmax

and
r<zr®0

istherefore also a solution to the lossless smoothing problem, for the same minimal
values of the playback delay, look-ahead delay and client buffer size. This gives
the set of al solutions. A particular solution among these can be selected to further
minimize another metric, such as the ones discussed in [27], e.g. number of rate
changes or rate variability.

The top of Figure 5.2 shows, for a synthetic trace R(t), the maximal solution
(5.10) for a CBR smoothing curve o (t) = A,.(t) and a service curve 5(t) = do(t),
whereas the bottom shows the minimal solution (5.17). Figure 5.3 shows the same
solutions on a single plot, for the MPEG trace R(¢) of the top of Figure 1.2.4 rep-
resenting the number of packet arrivals per time slot of 40 ms corresponding to a
MPEG-2 encoded video when the packet sizeis 416 bytes for each packet.

An example of VBR smoothing on the same MPEG traceis shown on Figure 5.4,
with a smoothing curve derived from the T-SPEC field, which is given by o =
vp.m A b, Where M is the maximum packet size (here M = 416 Bytes), P
the peak rate, r the sustainable rate and b the burst tolerance. Here we roughly
have P = 560 kBytes/sec, r = 330 kBytes/sec and b = 140 kBytes The service
curve is a rate-latency curve 5, ¢ with L = 1 second and » = 370 kBytes/sec.
The two traces have the same envel ope, thus the same minimum buffer requirement
(here, 928kBytes). However the second trace has its bursts | ater, thus, has a smaller
minimum playback delay (D5 = 2.05sversus D, = 2.8159).
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o (t)=rt
R() Xpa()
Biin
R(t+d,.)
U R(t-D,,,)
“d, Dy t
RO / 7 X
S A Bun
Rt+d,,) -
R(t-D,,,)
d,. D, t

Figure 5.2: In bold, the maximal solution (top figure) and minimal solution (bottom
figure) to the CBR smoothing problem with a null network.

5.5 Optimal Constant Rate Smoothing

Let us compute the above values in the case of a constant rate (CBR) smoothing
curve o(t) = A.(t) = rt (witht > 0) and a rate-latency service curve of the
network 5(t) = Br.c(t) = C[t — L]*. We assume that r < C, the less interesting
case where r > C' being handled similarly. We will often use the decomposition of
arate-latency function as the min-plus convolution of a pure delay function, with a
constant rate function: 51, ¢ = 61, ® Ac. We will also use the following lemma.
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lem of an MPEG trace with anull network. A frameis generated every 40 msec.

70
60 10000
50
8000 D
40 >
5| 6000
20 4000
10 2000
100 200 300 400 100 200 300 400
70
60 10000 D
50
8000
40
i 6000
20 4000
10 2000
100 200 300 400 100 200 300 400

Figure 5.4: Two MPEG traces with the same arrival curve (left). The corresponding
playback delays D, and D, are the horizontal deviations between the cumulative
flows R(t) and function o ® (3 (right).
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Lemmabb.l. If f € F,

WS, 5.0) = L+ 5 2 A0)0). (518)

Proof: Asf(t)=0fort <0Oandasf.c = dr ® Ac, wecanwriteforanyt > 0

(foBLe)(=t) = sup{f(u—1t)— (0L ®Ac)(u)}

u>0

= igr;{f(u —t)—Aco(u—L)}

= sup{f(v) = Ac(v+t—L)}

v>—t

= iglg{f(v) —Ac(v+t—L)}

= sup{f(v) = Ac(v)} - C(t - L)

v>0
= (foX)(0)-Ct+CL,

from which we deduce the smallest value of ¢ making the left-hand side of this
equation non-positiveis given by (5.18). O

In the particular CBR case, the optimal values (5.11), (5.12) and (5.13) become
the following ones.

Theorem 5.5.1 (Requirements for CBR optimal smoothing). If o = A, and
B8 = Pr,c withr < C, the smallest values of D, of 7" and of B are

1

Tom = L+ %((R & R) @ \)(0) (5.20)

Proof:  To establish (5.19) and (5.20), we note that R and (R @ R) € F. Since
r<C
/B®J:/8L,C®)\r :5L®>\C®>\7’:5L®>\7’:6L7T

so that we can apply Lemma5.5.1 with f = Rand f = (R @ R), respectively.
To establish (5.21), we develop (5.13) asfollows

(RoR)o (B®0))(0) = (RoOR) (L& A))(0)

= ig%{(R © R)(u) = Ar(u— L)}

= (RoR)oA)(L)

igrL){(R @ R)(u) = Ap(u— L)}

= 21>1IL>{(R @ R)(u) = Ar(u)} +rL
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IN

2213{(}?’ @ R)(u) — Ap(u)} + 7L

= ((R2R)oA)0)+7rL=rThi.

O

This theorem provides the minimal values of playback delay D,,;, and buffer

Buin, as well as the minimal look-ahead delay dp,i, = Timin — Dmin fOr agiven

constant smoothing rate r < C' and a given rate-latency service curve 5y, . We can

aso solve the dual problem, namely compute for given values of playback delay

D, of the look-ahead delay d, of the playback buffer B and for a given rate-latency
service curve 3y, ¢, the minimal rate ry,;, which must be reserved on the network.

Theorem 5.5.2 (Optimal CBR smoothing rate). If o = A, and 8 = (1 ¢ with
r < C, thesmallest valueof r,given D > L,dand B > (R ® R)(L), is

s A e
¥R®RXTJJ—B}. 522)

V sup
t>0

Proof:  Let usfirst note that because of (5.19), thereis no solution if D < L. On
the other hand, if D > L, then (5.19) impliesthat the rate  must be such that for all
t>0

D2L+;mw—m

or equivalently r > R(t)/(t + D — L). Thelatter being true for all ¢ > 0, we must
have r > sup,~o{R(t)/(t + D — L)}. Repeating the same argument with (5.20)
and (5.21), we obtain the minimal rate (5.22). O

In the particular case where L = 0 and < C' the network is completely trans-
parent to the flow, and can be considered as a null network: can replace 5(t) by
0o (t). Thevalues (5.19), (5.20) and (5.21) become, respectively,

Dpin = %(R @ Ar)(0) (5.23)
Trin %((R © R) @ Ar)(0) (5.24)
Bmin = ((R %) R) %) )\r))(O) = TTmin- (525)

It is interesting to compute these values on a real video trace, such as the first
trace on top of Figure 1.2.4. Since B,,;, is directly proportional to T,,;, because
of (5.25), we show only the graphs of the values of D, and din = Tin —
Duuin, as afunction of the CBR smoothing rate » on Figure 5.5. We observe three
qualitative ranges of rates: (i) the very low ones where the playback delay is very
large, and where look-ahead does not help in reducing it; (ii) a middle range where
the playback delay can be kept quite small, thanks to the use of look-ahead and (iii)
the high rates above the peak rate of the stream, which do not require any playback
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nor lookahead of the stream. These three regions can be found on every MPEG
trace [75], and depend on the location of the large burst in the trace. If it comes
sufficiently late, then the use of look-ahead can become quite useful in keeping the
playback delay small.
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Figure 5.5: Minimum playback delay D.,;, and corresponding look-ahead delay
dmin for a constant rate smoothing r of the MPEG-2 video trace shown on top of
Figure1.2.4.

5.6 Optimal Smoothing versus Greedy Shaping

An interesting question is to compare the requirements on D and B, due to the
scheduling obtained in Section 5.4, which are minimal, with those that a ssimpler
scheduling, namely the greedy shaper of Section 1.5, would create. As o isa‘good’
function, the solution of a greedy shaper is

Tehaper(t) = (0 @ R)(t). (5.26)

To be a solution for the smoothing problem, it must satisfy all constraints listed
in Section 5.2. It already satisfies (5.1), (5.2) and (5.5). Enforcing (5.3) is equivalent
toimposethat for al t € R

(Rop)(t—D) < (0@ R)(t),

which can be recast as
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(RoR)o (B®o))(—D) <0. (5.27)

Thisimpliesthat the minimal playback delay needed for a smoothing using a greedy
shaping algorithm is equal to the minimal total delay 7., the sum of the playback
and lookahead delays, for the optimal smoothing algorithm. It means that the only
way an optimal smoother alows to decrease the playback delay isits ability to look
ahead and send data in advance. If this look-ahead is not possible (d = 0) as for
example for alive video transmission, the playback delay isthe same for the greedy
shaper and the optimal smoother.

The last constraint that must be verified is (5.4), which is equivalent to impose
that for all t € R

(c® R)(t) < R(t— D) + B,

which can be recast as
(R®o)2 R)(D) < B. (5.28)
Conseguently, the minimal requirements on the playback delay and buffer using
agreedy shaper instead of an optimal smoother are given by the following theorem.

Theorem 5.6.1 (Requirementsfor greedy shaper). If o isa‘good’ function, then
the smallest values of D and B for lossless smoothing of flow R by a greedy shaper
are

Dehaper = Twin = h((ROR), (B ® 0)) (5.29)
Bgaper = ((R® )@ R)(Depaper) € Bunin: *(Deraper))- (5:30)

Proof:  The expressions of Dgngper and Bghaper follow immediately from (5.27)
and (5.28). The only point that remains to be shown isthat Bghaper < o (Dghaper):
which we do by picking s = u in theinf below:

Bghaper = (R© (R ® 0)) (Dghaper)

= sup { inf {R(s) + o (u + Dghaper — s)} - R(u)}

u>0 (05 <uAtDsraper

< swp {R(u) + 0 (u + Depaper — 1) — R(u)}

= U(Dshaper)-

O
Consequently, a greedy shaper does not minimize, in general, the playback
buffer requirements, although it does minimize the playback delay when look-ahead
ispossible. Figure 5.6 shows the maximal solution x,,, Of the optimal shaper (top)
and the solution T shaper of the greedy shaper (bottom) when the shaping curveisa
one lesky bucket affine curve o = +, ;, when the look-ahead delay d = 0 (no look
ahead possible) and for a null network (5 = dy). In this case the playback delays
areidentical, but not the playback buffers.
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Figure 5.6: In bold, the maximal solution (top figure) and minimal solution (bottom
figure) to the smoothing problem with a null network, no look-ahead and an affine
smoothing curve o = v, .

Another example is shown on Figure 5.7 for the MPEG-2 video trace shown
on top of Figure 1.2.4. Here the solution of the optima smoother is the minimal
solution iy, -

There is however one case where a greedy shaper does minimize the playback
buffer: a constant rate smoothing (o = A,.) over anull network (6 = d,). Indeed, in
this case, (5.25) becomes

Bmin = rTrnin = TDdﬁaper = U(Dshaper)7
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Figure 5.7: Example of optimal shaping versus optimal smoothing for the MPEG-2
video trace shown on top of Figure 1.2.4. The example is for a null network and
asmoothing curve ¢ = vypar A vrp With M = 416 bytes, P = 600 kBytes/sec,
r = 300 kBytes/sec and b = 80 kBytes. The figure shows the optimal shaper [resp.
smoother] output and the original signal (video trace), shifted by the required play-
back delay. The playback delay is 2.76 sec for optimal shaping (top) and 1.92 sec
for optimal smoothing (bottom).

and therefore Bshaper = Bpin- Consequently, if no look-ahead is possible and if
the network is transparent to the flow, greedy shaping is an optimal CBR smoothing
strategy.

5.7 Comparison with Delay Equalization

A common method to implement a decoder isto first remove any delay jitter caused
by the network, by delaying the arriving data in a delay equalization buffer, be-
fore using the playback buffer to compensate for fluctuations due to pre-fetching.
Figure 5.8 shows such a system. If the delay equalization buffer is properly config-
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ured, its combination with the guaranteed service network results into a fixed delay
network, which, from the viewpoint we take in this chapter, is equivalent to a null
network. Compared to the original scenarioin Figure 5.1, there are now two separate
buffers for delay equalization and for compensation of prefetching. We would like
to understand the impact of this separation on the minimum playback delay D, .

CGuar ant eed servi ce network \(?I Idggt

di spl a
Net wor k play

| B y . I
R(t+d) () R(-D)
Snoot her Del ay y(ty Cient
equal i zer pl ayback
buf fer

Figure 5.8: Delay equalization at the receiver.

The delay equalization buffer operates by delaying the first bit of data by an
initial delay D.,, equal to the worst case delay through the network. We assume that
the network offers arate-latency service curve 8, . Sincethe flow z is constainted
by the arrival curve o which is assumed to be a ‘good’ function, we know from
Theorem 1.4.4, that the worst-case delay is

Deq = h(o’, ﬂL,C)~

On the other hand, the additional part of the playback delay to compensate for
fluctuations due to pre-fetching, denoted by D, ¢, is given by (5.11) with 3 replaced
by &o:

Dy = h(R,00 ® 0) = h(R,0).

The sum of thesetwo delaysis, in general, larger than the optimal playback de-
lay (without a separation between equalization and compensation for prefetching),
Dy, given by (5.11):

Dmin = h(R, ﬁL,C X (7).

Consider the example of Figure 5.9, where o = ~,.;, with < C. Then one easily
computes the three delays Diyin, Deg and Dy, ¢, knowing that

Brec®o = 0 @A @Yy =01 (Ao Ayrp)
= (0 ®Ac) AL ®@vrp) = Br.c N(OL @ Yrp)-

One clearly has Dy,in < D., + D,: separate delay equalization gives indeed a
larger overall playback delay. In fact, looking carefully at the figure (or working out
the computations), we can observe that the combination of delay equalization and
compensation for prefetching in a single buffer accounts for the busrtiness of the



200 CHAPTER 5. OPTIMAL MULTIMEDIA SMOOTHING

Do (o®B)()

D of
R(t) ’

Figure 5.9: Delays Dy,in, D.q and D, ; for arate-latency service curve 51, ¢ and an
affine smoothing curve o = ;.3 .

(optimally) smoothed flow only once. This is another instance of the “pay bursts
only once” phenomenon, which we have already met in Section 1.4.3.

We must however make — once again — an exception for a constant rate smooth-
ing. Indeed, if ¢ = A, (withr < C), then D, is given by (5.23) and Dy, by
(5.19), so that

Deq = h(ArvﬂL,C) =1L
1
Dy = H(ROAO)
1
Dmin = L+ ;(R @ Ar)(o)

and therefore Dyin = Deg + D,y Inthe CBR case, separate delay equalization is
thus able to attain the optimal playback delay.

5.8 Lossess Smoothing over Two Networks

We now consider the more complex setting where two networks separate the video
server from the client: the first one is a backbone network, offering a service curve
(1 to the flow, and the second one isalocal access network, offering a service curve
(2 to the flow, as shown on Figure 5.10. This scenario models intelligent, dynamic
caching often done at local network head-ends. We will compute the requirements
on D, d, B and on the buffer X of this intermediate node in Subsection 5.8.1.
Moreover, we will see in Subsection 5.8.2 that for constant rate shaping curves
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and rate-latency service curves, the size of the client buffer B can be reduced by
implementing a particular smoothing strategy instead of FIFO scheduling at the
intermediate node.

dient
vi deo
. di spl ay
Backbone I nternediate Access
Net wor k st orage Mot mor k
ol Node o2
R(t+d) Bl -~ X B2
a0 v x2(t) y2() R(t-D)
Snoot her Snoot her dient
pl ayback
buffer

Figure 5.10: Smoothing over two networks with alocal caching node.

Two flows need therefore to be computed: the first one x4 (¢) at the input of the
backbone network, and the second one x4 (¢) at theinput of thelocal access network,
as shown on Figure 5.10.

The constraints on both flows are now as follows:

e Causal flow x;: This constraint is the same as (5.1), but with « replaced by
1.
z1(t) < 5O(t)’ (5.31)

e Smoothness constraint: Both flows z; and x5 are constrained by two arrival
curves oy and 05!

< (21 ®01)(2) (5.32)
2a(t) < (22 @ 09)(t). (5.33)

e No playback and intermediate server buffersunderflow: The datais read
out from the playback buffer after D unit of times at a rate given by R(¢t —
D), which implies that y2(¢) > R(t — D). On the other hand, the data is
retrieved from the intermediate server at arate given by x5 (t), which implies
that y1 (t) > x2(t). Aswe do not know the expressions of the outputs of each
network, but only a service curve 3; and 3 for each of them, we can replace
y1 by 21 ® 81 and o by x5 ® B2, and reformulate these two constraints by

22(t) < (21 ® B1) (1) (5.34)
25(t) = (RO B)(t - D). (5.35)

e No playback and intermediate server buffers overflow: The size of the
playback and cache buffers are limited to B and X, respectively, and to pre-
vent any overflow of the buffer, we must impose that y; () — 22 (¢) < X and
y2(t) — R(t — D) < Bforadl ¢t > 0. Again, we do not know the exact value
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of y; and y-, but we know that they are bounded by z; and x5, respectively,
so that the constraints becomes, for all ¢ > 0,

X1 (t) < x9 (t) + X (536)

x2(t) < R(t— D) + B. (5.37)

e Look-ahead delay constraint: this constraint is the same as in the single

network case:
z1(t) < R(t +d). (5.38)

5.8.1 Minimal Requirementson the Delays and Buffer Sizesfor
Two Networks

Inequalities (5.31) to (5.38) can be recast as three sets of inequalities as follows:

z1(t) < So(t) ARt +d) A (01 @ x1)(t) A (z2(2) + X) (5.39)
z2(t) < {R(t-D)+B}A(B@z)(t)A(02®2)(t)  (5.40)
z2(t) = (RO B)(t— D). (5.42)

We use the same technique for solving this problem sa in Section 5.3, except
that now the dimension of the system J is 2 instead of 1.
With T denoting transposition, let us introduce the following notations:

Z(t) = [wa(t) w200

d(t) = [oo(t) AR(t+d) R(t—D)+ B|T
b(t) [0 (RopB)(t-D)"

Z(t) _ O’l(t) 50(t)+X

Bit)  o2(t)

With these notations, the set of inequalities (5.39), (5.40) and (5.41) can there-
fore be recast as

ANERD) (5.42)
(5.43)

8

a
b.

8]
[AVARRVAN

We will follow the same approach as in Section 5.3: we first compute the maximal
solution of (5.42) and then derive the constraints on D, T' (and hence d), X and B
ensuring the existence of this solution. We apply thus Theorem 4.3.1 again, but this
time in the two-dimensional case, to obtain an explicit formulation of the maximal
solution of (5.42). We get

fmax = 62 (5) = (i ® @’) (544)

where ¥ is the sub-additive closure of ¥, which is, as we know from Section 4.2,
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T = inf (5™
S = inf {5} (5.45)

where (0 = Dy and (™) denotes the nth self-convolution of 3. Application of
(5.45) to matrix ¥ is straightforward, but involves a few manipulations which are
skipped. Denoting

a = 01R®0® ian {ﬂYLH) + nX} (5.46)
ne

01 Q02 ® P @ P+ X,

we find that

5 _ | A (et X) (01®0’2+X)/\(a+2X)]
N (e Ug/\(Ct+X)

and therefore the two coordinates of the maximal solution of (5.42) are

Zimax(t) = o)A {at)+ X} A (1 @R)(t+d)A{(a®@ R)(t+d)+ X}
N(o1 ®02®@R)(t— D)+ B+ X}
AN(a® R)(t — D)+ B +2X} (5.47)
Tomax(t) = at)A(a® R)(t+d) A{(oc2® R)(t — D) + B}
ANM(a® R)(t— D)+ B+ X}. (5.48)

Let us mention that an alternative (and computationally simpler) approach to obtain
(5.47) and (5.48) would have been to first compte the maximal solution of (5.40), as
afunction of x1, and next to replace x5 in (5.39) by this latter value.

We can now express the constraints on X, B, D and d that will ensure that a
solution exists by requiring that (5.48) be larger than (5.41). The result is stated in
the following theorem, whose proof is similar to that of Theorem 5.3.1.

Theorem 5.8.1. The lossless smoothing of a flow to (sub-additive) curves o; and
o9, respectively, over two networks offering service curves 8; and 3, has a solution
if and only if the D, T', X and B verify the following set of inequalities, with «
defined by (5.46):

(RO (a®p2)(=D) < 0 (5.49)
(RoR)©(a® ) (-T) < 0 (5.50)
(ROR)©(02®52))(0) < B (55)
(RoOR)2 (a®fB2))(0) < B+X. (5.52)

5.8.2 Optimal Constant Rate Smoothing over Two Networks

Let us compute the values of Theorem 5.8.1 in the case of two constant rate (CBR)
smoothing curves oy = A, and oo = A,,. We assume that each network offers a
rate-latency service curve 3; = i, c,, @ = 1,2. We assume that r; < C; In this
case the optimal values of D, T' and B become the following ones, depending on
thevalue of X.



204 CHAPTER 5. OPTIMAL MULTIMEDIA SMOOTHING

Theorem 5.8.2. Letr = ry A ry. Then we have the following three cases depending
on X:
() If X > rLq, then D, Timin @and By, are given by

Duin = LitLs+ (ROA)0) (559)
T = Li+Lo+ %((R o R) © A)(0) (554)
Bun = (RO R)M,)(L2) V(RO R) @ \)(Ly + L) — X}

< (RoR) @A) (L2). (5.55)

(i) If 0 < X < Ly then Dy, Tinin @nd By, are bounded by

X Iy
— — < .
T+L2+X(R®>\%)(O)_Dmm

S Lit Lot ZHROAL)0) (5.56)
Lt Bro R 02 0)0) < T

< L1+L2+%((R®R)®)\LL1)(O) (5.57)
(RoR)o )\LLI)(Ll + La) —12L1 < Bin

< ((R@R)@)\%)(Lz) (5.58)

(iii) Let K beduration of the stream. If X = 0 < rL; then D;,, = K.

Proof. One easily verifies that 62”1“) = O(nt1)r, and that )\(C"IH) = A¢,. Since
61 = Bri,ci =01, @ Acy, andsincer = r; Arg < O, (5.46) becomes

(07 = >\7‘ X ll'elf& {5(n+l)L1 X )\c1 + nX}
= 61, ® inf {0z, ® A + X} (5.59)

() If X >rLy, thenfort > nl,
(Onz, @ A\) () +nX = A\p(t —nL1) +nX =rt +n(X —rL1) > rt = A\ (2)
whereasfor 0 < ¢ < nly
(Onr, @A) () +nX = A\ (t = nly) +nX =nX > nrL; > rt = \.(t).

Consequently, for al t > 0, a(t) > (6, ® Ar)(t). On the other hand, taking
n = 0 in the infimum in (5.59) yields that a < d;, ® A,. Combining these two
inequalities, we get that
o = 5[,1 ® AT'

and hence that
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a® 62 = 5L1 ® A ® 5L2 ® )‘T2 = 5L1+L2 ® N\ = ﬂL1+L2,T' (560)

Inserting this last relation in (5.49) to (5.52), and using Lemma 5.5.1 we establish
(5.53), (5.54) and the equality in (5.55). The inequality in (5.55) is obtained by
noticing that v, > r and that

(RoR)o M) L1+ L) —X = sg;g{(R@ R)(u+ Ly + Ly) —ru} — X
- vsilf [(ROR)(v+ Ly) —r(v— L)} - X
< Sl;}g{(R@ R)(v+ L) —rv} + (rLy — X)

< (RO R) 2 Ar)(La).

@i If 0 < X < rLy, the computation of o does not provide a rate-latency curve
anymore, but afunction that can be bounded below and above by the two following
rate-latency curves: 81, x/r, < a < Bx/r x/1,. Therefore, replacing (5.60) by

O0L14Ls ® /\Li1 Sa®Py<0x,p,® ALLI,

and applying Lemma 5.5.1 to both bounding rate-latency curves 3, x,r, and
Bx/r.x/L,» We get respectively the lower and upper bounds (5.56) to (5.58).

(i) If X = 0andrL; > 0 then (5.59) yields that «(t) = 0 for al ¢ > 0. In this
case (5.49) becomes sup,,»o{ R(v — D)} < 0. Thisispossibleonly if D isequal to
the duration of the stream. O

It isinteresting to examine these results for two particular values of X.

The first oneis X = oo. If the intermediate server is a greedy shaper whose
output isz(t) = (o2 @y1)(t), one could have applied Theorem 5.5.1 with oy = A,
and B =01 ®02® B2 =0p,41, ® Ar, = Bry+L,,m t0findout that D and T" are
still given by (5.53) and (5.54) but that B = (R@ R) @ A\,-)(L1 + L) islarger than
(5.55). Using the caching scheduling (5.48) instead of a greedy shaping one allows
therefore to decrease the playback buffer size, but not the delays. The buffer X of
the intermediate node does not need to beinfinite, but can be limitedto rL;.

The second one is X = 0. Then whatever the rate » > 0, if L; > 0, the
playback delay is the length of the stream, which makes streaming impossible in
practice. When L, = Ly = 0 however (in which case we have two null networks)
X = rL; = 0istheoptimal intermediate node buffer allocation. This was shown
in [65](Lemma 5.3) using another approach. We see that when L; > 0, thisis no
longer the case.

5.9 Bibliographic Notes

Thefirst application of network calculus to optimal smoohting isfound in [51], for
an unlimited value of the look-ahead delay. The minimal solution (5.17) is shown
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to be an optimal smoothing scheme. The computation of the minimum look-ahead
delay, and of the maximal solution, is done in [75]. Network calculus alows to re-
trieve some results found using other methods, such as the optimal buffer alocation
of the intermdiate node for two null networks computed in [65].

It also allowsto extend these results, by computing the full set of optimal sched-
ulesand by taking into account non null networks, aswell as by using more complex
shaping curves ¢ than constant rate service curves. For example, with the Resource
Reservation Protocol (RSVP), ¢ is derived from the T-SPEC field in messages used
for setting up the reservation, and isgiven by o = vyp,as A7y b, Where M isthe max-
imum packet size, P the pesk rate, r the sustainable rate and b the burst tolerance,
aswe have seen in Section 1.4.3.

The optimal T-SPEC field is computed in [51]. More precisely, the following
problem is solved. As assumed by the Intserv model, every node offers a service
of the form (1 ¢ for some latency L and rate C, with the latency parameter L
depending on the rate C' according to L = % + Dy. The constants Cy and Dy
depends on the route taken by the flow throughout the network. Destinations choose
atarget admissible network delay D,,.,. The choice of aspecific service curve 3y, ¢
(or equivalently, of arate parameter C) is done during the reservation phase and
cannot be known exactly in advance. The agorithm developed in [51] computes
the admissible choices of ¢ = vp ar A b @nd of D, in order to guarantee that
the reservation that will subsequently be performed ensures a playback delay not
exceeding agiven value D.



Chapter 6

Aggregate Scheduling

6.1 Introduction

Aggregate scheduling arises naturally in many case. L et usjust mention here the dif-
ferentiated services framework (Section 2.4 on Page 105) and high speed switches
with optical switching matrix and FIFO outputs. The state of the art for aggregate
multiplexing is not very rich. In this chapter, we give a panorama of results, a num-
ber of which are new.

In afirst step (Section 6.2), we evaluate how an arrival curve is transformed
through aggregate multiplexing; we give a catal og of results, when the multiplexing
node is either a service curve element with FIFO scheduling, or a Guaranteed Rate
node (Section 2.1.3), or a service curve element with strict service curve property.
This provides many simple, explicit bounds which can be used in practice.

In a second step (Section 6.3), we consider a global network using aggregate
multiplexing (see assumptions bel ow); given constraints at the inputs of the network,
can we obtain some bounds for backlog and delay ? Here, the story is complex. The
question of delay boundsfor anetwork with aggregate scheduling wasfirst raised by
Chang [8]. For a given family of networks, we call critical load factor v.,.; avalue
of utilization factor below which finite bounds exist, and above which there exist
unstable networks, i.e., networks whose backlog grow to infinity. For feed-forward
networks with aggregate multiplexing, an iterative application of Section 6.2 easily
showsthat v..; = 1. However, many networks are not feed-forward, and this result
does not hold in general. Indeed, and maybe contrary to intuition, Andrews[3] gave
some examples of FIFO networks with v,,.; < 1. Still, the iterative application of
Section 6.2, augmented with a time-stopping argument, provides lower bounds of
veri (Which arelessthan 1).

In athird step (Section 6.4), we give anumber of cases where we can say more.
We recall the result in Theorem 2.4.1 on Page 107, which says that, for a gen-
eral network with either FIFO service curve elements, or with GR nodes, we have
Veri > ﬁ where h is abound on the number of hops seen by any flow. Then, in

207
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Section 6.4.1, we show that the unidirectional ring always always has v,,.; = 1;
thus, and this may be considered a surprise, the ring is not representative of non
feed-forward topologies. Thisresult is actually true under the very general assump-
tion that the nodes on the ring are service curve elements, with any values of link
speeds, and with any scheduling policy (even non FIFO) that satisfiesaservice curve
property. Asfar aswe know, we do not really understand why thering is always sta-
ble, and why other topol ogies may not be. Last, and not least surprising, we present
in Section 6.4.2 aparticular case, originally found by Chlamtac, Faragb, Zhang, and
Fumagalli [14], and refined by Zhang [ 79] and L e Boudec and Hébuterne [49] which
shows that, for a homogeneous network of FIFO nodes with constant size packets,
strong rate limitations at all sources have the effect of providing smple, closed form
bounds.
Throughout the chapter, we make the following assumptions.

Assumption and Notation

e Consider a network with a fixed number I of flows, following fixed paths.
The collection of pathsis called the topology of the network. A network node
ismodeled as a collection of output buffers, with no contention other than at
the output buffers. Every buffer is associated with one unidirectional link that
it feeds.

e Flow i is constrained by one leaky bucket of rate p; and burstiness o, at the
input.

¢ Insidethe network, flows are treated as an aggregate by the network; within an
aggregate, packets are served according to some unspecified arbitration pol-
icy. We assume that the node is such that the aggregate of all flows receives
aservice curve at node m equal to the rate-latency function with rate r,,, and
latency ~=. This does not imply that the node is work-conserving. Also note
that we do not require, unless otherwise specified, that the service curve prop-
erty be strict. In some parts of the chapter, we make additional assumptions,
as explained later.

e accounts for the latency on the link that exits node m; it also account for
delays due to the scheduler at node m.

o Wewritei 5 m to express that node m is on the route of flow 4. For any node
m, define p(™ = 3°._ p,. The utilization factor of link m is 2— and the
(m)

load factor of the network isv = max,,, ”TT.
e Thebit rate of the link feeding node m isC,,, < +o0, with C,,, > r,,.

We say that such anetwork is stable if the backlog at any node remains bounded.
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6.2 Transformation of Arrival Curvethrough Aggre-
gate Scheduling

Consider anumber of flows served as an aggregate in acommon node. Without loss
of generality, we consider only the case of two flows. Within an aggregate, packets
are served according to some unspecified arbitration policy. In the following sub-
sections, we consider three additional assumptions.

6.2.1 Aggregate Multiplexingin a Strict Service Curve Element

The strict service curve property is defined in Definition 1.3.2 on Page 27. It applies
to some isolated schedulers, but not to complex nodes with delay elements.

Theorem 6.2.1 (Blind multiplexing). Consider a node serving two flows, 1 and
2, with some unknown arbitration between the two flows. Assume that the node
guarantees a strict service curve [ to the aggregate of the two flows. Assume that
flow 2 is ap-smooth. Define 31 (t) := [B(t) —az(t)] . If 81 iswide-senseincreasing,
thenitisa service curve for flow 1.

Proof:  The proof is a straightforward extension of that of Proposition 1.3.4 on
Page 26. O

We have seen an example in Section 1.3.2: if 3(¢) = C't (constant rate server or
GPSnode) and oy = 7, (constraint by oneleaky bucket) then the service curve for
flow 1 isthe rate-latency service curve with rate C' — r and latency % Note that
the bound in Theorem 6.2.1 is actually for a preemptive priority scheduler where
flow 1 has low priority. It turns out that if we have no other information about the
system, it is the only bound we can find. For completeness, we give the following
case.

Coroallary 6.2.1 (Non preemptive priority node). Consider a node serving two
flows, H and L, with non-preemptive priority given to flow H. Assume that the
node guarantees a strict service curve (5 to the aggregate of the two flows. Then the
high priority flow is guaranteed a service curve 3 (t) = [3(t) — 1L, ]* wherelL,
is the maximum packet size for the low priority flow.

If in addition the high priority flow is «z-smooth, then define 51, by 81.(t) =
[B(t) — ag(®)]T. If 31 iswide-sense increasing, then it is a service curve for the
low priority flow.

Proof: Thefirst part is an immediate consequence of Theorem 6.2.1. The second
part is proven in the same way as Proposition 1.3.4. O

If the arrival curves are affine, then the following corollary of Theorem 6.2.1
expresses the burstiness increase due to multiplexing.

Corollary 6.2.2 (Burstiness Increase due to Blind Multiplexing). Consider a
node serving two flows in an aggregate manner. Assume the aggregate is guaran-
teed a strict service curve g . Assume also that flow ¢ is constrained by one leaky
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bucket with parameters (p;, o;). If p1 + p2 < R the output of the first flow is con-
strained by a leaky bucket with parameters (p;, b7) with

g9 +p2T

by =01 +mT + p1
1 P p R— p

Note that the burstiness increase contains aterm p; 7" that is found even if there
is no multiplexing; the second term p; % comes from multiplexing with flow
2. Note also that if we further assume that the node is FIFO, then we have a better

bound (Section 6.2.2).

Proof: ~ From Theorem 6.2.1, the first flow is guaranteed a service curve g 7/
withR' = R—p,and T’ = %ﬂf"‘. The result follows from a direct application
of Theorem 1.4.3 on Page 29. O

Do we need that the service curve property be strict ?  If we relax the assump-
tion that the service curve property is strict, then the above results do not hold. A
counter-example can be built asfollows. All packets have the same size, 1 data unit,
and input flows have a pesk rate equal to 1. Flow 1 sends one packet at time 0, and
then stops. The node delays this packet forever. With an obvious notation, we have,
fort > 0:
Ri(t) = min(¢,1) and R} (t) =0

Flow 2 sends one packet every time unit, starting at time ¢ = 1. The output is a
continuous stream of packets, one per time unit, starting from time 1. Thus

Ry(t) = (t —1)" and Ry (t) = Ra(t)
The aggregate flows are, for t > 0:
R(t) =tand R'(t) = (t — 1)t

In other words, the node offers to the aggregate flow a service curve §;. Obviously,
Theorem 6.2.1 does not apply to flow 1: if it would, flow 1 would receive a service
curve (6; — A1)t = 4, whichisnot true since it receives 0 service. We can interpret
this example in the light of Section 1.4.4 on Page 36: if the service curve property
would be strict, then we could bound the duration of the busy period, which would
give a minimum service guarantee to low priority traffic. We do not have such a
bound on this example. In Section 6.2.2 we see that if we assume FIFO scheduling,
then we do have a service curve guarantee.

6.2.2 Aggregate Multiplexingin a FIFO Service Curve Element

Now we relax the strict service curve property; we assume that the node guaran-
tees to the aggregate flow a minimum service curve, and in addition assume that it
handles packets in order of arrival at the node. We find some explicit closed forms
bounds for some simple cases.
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Proposition 6.2.1 (FIFO Minimum Service Curves [18]). Consider a lossless
node serving two flows, 1 and 2, in FIFO order. Assume that packet arrivals are
instantaneous. Assume that the node guarantees a minimum service curve S to the
aggregate of the two flows. Assume that flow 2 is a-smooth. Define the family of
functions 3} by

Ba(t) = [B() — az(t — )] 150y

Call R;(t), R} (t) theinput and output for flow 1. Then for any 6 > 0
Ry > Ry ® B (6.1)
If 35 iswide-sense increasing, flow 1 is guaranteed the service curve 34

The assumption that packet arrivals are instantaneous means that we are either
in afluid system (one packet is one bit or one cell), or that the input to the node is
packetized prior to being handled in FIFO order.

Proof:  We give the proof for continuous time and assume that flow functions are
left-continuous. All we need to show is Equation (6.1). Call R; the flow 4 input,
R = R; + Ry, and similarly R}, R’ the output flows.

Fix some arbitrary parameter § and time ¢. Define
u:=sup{v: R(v) < R'(1)}
Note that « < ¢ and that
R(u) < R'(t) and R(ut) > R'(t) (6.2)

where R,.(u) = inf,~,[R(v)] isthelimit to theright of R at .

(Case 1) consider the case where u = t. It follows from the above and from
R < Rthat Ri(t) = Ri(t). Thus for any 0, we have R/ (t) = Ri(t) + B(0)
which showsthat R (t) > (R; ® (34)(t) inthat case.

(Case 2), assume now that u < ¢. We claim that

Ry(u) < R (t) (6.3)

Indeed, if thisis not true, namely, Ry (u) > R/ (¢), it follows from the first part of
Equation (6.2) that R (u) < R5(t). Thussome bits from flow 2 arrived after time u
and departed by time ¢, whereas all bits of flow 1 arrived up to time « have not yet
departed at time ¢. This contradicts our assumption that the node is FIFO and that
packets arrive instantaneously.

Similarly, we claim that

(R2)r(u) = Ry(t) (6.4)

Indeed, otherwise z := R} (t) — (R2),(u) > 0 and thereissome vy € (u, t] such
that for any v € (u, vo] we have Ry(v) < R5(t) — %. From Equation (6.2), we can
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find somev; € (u, vg] suchthat if v € (u,v1] then Ry (v) + Ra(v) > R/(t) — . 1t
follows that

IS

Ry(v) > Ry (t) + %

Thus we can find some v with Ry (v) > Rj(t) whereas Ry(v) < Rj(t), which
contradicts the FIFO assumption.

Cdl s atime such that R'(t) > R(s) + B(t — s). We have R(s) < R/(t) thus
s < u.

(Case 2a) Assumethat u < t — 6 thusasot — s > 6. From Equation (6.4) we
derive

Ry(t) 2 Ra(s)+B(t—s)+ Ra(s) — Ro(t) = Ra(s)+B(t—s) + Ra(s) — (Ra)r(u)

Now there exist some e > 0 such that u + ¢ < ¢t — 0, thus (R2),(u) < Ra(t — 0)
and

Rll(t) > Rl(S) +ﬁ(f — S) — Otg(t -85 — 9)
It follows from Equation (6.3) that

R} (t) > Ri(s)

which shows that
R(t) > Ri(s) + By(t — s)

(Case 2b) Assumethat u > t — 6. By Equation (6.3):
Ry(t) > Ri(u) = Ri(u) + B5(t — )

|
We cannot conclude from Proposition 6.2.1 that infy 55 isaservice curve. How-
ever, we can conclude something for the output.

Proposition 6.2.2 (Bound for Output with FIFO). Consider alossless node serv-
ing two flows, 1 and 2, in FIFO order. Assumethat packet arrivals areinstantaneous.
Assume that the node guarantees to the aggregate of the two flows a minimum ser-
vice curve 8. Assume that flow 2 is as-smooth. Define the family of functions asin
Proposition 6.2.1. Then the output of flow 1 is a}-smooth, with

o (t) = fuf (a1 @ 5}) (1)

Proof: Observefirst that the network calculus output bound holds even if 3 isnot

wide-sense increasing. Thus, from Proposition 6.2.1, we can conclude that o @ 33

isan arrival curve for the output of flow 1. Thisistrue for any 6. O
We can apply the last proposition and obtain the following practical result.
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Theorem 6.2.2 (Burstiness Increase due to FIFO, General Case). Consider a
node serving two flows, 1 and 2, in FIFO order. Assume that flow 1 is constrained
by one leaky bucket with rate p; and burstiness o1, and flow 2 is constrained by
a sub-additive arrival curve a. Assume that the node guarantees to the aggregate
of the two flows a rate latency service curve Sr 7. Call py := inf;sg %O{g (t) the
maxi mum sustainable rate for flow 2.

If p1 + p2 < R, then at the output, flow 1 is constrained by one leaky bucket
with rate p; and burstiness b with

. B
b1 :Ul+p1 (T+E>

and

B = sup [aa(t) + pit — RY]
>0

The bound is a worst case bound.

Proof:  (Step 1) Define 3 asin Proposition 6.2.1. Define By = sup,~ [a2(t) — Rt].
Thus B; is the buffer that would be required if the latency 7" would be 0. We first
show the following

ifﬁz%—l—Tthen fort >6: Bj(t) = Rt — RT — as(t — 0) (6.5)
To prove this, call ¢(t) the right hand-side in Equation (6.5), namely, for ¢t > 6
define ¢(t) = Rt — aa(t — 0) — RT. We have

gg o(t) = 11)r>1% [Rv — ag(v) — RT + R

From the definition of Bs:

inf ¢(t) = —By + RO — RT
t>0

If 0 > Z2 4+ T then ¢(t) > 0 for al t > 6. The rest follows from the definition of
By
(Step 2) We apply the second part of Proposition 6.2.1 with § = % + T. An
arrival curve for the output of flow 1 isgiven by
CVT = )‘P1701 ®ﬂ91

We now compute o. First note that obviously B < B,, and therefore 3} (t) =
Rt — RT — aa(t — 0) for t > 6. o isthus defined for ¢ > 0 by

aj(t) = sup [prt + o1+ p1s — B4(s)] = prt + o1 + sup [p1s — B(s)]
$>0 $>0

Define ¢(s) := p1s — B4 (s). Obviously:



214 CHAPTER 6. AGGREGATE SCHEDULING

sup [¢(s)] = pr¢

s€0,0]
Now from Step 1, we have
sup[th(s)] = sup[p1s — Rs+ RT + aa(s — 0)]
s>0 s>0
= sup[p1v — Rvas(v)] + (p1 — R)0 + RT
v>0

From the definition of B, the former is equal to

sup[t)(s)] = B+ (p1 — R)6 + RT = p,6
s>
which shows the burstiness bound in the theorem.
(Step 3) We show that the bound is attained. Thereisatime af suchthat B =
(), () — (R — p1)0. Define flow 2 to be greedy up to time d and stop from there

on: .
Ro(t) = aa(t) for t < 6
Ry(t) = (Ra),(0) for t > 6

Flow 2 is az-smooth because as is sub-additive. Define flow 1 by

Ri(t) = pit fort < 0
Rl(t) =pit+oq fort >0

Flow 1 is A\,, »,-smooth as required. Assume the server delays all bits by 7" at
time 0, then after time 7" operates with a constant rate R, until time 6 -+ 6, when it
becomesinfinitely fast. Thus the server satisfies the required service curve property.
The backlog just after time @ is precisely B + RT'. Thus all flow-2 bits that arrive
just after time 6 are delayed by % + T = 6. The output for flow 1 during the time
interval (4 6,0+ 6 +t] ismade of the bitsthat have arrived in (6, 6 + t], thus there
are p1t + bi such bits, for any ¢. O
The following corollary is an immediate consequence.

Corollary 6.2.3 (Burstiness Increase dueto FIFO). Consider a node serving two
flows, 1 and 2, in FIFO order. Assume that flow i is constrained by one leaky bucket
with rate p; and burstiness ;. Assume that the node guarantees to the aggregate
of the two flows a rate latency service curve g 1. If p1 + p2 < R, then flow 1
has a service curve equal to the rate latency function with rate R — p» and latency
T + % and at the output, flow 1 is constrained by one leaky bucket with rate p; and
burstiness b7 with

by =01+, (T—F%)

Note that this bound is better than the one we used in Corollary 6.2.2 (but the
assumptions are dlightly different). Indeed, in that case, we would obtain the rate-
latency service curve with the samerate R— p, but with alarger latency: T+ "2+""‘T
instead of 7" + 2. The gain is due to the FIFO assumption.
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6.2.3 Aggregate Multiplexing in a GR Node

We assume now that the node is of the Guaranteed Rate type (Section 2.1.3 on
Page 86). A FIFO service curve element with rate-latency service curve satisfies
this assumption, but the converseis not true (Theorem 2.1.2 on Page 88).

Theorem 6.2.3. Consider a node serving two flows, 1 and 2 in some aggregate
manner. Arbitration between flows is unspecified, but the node serves the aggregrate
as a GR node with rate R and latency T'. Assume that flow 1 is constrained by one
leaky bucket with rate p; and burstiness o1, and flow 2 is constrained by a sub-
additive arrival curve as. Call py := inf;~¢ %ag(t) the maximum sustainable rate
for flow 2.

If p1 + p2 < R, then at the output, flow 1 is constrained by one leaky bucket
with rate p; and burstiness b} with

bT:(Tl—f—pl (T-l—D)

and

« t t
D= sup[—az( )ttt o
>0 R

— t]
Proof:  From Theorem 2.1.3 on Page 88, the delay for any packet is bounded by
D + T. Thusan arrival curve at the output of flow Lisay (t + D). d

Corallary 6.2.4. Consider a node serving two flows, 1 and 2 in some aggregate
manner. Arbitration between flowsis unspecified, but the node serves the aggregrate
as a GR node with rate R and latency T'. Assume that flow 7 is constrained by one
leaky bucket with rate p; and burstiness ;. If p; + p2 < R, then, at the output, flow
1 is constrained by one leaky bucket with rate p; and burstiness b7 with

« o1+ o
b1201+p1<T+ lR 2)
We see that the bound in this section is less good than Corollary 6.2.3 (but the

assumptions are more general).

6.3 Stability and Bounds for a Network with Aggre-
gate Scheduling

6.3.1 Thelssueof Stability

In this section we consider the following global problem: Given a network with
aggregate scheduling and arrival curve constraints at the input (as defined in the
introduction) can we find good bounds for delay and backlog ? Alternatively, when
is anetwork with aggregate scheduling stable (i.e., the backlog remains bounded) ?
Asit turns out today, this problem is open in many cases.
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In the context of the following definition, we call “network” A/ a system satisfy-
ing the assumptions in the introduction, where all parameters except p;, 0, ', €m
are fixed. In some cases (Section 6.3.2), we may add additional constraints on these
parameters.

Definition 6.3.1 (Critical L oad Factor). We say that v....; isthe critical load factor
for a network V' if

o for all valuesof p;, o5, 7n, €y SUCh that v < v,.,.;, N isstable
o thereexistsvaluesof p;, o5, 7, € With v > v,,.; sSuch that A isunstable.

It can easily be checked that v..,.; is unique for a given network N

It isalso easy to see that for all well defined networks, the critical load factor is
< 1. However, Andrews gave in [3] an example of a FIFO network with v..; < 1.
The problem of finding the critical l1oad factor, even for the simple case of a FIFO
network of constant rate servers, seems to remain open. Hajek [34] shows that, in
thislast case, the problem can be reduced to that where every source ¢ sends a burst
o; instantly at time 0, then sends at arate limited by p;.

In the rest of this section and in Section 6.4, we give lower bounds on v.,.; for
some well defined sub-classes.

Feed-Forward Networks A feed-forward network is one in which the graph of
unidirectional links has no cycle. Examples are interconnection networks used in-
side routers or multiprocessor machines. For afeed-forward network made of strict
service curve element or GR nodes, v...; = 1. Thisderives from applying the bursti-
ness increase bounds given in Section 6.2 repeatedly, starting from network access
points. Indeed, since thereis no loop in the topology, the process stops and all input
flows have finite burstiness.

A Lower Bound on the Critical Load Factor It follows immediately from The-
orem 2.4.1 on Page 107 that for a network of GR nodes (or FIFO service curve
elements), we have v,,.; > ﬁ where h is the maximum hop count for any flow.
A dightly better bound can be found if we exploit the values of the peak rates C,,
(Theorem 2.4.2).

6.3.2 TheTime Stopping Method

For a non feed-forward network made of strict service curve element or GR nodes,
we can find alower bound on v..,.; (together with bounds on backlog or delay), using
the time stopping method. It was introduced by Cruz in [20] together with bounds
on backlog or delay. We illustrate the method on a specific example, shown on
Figure 6.1. All nodes are constant rate servers, with unspecified arbitration between
the flows. Thus we are in the case where all nodes are strict service curve elements,
with service curves of theform 3, = ¢, .
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The method has two steps. First, we assume that there is a finite burstiness
bound for al flows; using Section 6.2 we obtain some equations for computing
these bounds. Second, we use the same equations to show that, under some condi-
tions, finite bounds exist.

Node 2

Figure 6.1: A simple example with aggregate scheduling, used to illustrate
the bounding method. There are three nodes numbered 0, 1, 2 and six flows,
numbered 0, ..., 5. For ¢ = 0, 1,2, the path of flow ¢ is i, (i + 1) mod 3, (i +
2) mod 3 and the path of flow i + 3 is ¢, (¢ +2) mod 3, (i + 1) mod 3. The fresh
arrival curve is the same for all flows, and is given by «; = v, ,. All nodes
are constant rate, work conserving servers, with rate C. The utilization factor
at all nodes is 6 5.

First step: inequations for the bounds For any flow ¢ and any node m € 1,
define o] as the maximum backlog that this flow would generate in a constant rate
server with rate p;. By convention, the fresh inputs are considered as the outputs of
avirtual node numbered —1. In thisfirst step, we assume that ¢} is finite for all
andm € 1.

By applying Corollary 6.2.2 wefind that for al : and m € i:

oy <o

pred,<m> '
om = g-predi(m) + Xiomy#i % ! (6 6)
’ ! pi C_Ejam,j#i Pj

where pred, (m) is the predecessor of node m. If m is the first node on the path of
flow 4, we set by convention pred;(m) = —1ando; * = o;.

Now put all the o™, for al (i,m) such that m € ¢, into a vector Z with one
column and n rows, for some appropriate n. We can re-write Equation (6.6) as

T<AZ+ad (6.7)

where A isann x n, non-negative matrix and a is a non-negative vector depending
only on the known quantities o;. The method now consists in assuming that the
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spectral radius of matrix A islessthan 1. Inthat casethe power series I + A+ A% +
A3 + ... convergesand isequal to (I — A)~!, where I isthen x n identity matrix.
Since A is non-negative, (I — A)~! is also non-negative; we can thus multiply
Equation (6.6) to the left by (I — A)~! and obtain:

F<(—A"'a (6.8)

which istherequired result, since & describes the burstiness of all flows at all nodes.
From there we can obtain bounds on delays and backlogs.

Let us apply this step to our network example. By symmetry, we have only two
unknowns x and y, defined as the burstiness after one and two hops:

o=t = b = of =t — b7 — !
y= b= = of = b5 = b} —

Equation (6.6) becomes

v <0+ gl (0 + 22 + 2y)
y<z+ 555,20+ +2y)

Definen = C%p; we assume that the utilization factor islessthan 1, thus0 < 7 <

1. We can now write Equation (6.7) with

. (= _ 2n 27 . [ o(l+n)
x_<y)’A_<1+n 2n>’a_< 201

Some remnant from linear algebra, or a symbolic computation software, tells us that

1—2n 2n
-1 _ 1—6n+2n2 1—6n+2n2
e T il
1—-6n+2n2  1—61+2n2

If n < 1(3—/7) = 0.177 then (I — A)~! ispositive. Thisis the condition for the
spectral radius of A to belessthan 1. The corresponding condition on the utilization
factor v = 2 is
8 — V7
v<2 m

~ 0.564 (6.9)

Thus, for this specific example, if Equation (6.9) holds, and if the burstiness terms
x and y arefinite, then they are bounded as given in Equation (6.8), with (I — A)~!
and @ given above.

Second Step: time stopping We now prove that there is a finite bound if the
spectral radius of A islessthan 1. For any time + > 0, consider the virtual system
made of the original network, where all sources are stopped at time 7. For this
network the total number of bitsin finite, thus we can apply the conclusion of step
1, and the burstiness terms are bounded by Equation (6.8). Since the right-handside
Equation (6.8) isindependent of T, letting = tend to +oo shows the following.



6.3. STABILITY AND BOUNDSFORA NETWORK WITH AGGREGATE SCHEDULING219

Proposition 6.3.1. With the notation in this section, if the spectral radius of A is
less than 1, then the burstiness terms b are bounded by the corresponding terms
in Equation (6.8).

Back to the example of Figure 6.1, we find that if the utilization factor v isless
than 0.564, then the burstiness terms = and  are bounded by

18—33v+16v2
{ T < 20’36796u+5712/2
18—18v+v
Y < 2055 56,5707
The aggregate traffic at any of the three nodesis g, ,-smoothwithb = 2(o+z+y).
Thus abound on delay is (see d'so Figure 6.2):

i b _201087198u+91y2
T C TC 36— 96v + 5712

80

60

40

20

Figure 6.2: The bound d on delay at any node obtained by the method pre-
sented here for the network of Figure 6.1 (thin line). The graph shows d
normalized by Z (namely, %), plotted as a function of the utilization factor.
The thick line is a delay bound obtained if every flow is re-shaped at every
output.

Thecritical load factor for thisexample For the network in this example, where
we impose the constraint that all p; are equal, wefind v.,.; > 1y = 0.564, whichis
much less than 1. Does it mean that no finite bound exists for vy < v < 1 ? The
answer to this question is not clear.

First, the 14 found with the method can be improved if we express more arrival
constraints. Consider our particular example: we have not exploited the fact that the
fraction of input traffic to node 7 that originates from another node has to be A¢-
smooth. If we do so, we will obtain better bounds. Second, if we know that nodes
have additional properties, such as FIFO, then we may be able to find better bounds.
However, even so, the value of v,,; seems to be unknown.
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The price for aggregate scheduling Consider again the example on Figure 6.1,
but assume now that every flow is reshaped at every output. This is not possible
with differentiated services, since there is no per-flow information at nodes other
than access nodes. However, we use this scenario as a benchmark that illustrates the
price we pay for aggregate scheduling.

With this assumption, every flow has the same arrival curve at every node. Thus
we can compute a service curve 3; for flow 1 (and thus for any flow) at every node,
using Theorem 6.2.1; wefind that 3, isthe rate-latency function with rate (C' — 5p)
and latency C"’_"Sp . Thus adelay bound for flow at any node, including the re-shaper,
is (a1, 01 @ B1) = hla, B1) = &%, for p < §. Figure 6.2 shows this delay
bound, compared to the delay bound we found if no reshaper is used. Aswe aready
know, we see that with per-flow information, we are able to guarantee adelay bound
for any utilization factor < 1. However, note also that for relatively small utilization
factors, the bounds are very close.

6.4 Stability Resultsand Explicit Bounds

In this section we give strong results for two specific case. The former is for a
unidirectional ring of aggregate servers (of any type, not necessarily FIFO or strict
service curve). We show that for all rings, v.,; = 1. The latter is for any topology,
but with restrictions on the network type: packets are of fixed size and all links have
the same hit rate.

6.4.1 TheRingisStable

Theresult wasinitially obtained in[73] for the case of aring of constant rate servers,
with all servershaving the samerate. We give here amore general, but simpler form.

Assumption and Notation We take the same assumptions as in Section 6.1 and
assume in addition that the network topology is a unidirectional ring. More pre-
cisdly:

e The network is a unidirectional ring of M nodes, labelled 1, ..., M. We use
thenotationm @k = (m+k—1)mod M +1landmok = (m—k —
1) mod M + 1, so that the successor of hodem on thering isnodem & 1 and
its predecessor isnode m © 1.

e Therouteof flow ¢ is (0, ¢.first, i.first ® 1, ..., i.first ® (h; — 1)) whereO isa
virtual node representing the source of flow ¢, ¢.first isthe first hop of flow i,
and h; isthe number of hops of flow i. Atitslast hop, flow ¢ exitsthe network.
We assume that a flow does not wrap, namely, h; < M. If h, = M, then the
flow goes around the all ring, exiting at the same node it has entered.

e Letb=>" by, reflect thetotal latency of thering.
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e Forany nodem let o™ =Y. o;.

Lét 0ppax = maxM_, o™ and o = >, 0i. Notethat oyax < 0 < Momax.
e Definen = min,, (r, — p(m)).

o Let o™ =3, et pi A 1 = max_ [, — 7y + p™] "y reflects
the sum of the peak rate of transit links and the rates of fresh sources, minus
the rate guaranteed to the aggregate of microflows. We expect high values of
1 to give higher bounds.

Theorem 6.4.1. If n > 0 (i.e if the utilization factor is < 1) the backlog at any
node of the unidirectional ring is bounded by

M%(Momax+b>+o+b

Proof:  The proof relies on the concept of chain of busy periods, combined with
the time stopping method in Section 6.3.2.

For a node m and aflow 4, define RY*(¢) as the cumulative amount of data of
flow ¢ at the output of node m. For m = 0, this defines the input function. Also

define
Tm(t) =Y (RY(t) — R"(t)) (6.10)
i m
thus z,,(t) is the total amount of data that is present in the network at time ¢ and

will go through node m at sometime > ¢.
We also define the backlog at node m by

m®)= > RN+ Y R - R

i2m,i.first#m i.first=m i5m

Now obviously, for all time ¢ and node m:

qm(t) < @ (t) (6.11)
and
M
T (t) <Y gnlt) (6.12)
n=1

(Step 1) Assume that a finite bound X exists. Consider atime ¢ and a node m
that achieves the bound: z,,(t) = X. Wefix m and apply Lemma 6.4.1 to al nodes
n. Cal s, thetime called s in the lemma. Since z,,(s,,) < X, it follows from the
first formulain the lemmathat

(t—sn)n < Momax + b (6.13)

By combining this with the second formulain the lemmawe obtain
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Mopax +0

an(t) <p + by + ol

Now we apply Equation (6.12) and note that Zi”:l a(()") = o, fromwhich we derive
X < M% (MOax +b) + 0 +b (6.14)

(Step 2) By applying the same reasoning as in Section 6.3.2, we find that Equa-
tion (6.14) is aways true. The theorem follows from Equation (6.11). O

Lemma 6.4.1. For any nodesm,n (possibly with m = n), and for any time ¢ there
is some s such that

{ xm(t) S JUn(S) - (t - 5)77 + MUmax + b
Gn(t) < (¢ — $)p1+ by + 03"

with U[()n) = Zi.ﬁrst:n 0i-

Proof: By definition of the service curve property at node m, there is some s;
such that

DRI = Y. BMUsy)+ Y RIs1)+rm(t—s1) —ba

idm idm,i.first#m i.first=m

which we can rewrite as
Z R:n(t) 2 —A + Z R?(Sl) + Tm(t - 51) - b’m
m om

with

A= > (RY(s1) = R (s1))

i9m,i.first#m

Now the condition {i > m,i.first # m} implies that flow 7 passes through node
m — 1, namely, {i > (m — 1)}. Furthermore, each element in the summation that
constitutes A is nonnegative. Thus

A< Z (R?(Sl) - R;n_l(sl)) = Tme1(s1)
i3(m—1)

Thus
S ORM(t) = —wmer(s1) + 3 RY(s1) + 1t — $1) = b (6.15)

>m iOm
Now combining this with the definition of ., (¢) in Equation (6.10) gives:
xm(t) < xmel(Sl) + Z (R?(t) - R?(Sl)) - Tm(t - 31) + b

iom
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From the arrival curve property applied to all micro-flows i in the summation, we
derive:

T (t) < Zimeo1(81) — (ram — p(m))(t —81)+ o™ +b,,

and sincer,, — p(™ > nand o™ < ., by definition of 5 and oy,.x, We have

CL‘m(t) S xm®1(81> - (t - 51)77 + Omax + bm

We apply the same reasoning to node m & 1 and time s;, and So on iteratively
until we reach node n backwards from m. We thus build a sequence of times so =
t,81,52,..., 85, ..., S such that

Tmej(85) < Tme(i+1)(Sj+1) — (= 8j+1)1 + Tmax + bme; (6.16)

until we have m © k = n. If n = m we reach the same node again by a com-
plete backwards rotation and £ = M. In all cases, we have k < M. By summing
Equation (6.16) for j = 0 to k — 1 wefind thefirst part of the lemma.

Now we prove the second part. s = s, isobtained by applying the service curve
property to node n and time s;_;. Apply the service curve property to node » and
timet. Sincet > si_1, we know from Proposition 1.3.2 on Page 24 that we can find
some s’ > s such that

SRz Y RN+ Y RS +ralt—s) — b

ion i9n,i.first#n i.first=n

Thus

wt) < Y (BFUE) - RYOUS)) +

i3n,i.first#n

Y (R = R)(S)) = ralt = ') + bn
i.first=n

< (Cn =1l = 8) +bu+ 0 < (E =8+ by + 0"

the second part of the formulafollows from s < s’. O

Remark: A simpler, but weaker bound, is
M%(Ma+b)+a+b

or
M % (Momax +b) + Momax + b (6.17)
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The special casein [73]:  Under the assumption that al nodes are constant rate
servers of rate equal to 1 (thus C,,, = r,,, = 1 and b,,, isthe latency of the link m),
the following bound is found in [73]:

 Mb 4 M20
1

B +b (6.18)

In that case, we have n < 1 — n. By applying Equation (6.17), we obtain the bound

. Mub+ [MQM"'M?ﬁ Omax
n

By +b

since
p<1l-n (6.19)

and0 < n <1, M < M?, wehave By < By, namely, our bound is better than
that in [73]. If there is equality in Equation (6.19) (namely, if there is a node that
receives no transit traffic), then both bounds are equivalent when  — 0.

6.4.2 Explicit Bounds for a Homogeneous ATM Network with
Strong Sour ce Rate Conditions

When analyzing aglobal network, we can use the boundsin Section 6.2.2, using the
same method as in Section 2.4. However, as illustrated in [38], the bounds so ob-
tained are not optimal : indeed, even for aFIFO ring, the method does not find afinite
bound for all utilization factors less than (although we know from Section 6.4.1 that
such finite bounds exist).

In this section we show in Theorem 6.4.2 some partial result that goes beyond
the per-node boundsin Section 6.2.2. The result was originally found in[14, 49, 79].

Consider an ATM network with the assumptions as in Section 6.1, with the
following differences

e Every link has one origin node and one end node. We say that a link f is
incident to link e if the origin node of link e is the destination node of link f.
In general, alink has several incident links.

e All packets have the same size (called cell). All arrivals and departures oc-
cur at integer times (synchronized model). All links have the same hit rate,
equal to 1 cell per time unit. The service time for one cell is 1 time unit. The
propagation times are constant per link and integer.

e All links are FIFO.

Proposition 6.4.1. For a network with the above assumption, the delay for a cell ¢
arriving at node e over incident link ¢ is bounded by the number of cellsarriving on
incident links 5 # 4 during the busy period, and that will depart before c.
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Proof:  Cal R/(t) (resp. R;(t), R(t))the output flow (resp. input arriving on link
7, total input flow). Call d the delay for a tagged cell arriving at time ¢ on link 4.
Call A; the number of cellsarriving on link j up to time ¢ that will depart before the
tagged cell, and let A =}, A;. We have

d=A—R(t)<A—R(s) - (t—s)

where s is the last time instant before the busy period at ¢. We can rewrite the
previous equation as

d< Z[Aj — R;(s)] + [Ai(t) — Ri(s)] — (t — 5)
i

Now thelink rates are al equal to 1, thus A; — R;(s) <t — s and

d <) [Aj — Ry(s)]

J#i

U

An “Interference Unit” isdefined asaset (e, {4, k}) wheree isalink, {j, k} isa

set of two distinct flows that each have e on their paths, and that arrive at e over two

different incident links (Figure 6.3). The Route Interference Number (RIN) of flow

4 isthe number of interference units that contain j. It is thus the number of other

flows that share a common sub-path, counted with multiplicity if some flows share

severa distinct sub-paths along the same path. The RIN is used to define a sufficient
condition, under which we prove a strong bound.

flow j flow i,
nodel  nodeh node g ; node f
— T —
node
flow iy

Figure 6.3: The network model and definition of an interference unit. Flows j
and i, have an interference unit at node f. Flows j and ¢; have an interfer-
ence unit at node [ and one at node g.

Definition 6.4.1 (Source Rate Condition). The fresh arrival curve constraint (at
network boundary) for flow j isthe stair function vg41 r+1, Where R isthe RIN of
flow j.
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The source rate condition is equivalent to saying that a flow generates at most
onecell in any timeinterval of duration RIN + 1.

Theorem 6.4.2. |If the source rate condition holds at all sources, then

1. Thebacklog at any nodeisbounded by N —max; N;, where N; isthe number
of flows entering the node via input link ¢, and N = . ;.

2. The end-to-end queuing delay for a given flow is bounded by its RIN.
3. Thereisat most one cell per flow present during any busy period.

The proof of item 3 involves a complex analysis of chained busy periods, as
does the proof of Theorem 6.4.1. It is given in a separate section. Item 3 gives
an intuitive explanation of what happens: the source rate condition forces sources
to leave enough spacing between cells, so that two cells of the same flow do not
interfere, in some sense. The precise meaning of thisis given in the proof. Items 1
and 2 derive from item 3 by a classical network calculus method (Figure 6.6).

Proof of Theorem 6.4.2 Asasimplification, we call “path of a cell“ the path of
the flow of the cell. Similarly, we use the phrase “interference unit of ¢” with the
meaning of interference unit of the flow of c.

We define abusy period as atime interval during which the backlog for the flow
at the node is always positive. We now introduce a definition (super-chain) that will
be central in the proof. First we use the following relation:

Definition 6.4.2 (“Delay Chain” [14]). For two cells c and d, and for somelink e,
we say that ¢ <. d if c and d are in the same busy period at e and ¢ leaves e before
d.

Figure 6.4 illustrates the definition.

Definition 6.4.3 (Super-Chain [14]). Consider a sequence of cells ¢ = (co, ...,
¢, .-, ) and a sequence of nodes f = (fi, ..., fr). We say that (c, f) is a super-
chain if

e f1,..., fr areall onthe path P of cell ¢ (but not necessarily consecutive)

® Ci1 =y G fori=1tok.

o thepath of cell ¢; from f; to f;.1 isa sub-path of P

We say that the sub-path of ¢, that spans from node f; to node f;, isthe path of
the super-chain.

Definition 6.4.4 (Segment Interfering with a Super-Chain). For a given super-
chain, we call “segment” a couple (d, P) where P is a sub-path of the path of the
super-chain, d is a cell whose path also has P as a sub-path, and P is maximal
(namely, we cannot extend P to be a common sub-path of both d and the super-
chain). e say that the segment (d, P) isinterfering with super-chain (¢, f) if there
issomei on P suchthat d <, c;. B
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cell d

i3 cell ¢

cell c,

\
Ce“ d m m m { )] { )] { ]

Figure 6.4: A time-space diagram illustrating the definitions of d <, ¢; and
c1 < c2. Time flows downwards. Rectangles illustrate busy periods.

Lemma 6.4.2. Let (¢, f) be a super-chain. Let s, be the arrival time of cell ¢, at
link f; and s/, the departuretime of cell ¢, fromlink fi. Then s, —so < Ry x+Th 1,
where R, ;, is the total number of segments interfering with (¢, f) and T 4 is the
total transmission and propagation time on the path of the super-chain.

Proof:  Consider first some node f; on the super-chain. Let s;_; (resp. t;) be the
arrival time of cell ¢;_; (resp. ¢;) at the node. Let ¢, (resp. s) be the departure
time of cell ¢;_; (resp. ¢;) (Figure 6.5). Let v; be the last time slot before the busy
period that ¢; isin. By hypothesis, v; + 1 < s;_;. Also define B; (resp. B?) asthe
set of segments (d, P) where d isacell arriving at the node after time v; on alink
incident to the path of the super-chain (resp. on the path of the super-chain) and that
will depart no later than cell ¢;, and where P is the maximal common sub-path for
d and the super-chain that f; isin. Also define A(} as the subset of those segments
in B for which the cell departs after ¢; 1. Let B; (resp. BY, A) be the number of
elementsin B; (resp. Y, AY), see Figure 6.5.
Sincethe rate of al incident linksis 1, we have

B]O — A? S Sj—1 — Uy
Also, since the rate of the nodeis 1, we have:
S;— — ’Uj = Bj + BJO

Combining the two, we derive
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v time

Figure 6.5: The notation used in the proof of Lemma 6.4.2.

S;— — Sj,1 = Bj -+ B? — (Sj,1 — ’Uj) S Bj + A? (620)

By iterative application of Equation (6.20) from j = 1 to k, we obtain
k
sh—s0< > (Bj+AY) + Ti
j=1

Now we show that &l sets in the collection {B;, A}, j = 1tok} are two-by-two
disoint. Firstly, if (d, P) € B; then f; isthefirst node of P thus (d, P) cannot bein
some other B;» with j # j'. Thus the B; are two-by-two digjoint. Second, assume
(d,P) € B;and (d, P) € A?,. It is obvious from their definitions that, for a fixed
j,Bj and A? aredigoint; thus j # j'. Since f; isthefirst node of P and ;' ison P,
it followsthat j < j'. Now d leaves f; before c; and leaves f;/ after ¢;,_1, which
contradicts the FIFO assumption. Thus the B; and A?, are two-by-two digoint. The
same reasoning shows that it is not possible that (d, P) € A; () A; withj < j'.

Now, by definition, every segment in either B; or Ag is an interfering segment.
Thus

(Bj + AY) < Ry

k
=1

J

O

Proposition 6.4.2. Assume the source rate condition holds. Let (c, f) be a super-
chain.

1. For every interference unit of ¢y there is at most one cell interfering with the
super-chain.

2. ¢, does not belong to the same flow as ¢g.
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Proof: Define the time of a super-chain as the exit time for the last cell ¢, onthe
last node f;.. We use arecursion on the time ¢ of the super-chain.

If t = 1, the proposition is true because any flow has at most one cell on alink
in one time slot. Assume now that the proposition holds for any super-chain with
time < ¢t — 1 and consider a super-chain with time¢.

First, we associate an interference unit to any segment (d, P) interfering with
the sub-chain, as follows. The paths of d and ¢y may share several non contiguous
sub-paths, and P is one of them. Call f the first node of P. To d we associate the
interference unit (f, {Jjo, j}), where jo (resp. j) isthe flow of ¢y (resp. d).

We now show that this mapping is injective. Assume that another segment
(d', P") # (d, P) isassociated with the same interference unit (f, {jo,7}). Without
loss of generality, we can assume that d was emitted before d’. d and d’ belong to
the same flow 7, thus, since P and P’ are maximal, we must have P = P’. By hy-
pothesis, have an interference with the super-chain at anode on P. Let f; be anode
on the super-chain and on P such that d <, ¢;. If d’ leaves node f; before ¢;, then
d <y, d',andthus((d,d’), (f;)) isasuper-chain. Since d’ isan interfering cell, nec-
essarily, it must leave node f; before ¢, thus the proposition is true for super-chain
((d,d"), (f1)), which contradictsitem 2. Thus d’ must leave node f; after cell ¢;. But
there is some other index m < k such that d <y, ¢, thuscell d’ leaves node f,,,
before cell ¢,,,. Define I’ as the smallest index with ! < I’ < m such that d’ leaves
node f; after cell ¢;;_; and before ¢;. Then ((d, ¢, ..., cr—1,d"), (fi, .., frr)) isa
super-chain with time < ¢ — 1 which would again contradict item 2 in the proposi-
tion. Thus, in al cases we have a contradiction, the mapping isinjective, and item 1
is shown for the super-chain.

Second, let us count a bound on the maximum queuing delay of cell ¢q. Call
ug its emission time, P, the sub-path of ¢y from its source up to, but excluding,
node f,, and T the total transmission and propagation time for the flow of ¢y. The
transmission and propagation time along Py isthus 7" — T ;.. By Proposition 6.4.1,
the queuing delay of ¢, at anode f on F isbounded by the number of cellsd < ¢y
that arrive on alink not on P,. By the same reasoning as in the previous paragraph,
there is a most one such cell d per interference unit of ¢y a f. Define R as the
number of interference units of the flow of ¢y on P;. We have thus

S0 < ug —‘rR-i—T—TLk (621)
Similarly, from Lemma 6.4.2, we have
$e < S0+ Rik + T

Call R’ the number of interference units of the flow of ¢, on the path of the super-
chain. It follows from the first part of the proof that R, ; < R’, thus

s <so+ R +Ti
Combining with Equation (6.21) gives
s <up+R+R +T (6.22)
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Now by the source condition, if ¢, belongs to the flow of ¢, its emission time v’
must satisfy
W >uy+R+R +1

and thus
sp>u+R+R +1+T

which contradicts Equation (6.22). This shows that the second item of the proposi-
tion must hold for the super-chain. O

Proof of Theorem 6.4.2: Item 3 follows from Proposition 6.4.2, since if there
would betwo cells d, d’ of the same flow in the same busy period, then ((d, d'), (e))
would be a super-chain.

Now we show how items 1 and 2 derive from item 3. Call o (¢) the maximum
number of cells that may ever arrive on incident link 4 during ¢ time units inside
a busy period. Since \; is a service curve for node e, the backlog B at node e is
bounded by

I
B < sup lz af (t) — t]

20 |im1
Now by item 3, o} (¢) < N; and thus

af(t) < @;(t) := min[N, t]

?

Thus
1
B < sup [Zai(t) —t

t20 ;5

Now define a renumbering of the V;’s such that Ny < N(g) < ... < N(p). The
function . «;(t) — t is continuous and has a derivative at al points except the
N;)’s (Figure 6.6). The derivative changesits sign at N(;) (=max; <;<s(N;)) thus
the maximumisat Ny anditsvalueis N — N(;), which showsitem 1.

From Item 1, the delay at a node is bounded by the number of interference units
of the flow at this node. This shows item 2. |

6.5 Bibliographic Notes

In [49], a stronger property is shown than Theorem 6.4.2: Consider a given link
e and a subset A of m connections that use that link. Let n be a lower bound on
the number of route interferences that any connection in the subset will encounter
after this link. Then over any time interval of duration m + n, the number of cells
belonging to A that leave link e is bounded by m.

It follows from item 1 in Theorem 6.4.2 that a better queuing delay bound for
flow j is:
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o(t)

i

v

Noy N N
Figure 6.6: Derivation of a backlog bound.

6(j) = Z _ {z such th?tl?gigl(e)(N(e) a Nj’(e))}
e such that ecj
where I(e) isthe number of incident links at node e, N;(e) is the number of flows
entering node e on link i, and N = Y i = 1/(9) N;(e). In other words, the end-
to-end queuing delay is bounded by the sum of the minimum numbers of route
interference units for al flows at all nodes along the path of a flow. For asymmetric
cases, thisis less than the RIN of the flow.

6.6 Exercises

Exercise 6.1. Consider the same assumptions as in Section 6.4.1 but with a linear
network instead of aring. Thusnode m feedsnodem+1form = 1, ..., M —1; node
1 receives only fresh traffic, whereas all traffic exiting node M leaves the network.
Assume that all service curves are strict. Find a bound which is finite for v < 1.
Compareto Theorem 6.4.1.

Exercise 6.2. Consider the same assumptions as in Theorem 6.4.2. Show that the
busy period duration is bounded by N.

Exercise6.3. Consider the example of Figure 6.1. Apply the method of Section 6.3.2
but express now that the fraction of input traffic to node 7 that originates from an-
other node must have A\ asanarrival curve. What isthe upper-bound on utilization
factors for which a bound is obtained ?

Exercise6.4. Canyou conclude anything on v,.,.; fromProposition 2.4.1 on Page 110 ?
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Chapter 7

Adaptive and Packet Scale
Rate Guar antees

7.1 Introduction

In Chapter 1 we defined a number of service curve concepts: minimum service
curve, maximum service curve and strict service curves. In this chapter we go be-
yond and define some concepts that more closely capture the properties of general-
ized processor sharing (GPS).

We start by a motivating section, in which we analyze some features of ser-
vice curves that do not match GPS. Then we provide the theoretical framework of
adaptive guarantees, which wasfirst proposed in Okino’s dissertation in [59] and by
Agrawal, Cruz, Okino and Rajan in [1]. This framework is underlying the concept
of packet scale rate guarantees, which is used in the definition of the Internet Ex-
pedited Forwarding service. We explain the relationship between the two and give
practical applications.

In al of this chapter, we assume that flow functions are |eft-continuous, unless
stated otherwise.

7.2 Adaptive Guarantee

7.2.1 Limitationsof the Service Curve Abstraction

The definition of service curve introduced in Section 1.3 is an abstraction of nodes
such as GPS and its practical implementations, as well as guaranteed delay nodes.
This abstraction is used in many situations, described all along this book. However,
it is not always sufficient.

Firstly, it does not provide a guarantee over any interval. Consider for example
anode offering to aflow R(t) the service curve A¢. Assume R(t) = B fort¢ > 0,
so the flow has a very large burst at time 0 and then stops. A possible output is

233
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illustrated on Figure 7.1. It is perfectly possible that there is no output during the
time interval (0, BC‘ <], even though there is a large backlog. This is because the
server gave a higher service than the minimum required during some interval of

time, and the service property allowsit to be lazy after that.

i
B R(1)
B-¢ /

R*(f)

ct

Figure 7.1: The service curve property is not sufficient.

Secondly, there are case where we would like to deduce a bound on the delay
that a packet will suffer given the backlog that we can measure in the node. Thisis
used for obtaining bounds in FIFO systems with aggregate scheduling. In Chapter 6
we use such aproperty for aconstant delay server with rate C': given that the backlog
atimetis @, thelast bit present at time ¢ will depart before within a time of %. If
we assume instead that the server has a service curve \¢, then we cannot draw such
aconclusion. Consider for example Figure 7.1: at timet > 0, the backlog, ¢, can be
made arbitrily small, whereas the delay BCTE — t can be made arbitrarily large.

A possible fix is the use of strict service curve, as defined in Definition 1.3.2
on Page 27. Indeed, it follows from the next section (and can easily be shown in-
dependently) that if a FIFO node offers a strict service curve 3, then the delay at
timet isbounded by 3-1(Q(t)), where Q(t) isthe backlog at timet, and 3~ ! isthe
pseudo-inverse (Definition 3.1.7 on Page 129).

We know that the GPS node offers to a flow a strict service curve equa of the
form Ag. However, we cannot model delay nodes with a strict service curve. Con-
sider for example a node with input R(t) = et, which delays all bits by a constant
time d. Any interval [s, t] with s > d iswithin abusy period, thus if the node offers
a strict service curve 3 to the flow, we should have 5(t — s)e(t — s), and € can
be arbitrarily small. Thus, the strict service curve does not make much sense for a
constant delay node.

7.2.2 Definition of Adaptive Guarantee

We know introduce a stronger concept, called adaptive guarantee, that better cap-
tures the properties of GPS [59, 1]. Before giving the formula, we motivate it on
three examples.
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Consider first a node offering a strict service curve 3. Consider some fixed, but
arbitrary times s < t. Assume that /3 is continuous. If [s, ¢] is within a busy period,
we must have

R*(t) = R*(s) + B(t — s)
Else, call u the beginning of the busy period at ¢. We have

R*(t) = R(u) 4 (t — )
thusin all cases

R*(t) > (R*(s) + B(t — 8)) A inf (R(u)+ Bt — u)) (7.1)

u€ls,t]

Second, consider a node that guarantees a virtual delay < d. If t — s < d then
trivially
R*(t) > R*(s) + 0q4(t — 9)

and if t — s > d then the virtual delay property means that

R*(t) > R(t —d) = inf (R(u)+ d4(t —u))

uE[s,t]

thus we have the same relation asin Equation (7.1) with 8 = d4.
Thirdly, consider agreedy shaper with shaping function o (assumed to be agood

function). Then
R*(t) = inf[R(u) + o(t — u)]

u<t

Breaking theinf into u < s and u > s gives

R*(t) = inf [R(u) + o(t —u)] A inf [R(u)+ o(t — u)] (7.2)

u<s u€(s,t]
Define 6 := o@o, namely,
o(u) = irtlf[a(t +u) —o(u)] (7.3)
For example, for a piecewise linear concave arrival curve (conjunction of leaky
buckets), o (t) = min;(r;u+b;), we have 5(u) = min; r;u. Back to Equation (7.2),

we have
o(t—u)>o(s—u)+a(t—s)

and finally

R*(t) > (R*(s)+a(t—s))A inf (R(u)+o(t—u)) (7.4)

u€E[s,t]

We see that these three cases fall under a common model:
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Definition 7.2.1 (Adaptive Service Curve). Let 3,3 bein F. Consider a system
§ and a flow through S with input and output functions R and R*. We say that S
offers the adaptive guarantee (3, 3) if for any s < t it holds:

R*(t) > (R*(s) + Bt — s)) A inf [R(u) + B(t — u)]

wE([s,t]

If 3 = 3 we say that the node offers the adaptive guarantee 3.
The following proposition summarizes the examples discussed above:

Proposition 7.2.1. o |f S offersto a flow a strict service curve 5, then it also
offers the adaptive guarantee .

e If S guarantees a virtual delay bounded by d, then it also offers the adaptive
guarantee o4

e A greedy shaper with shaping curve o, where o is a good function, offers the
adaptive guarantee (&, o), with & defined in Equation (7.3).

Similar to [59], we use the notation R — (43, 3) — R* to express that Defini-
tion 7.2.1 holds. If 3 = 3 wewrite R — (3) — R*.

Assume that R is left-continuous and 3 is continuous. It follows from Theo-
rem 3.1.8 on Page 139 that the adaptive guarantee is equivalent to saying that for all
s < t, we have either

R*(t) — R*(s) > B(t — 5)

or
R¥(t) = R(u) + B(t — u)

for someu € [s, t].

7.2.3 Propertiesof Adaptive Guarantees

Theorem 7.2.1. Let R — (3,8) — R*.1f § < (3 then 3 is a minimum service
curve for the flow.

Proof:  Apply Definition 7.2.1 with s = 0 and use the fact that 3 < 3. O

Theorem 7.2.2 (Concatenation). If R — (51,51) — Ry and Ry — (Ba, f2) —
R*then R — (8, 8) — R* with

B = (51 ®/32) A Be

and

B =013 B
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Proof:  Consider some fixed but arbitrary times s < ¢ and let u € [s, t]. We have

Ri(u) > [Rl(s) + Blu— s)] A inf [R(v) + Bi(u — v)]

vE[s,u]
thus
Ru(w)+ falt —u) = [Ris) + Blu—s) + falt — )] A
inf e, [R(v) + B1(u —v) + Ba(t — u)]
and

inf [Ri(u)+ Ba(t —u)] >
u€(s,t]

inf [Rl(s) ¥ Bu— s) + Balt — u)}
uE[s,t]
A inf [R@) 4 Bu(u—v) + Gt — u)]
w€l[s,t],vE[s,u]
After re-arranging the infima, we find

inf [Ry(u)+ B2(t —w)] >
u€E([s,t]

<R1(s) it [ﬁ(u — 5) + Bolt — u)D A

u€[s,t

inf (R(v) + inf [Bi(u —v)+ B2t — U)])

vE|s,t] u€[v,t]
which can be rewritten as

inf [Ry(u) + Balt —u)] >

u€E[s,t]
(Rats) + (B ® Ba)(t = 9)) A
inf [R(v) + B(t — v)]

vE[s,t]

Now by hypothesis we have

R*(t) > (R*(s) + Balt — s)) A inf [R(u) + Bt — u)]

u€E[s,t]
Combining the two gives
R*(t) >
(B*(5) + Balt = 9)) A (Ba(s) + (1 Ba)(t = 9))

A inf [R(v) + B(t — )]
vE[s,t]

Now R;(s) > R*(s) thus
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R (t) >
(R*(s)+ Balt = ) A (B () + (B @ Ba) (¢ = 5)
A inf [R(v) + B(t — v)]

ve[s.1]
|
Corollary 7.2.1. If R,y — (3, 3;) — R; fori = 1tonthen Ry — (3,3) — R,
with
f=(Aemke.c8)A(fese.©0)A.A(Bi188) AL

and

B=0®..00

Proof:  Apply Theorem 7.2.2 iteratively and use Rule 6 in Theorem 3.1.5 on
Page 135. O

Theorem 7.2.3 (Delay from Backlog). If R — (B, B) — R*,thenthevirtual delay
attime ¢ is bounded by 3~ (Q(t)), where Q(t) isthe backlog at time ¢, and 5~ is
the pseudo-inverse of 5 (see Definition 3.1.7 on Page 129).

Note that if the nodeis FIFO, then the virtual delay at timet isthereal delay for
abit arriving at time ¢.

Proof: If thevirtua delay at timet islarger than ¢ + 7 for some = > 0, then we
must have

R(t+7) < R(t) (75)
By hypothesis
R (t+7) = (R'() + 5(r) A Lnf R+ 5T —w)] (79

now for u € [¢,t 4 7]
R(u)+B(t+7—u) > R(t)+6(0) > R*(t+71)
thus Equation (7.6) implies that

R*(t+7) = R*(t) + B(7)

combining with Equation (7.5) gives
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thus the virtual delay is bounded by sup{~ : B(t) > Q(t)} which is equal to
A7HQ(E)): O

Consider a system (bit-by-bit system) with L-packetized input R and bit-by-bit
output R*, which is then L-packetized to produce afinal packetized output R’. We
cal combined system the system that maps R into R’. Assume both systems are
first-in-first-out and lossless. Remember from Theorem 1.7.1 that the per-packet
delay for the combined system is equal the maximum virtual delay for the bit-by-bit
system.

Theorem 7.2.4 (Packetizer and Adaptive Guarantee). If the bit-by-bit system
offers to the flow the adaptive guarantee (3, 3), then the combined system offers to
the flow the adaptive guarantee (3, 5’) with

Bl(t) = [B(t) - lmaxr’_

and
ﬁl(t) = [ﬂ(t) - lmaX]+

where [, iSthe maximum packet size for the flow.

Proof: Lets < t. By hypothesiswe have

R (t) > (R*(s) + At - s)) A inf [R(u) + B(t — u)]

u€(s,t]

We do the proof when the inf in the above formulaisaminimum, and leaveit to the
alert reader to extend it to the general case. Thus assume that for some ug € [s, ¢]:

inf [R(u) + B(t - u)] = R(up) + B(t - uo)

u€|s,t]

it follows that either R
R*(t) — R*(s) > B(t — s)

or
R*(t) > R(uo) + B(t — uo)

Consider the former case. We have R/ (t) > R*(t) — lmax @nd R'(s) < R*(s) thus
R'(t) > R*(t) — lax = R'(8) + B(t — 8) — lmax
Now also obviously R'(t) > R/(s), thusfinaly
R'(t) > R'(s) + max[0, 3(t — 5) — lmax] = R'(s) + 3'(t — s)
Consider now the latter case. A similar reasoning shows that
R'(t) > R(uo) + B(t — o) — Imax

but also
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R*(t) = R(uo)
now theinput is L-packetized. Thus

R'(t) = PE(R*(t)) = P*(R(uo)) = R(uo)

from which we conclude that R’ (t) > R(ug) + 8'(t — uo).
Combining the two cases provides the required adaptive guarantee. O

7.3 Application to the Internet: Packet Scale Rate
Guarantee

In this section we apply the concept of adaptive guarantee to practical schedulers
used in the Internet.

7.3.1 Definition of Packet Scale Rate Guarantee

In Section 2.1.3 on Page 86 we have introduced the definition of guaranteed rate
scheduler, which isthe practical application of rate latency service curves. Consider
anode where packets arrive at times A; > 0, Ao, ... and leave at times Dy, Do, ....
A guaranteed rate scheduler, with rate » and latency v requiresthat D; < T + v,
where T? is defined iteratively by T{) = 0 and

T/ = max{A;, Ty} +
where [; isthe length of the ith packet.

A packet scalerate guarantee is similar, but, much in the spirit of adaptive guar-
antees, avoidsthe limitations of the service curve concept discussed in Section 7.2.1.
To that end, we would like that the deadline 77/ is reduced whenever a packet hap-
pensto be served early. Thisis done by replacing 7;_, in the previous equation by
min{T7, D;}. This gives the following definition.

Definition 7.3.1 (Packet Scale Rate Guarantee). Consider a node that serves a
flow of packets numbered i = 1,2,.... Call A;, D;,l; the arrival time, departure
time, and length in bits for the ith packet, in order of arrival. Assume A; > 0.\e
say that the node offers to the flow a packet scale rate guarantee with rate » and
latency v if the departure times satisfy

where F; is defined by:
Fo=Dyg=0 7.7)
F; =max {A;,min (D;_1,F;_1)} + l; foralli>1 ’
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We now relate packet scale rate guarantee to an adaptive guarantee. We cannot
expect an exact eguivalence, since a packet scale rate guarantee does not specify
what happens to bits at atime other than a packet departure or arrival. However, the
concept of packetizer allows usto establish an equivalence.

Theorem 7.3.1 (Equivalence with adaptive guarantee). Consider a node S with
L-packetized input R and with output R*.

1L If R — (8) — R*, where § = (,, isthe rate-latency function with rate »
and latency v, and if S isFIFO, then S offersto the flow the packet scale rate
guarantee with rate » and latency v.

2. Conversdly, if S offers to the flow the packet scale rate guarantee with rate
r and latency v and if R* is L-packetized, then S is the concatenation of a
node S’ offering the adaptive guarantee 5, , and the L-packetizer. If S is
FIFO, thensoisS'.

The proof islong and is given in a separate section (Section 7.3.3). Note that the
packet scale rate guarantee does not mandate that the node be FIFO; it is possible
that D; < D;_y in some cases. However, part 1 of the theorem requires the FIFO
assumption in order for a condition on R, R* to be translated into a condition on
delays.

A specia case of interestiswhen v = 0.

Corollary 7.3.1. Consider a node with L-packetized input. Call A;, D; the arrival
and departure times for packet 7, with7 = 1,2,... and A; > 0. Let I; be the size of
packet i.

1. If the node guarantees a strict service curve A, and is FIFO then

Dy=0
{ D; <max{A;,D;—1} + % foralli >1 (7:8)

2. Conversdly if Equation (7.8) holds for all 4, and if the output is L-packetized,
then the node is the concatenation of a node guaranteeing a strict service
curve )\, and an L-packetizer.

Proof:  Apply Theorem 7.3.1 with v = 0 and note that D, _; < F;_; in Equa-
tion (7.7). O

Definition 7.3.2. We call minimum rate server, with rate , a node for which Equa-
tion (7.8) holds for all

Thus, roughly speaking, a minimum rate server guarantees that during any busy
period, the instantaneous output rate is at least . A GPS node with total rate C' and

weight w; for flow i isaminimum rate server for flow i, with rate r; = f’i
i Pi

Since a packetizer does not add to the per-packet delay, we can immediately
derive the following property from Theorem 7.2.3 and Theorem 7.3.1:
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Proposition 7.3.1 (Backlog from Delay). For a FIFO node offering the packet
scale rate guarantee with rate » and latency v, the delay for a packet present in the
system at time ¢ is bounded by @ + v, where Q(t) isthe backlog at time ¢.

Lastly, we have a concatenation result for FIFO systems:

Proposition 7.3.2. Consider a concatenation of FIFO systems numbered 1 to n.
The output of system i — 1 isthe input of systemi, for ¢ > 1. Assume system offers
the packet scale rate guarantee with rate R; and latency E;. The global system
offers the packet scale rate guarantee with rate R = min;—; ., R; and latency

Lmax
E=3 i nBitXi a1 7B

Proof: By Theorem 7.3.1-2), we can decompose system : into a concatenation
S, P, where S; offers the adaptive guarantee Gr, g, and P; is a packetizer.
Call S the concatenation

817P17827P27 ---7Sn—177)n—178n

By Theorem 7.3.12), S isFIFO. By Theorem 7.2.4, it provides the adaptive guar-
antee Sr, . By Theorem 7.3.1+1), it also provides the packet scale rate guarantee
with rate R and latency E. Now P,, does not affect the finish time of the last bit of
every packet.

O

7.3.2 Practical Realization of Packet Scale Rate Guar antee

We show in this section that a wide variety of schedulers provide the packet scale
rate guarantee. More schedulers can be obtained by using the concatenation theorem
in the previous section.

A simple but important realization is the priority scheduler.

Proposition 7.3.3. Consider a hon-preemptive priority scheduler in which all pack-
ets share a single FIFO queue with total output rate C. The high priority flow re-
ceives a packet scale rate guarantee with rate C' and latency v = l*ﬂﬁ ,wherel,,qz
is the maximum packet size of all low priority packets.

Proof: By Proposition 1.3.7, the high priority traffic receives astrict service curve
Bric O

We have already introduced in Section 2.1.3 a large number of schedulers that
can be thought of as derived from GPS and we have modeled their behaviour with
arate-latency service curve. In order to give an adaptive guarantee for such sched-
ulers, we need to define more.

Definition 7.3.3 (Accuracy of a scheduler with respect to rate r). Consider a
scheduler S and call D; the time of the i-th departure. We say that the accuracy of
S with respect to rate r is (v, vo) if thereisa minimum rate server with rate r and
departure times G; such that for all 4
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Gi — U1 S 1)Z S Gl —+ vg (79)

We interpret this definition as a comparison to a hypothetical GPS reference
scheduler that would serve the same flows. The term v, determines the maximum
per-hop delay bound, whereas v, has an effect on the jitter at the output of the
scheduler. For example, it is shownin [6] that WF*Q satisfies v, (WF?Q) = lynaz /7,
v2(WF?Q) = lpnaz/C, Where I, is maximum packet size and C' is the total
output rate. In contrast, for PGPS [61] vo (PGPS) = v, (WF?Q), while v, (PGPS) is
linear in the number of queues in the scheduler. This illustrates that, while WF*Q
and PGPS have the same delay bounds, PGPS may result in substantially burstier
departure patterns.

Theorem 7.3.2. If ascheduler satisfies Equation (7.9), thenit offersthe packet scale
rate guarantee with rate r and latency v = vy + vs.

Proof: Wefirst provethat for al i > 0
Fl‘ Z Gz — U1 (710)

where F; is defined by Equation (7.7). Indeed, if Equation (7.10) holds, then by
Equation (7.9)):
D; <Gi+va < Fy+v1 4+ v

which meansthat the schedul er offersthe packet scal e rate guarantee with rate » and
latency v = vy + vs.

Now we prove Equation (7.10) by induction. Equation (7.10) trivialy holds for
1=0.

Suppose now that it holdsfor ¢ — 1, namely,

Fi1>Gi-1—n
By hypothesis, Equation (7.9) holds:
D1 >2Gic1—n

thus
min[Fi,l, Difl] Z Gi,1 — U1 (711)
Combining this with Equation (7.7), we obtain

F,>Gi—1—v1 + % (712)

Again from Equation (7.7) we have

F,> A+4

: 7.13
> Az'*vlﬂL% (13)

Now by Equation (7.8)
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L

G; < max[4;,G;_1] + = (7.14)
Combining Equation (7.12)), Equation (7.13)) and (7.14) gives
F,>G; —v
g

7.3.3 Proof of Theorem 7.3.1

Thefirst part of Theorem 7.3.1 is based on a max-plus representation of the packet
scale rate guarantee, which maps the (min-plus) definition of an adaptive guarantee.
The second part relies on the reduction to the minimum rate server.

We use the same notation as in Definition 7.3.1. L(i) = 23:1 l; isthe cumula
tive packet length.

Part 1.  Define the sequence of times F}, by Equation (7.7). Consider now some
fixed but arbitrary packet index ¢ > 1. By the FIFO assumption, it is sufficient to
show that

R*(t) > L(7) (7.15)

witht = F; + v. Define
j=max{k e {l,..,i}: Ay > Dy or Ay < D1 < Fr_1}
Note that the set above isnon-empty and 1 < j < 4. The definition of j implies
A;j>Dj qorAj <Dj_1 <F;_4 (7.16)

and
Ap <Dj_iand Fj_y < Dj_y for j+1<k<i (7.17)

Note that the set of indices k to which the previous equation applies may be empty
(inthat case, j = i).
By Equation (7.16) and the definition of F;, we have

L
Fj=s+-2 (7.18)
r

with
s = Aj \ Dj—l
Similarly, we derive from Equation (7.17) that for j + 1 < k < i:

Iy
Fp = (A V Fip—1) +?k

which can be re-written as
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I !
Fy = (A,c + 7’“) v (Fk1 + 7‘“) (7.19)

Now we obtain a max-plus expansion of F; asfollows. We substitute £;_1 from
Equation (7.19) at k£ = ¢ — 1 into Equation (7.19) at k£ = 7 and obtain

F = <Ai - l—"> v (Ai_l fltha lH) Vv (Fi_Q plitlio li—l)
r r r

We apply this iteratively until £ = j at which step we use Equation (7.18) instead
of Equation (7.19). We obtain finally:

F= <s LLO-LG-1 1)> mhx (Ak LLO Lk 1)> (7.20)
r k=j+1 r
Let us apply the definition of an adaptive guarantee to the time interva [s, t]:

R*(t)> ANB

with
A:=R*(s)+r(t—s—v)" and B:= inf B(u)

wE([s,t]
where
B(u) == (R(u) +r(t —u—v)")
Firstly, since s > D;_,, we have R*(s) > L(j — 1). By Equation (7.20), F; >
s 4 HOZLGD thyst > 5 HOZLGZD 4y it follows that

L(i) - L(j - 1)

t—s—v>

and thus A > L(i).

Secondly, we show that B > L(i) aswell. Consider somew € [s,t]. If u > A,
then R(u) > L(i) thus B(u) > L(7). Otherwise, u < A;; sinces > A, it follows
that Ap_1 < u < Ag forsomek € {j +1,...,i} and R(u) = L(k — 1). By
Equation (7.20),

L(i) — L(k — 1)

r

F, > A+

thus
L(i)—L(k-1)

t—u—v>

It followsthat B(u) > L(i) asoin that case. Thus we have shownthat B > L(i).
Combining the two showsthat R*(t) > L(z) asrequired.



246 CHAPTER 7. ADAPTIVE AND PACKET SCALE RATE GUARANTEES

Part 22 We use a reduction to a minimum rate server as follows. Let D} :=
min(D;, F;) for i > 0. By Equation (7.7) we have

A; < D; <max(A;,D;_;) + i (7.22)
r

and
D, < D;<D,+wv (7.22)

The idea of the proof is now to interpret D/ as the output time for packet 7 out of a
virtual minimum rate server. Of course, we cannot use Corollary 7.3.1.

Construct avirtual node R asfollows. The input is the original input R(t). The
output is defined as follows. The number of bits of packet i that are output up to
timetis;(t), defined by

if ¢ > d'(i) then ¢;(t) = L(4)
{ else if a(i) <t < d'(i) then o;(t) = [L(i) — r(d'(i) — t)]*
else ;(t) =0

so that the total output of R is R (t) = >, ¥i(t).

The start time for packet 7 is thus max[A;, D} — %] and the finish time is D..
Thus R is causal (but not necessarily FIFO, even if the original system would be
FIFO). We now show that during any busy period, R has an output rate at least equal
tor.

Let ¢ be during abusy period. Consider now some time ¢ during a busy period.
Theremust exist somei suchthat A; < ¢ < Dj. Let i bethe smallest index such that
thisistrue. If A; > D)_, then by Equation (7.21) D — ¢ < Y and thus+..(t) = r
where v/, isthe derivative of ), to theright. Thusthe servicerate at timet isat least
T.

Otherwise, A; < D’i — 1. Necessarily (because we number packets in order of
increasing A;’s—thisis not a FIFO assumption) A, < A;; since ¢ isthe smallest
index such that A; < t < D}, wemust havet > D/_,. Butthen D} — ¢ <  and
the servicerate at timet isat least . Thus, node R offers the strict service curve A,
and

R—(\)— Ry (7.23)

Now define node D. Let 6(¢) := D; — D}, sothat 0 < §(i) < E. The input of
D isthe output of R. The output is as follows; let a bit of packet ¢ arrive at time ¢;
wehavet < D; < D,. The bitisoutput a time ¢’ = max[min[D;_1, D;],t + &;].
Thus al bits of packet i are delayed in D by at most 6(¢), and if D;_; < D; they
depart after D;. It follows that the last bit of packet i leaves D at time D,. Also,
sincet’ > t, D iscausal. Lastly, if the original systemis FIFO, then D;_; < D;, dll
bits of packet ¢ depart after D;_; and thus the concatenation of R and D is FIFO.
Notethat R is not necessarily FIFO, even if the original system is FIFO.

The aggregate output of D is

Ro(t) = ) it = 6(i) = Ra(t —v)

i>1
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thus the virtual delay for D is bounded by v and
R1 — (511) — RQ (724)

Now we plug the output of D into an L-packetizer. Since the last bit of packet
leaves D at time D;, the final output is R*. Now it follows from Equation (7.23),
Equation (7.24) and Theorem 7.2.2 that

R— (A ®6,) — Ry

7.4 Bibliographic Notes

The concept of adaptive service curve was introduced in Okino’s dissertation in [59]
and was published by Agrawal, Cruz, Okino and Rajan in [1], which contains most
resultsin Section 7.2.3, aswell as an application to awindow flow control problem
that extends Section 4.3.2 on Page 178. They call 3 an “adaptive service curve’ and
(£ a“partial service curve’.

The packet scale rate guarantee was first defined in a framework dependent of
adaptive service guaranteesin [4]. It serves as a basis for the definition of the Expe-
dited Forwarding capability defined for the Internet.

75 Exercises

Exercise 7.1. Assumethat R — (03, 3) — R*.

1. Show that the node offers to the flow a strict service curve equal to BB,
where [ is the sub-additive closure of j.

2. If 3 = 8 is arate-latency function, what is the value obtained for the strict
service curve ?

Exercise 7.2. Consider a system with input R and output R*. We call “ input flow
restarted at time¢” the flow R, defined for « > 0 by

Ri(u) = R(t +u) — R*(t) = R(t,u] + Q(t)

where Q(t) := R(t) — R*(¢) isthe backlog at time t. Smilarly, let the" output flow
restarted at time¢” be the flow R} defined for « > 0 by

Ri(u) = R*(t +u) — R*(t)

Assume that the node guarantees a service curve 5 to all couples of input, output
flows (R, Ry). Showthat R — (8) — R*.
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Chapter 8

Time Varying Shapers

8.1 Introduction

Throughout the book we usually assume that systemsareidle at time 0. Thisisnot a
limitation for systemsthat have arenewal property, namely, which visit theidle state
infinitely often — for such systems we choose the time origin as one such instant.

There are cases however where we are interested in the effect at time ¢ of non
zeroinitia conditions. This occursfor example for re-negotiable services, where the
traffic contract is changed at periodic renegotiation moments. An example for this
serviceisthe Integrated Service of the IETF with the Resource reSerVation Protocol
(RSVP), where the negotiated contract may be modified periodically [30]. A similar
serviceisthe ATM Available Bit Rate service (ABR). With arenegotiable service,
the shaper employed by the source is time-varying. With ATM, this corresponds
to the concept of Dynamic Generic Cell Rate Algorithm (DGCRA).. At renegoti-
ation moments, the system cannot generally be assumed to be idle. This motivates
the need for explicit formulae that describe the transient effect of non-zero initial
condition.

In Section 8.2 we define time varying shapers. In general, there is not much we
can say apart from a direct application of the fundamental min-plus theorems in
Section 4.3. In contrast, for shapers made of a conjunction of leaky buckets, we can
find some explicit formulas. In Section 8.3.1 we derive the eguations describing a
shaper with non-zero initial buffer. In Section 8.3.2 we add the constraint that the
shaper has some history. Lastly, in Section 8.4, we apply this to analyze the case
where the parameters of a shaper are periodically modified.

This chapter also provides an example of the use of time shifting.

8.2 Time Varying Shapers

We define atime varying shaper asfollows.

249



250 CHAPTER 8. TIME VARYING SHAPERS

Definition 8.2.1. Consider a flow R(t). Given a function of two time variables
H(t, s), atime varying shaper forces the output R*(¢) to satisfy the condition

R*(t) < H(t,s) + R*(s)

for all s < t, possibly at the expense of buffering some data. An optimal time varying
shaper, or greedy time varying shaper, is one that maximizes its output among all
possible shapers.

The existence of agreedy time varying shaper followsfrom the foll owing propo-
sition.
Proposition 8.2.1. For an input flow R(¢) and a function of two time variables
H{(t,s), among all flows R* < R satisfying
R*(t) < H(t,s) + R*(s)
there is one flow that upper bounds all. It is given by

R*(t) = ;Izlfo [H(t,s)+ R(s)] (8.1)
where H isthe min-plus closure of H, defined in Equation (4.10) on Page 172.

Proof:  The condition defining a shaper can be expressed as

R* < Ly (R*)
R*<R

where Ly is the min-plus linear operator whose impulse response is H (Theo-
rem 4.1.1). The existence of a maximum solution follows from Theorem 4.3.1 and
from the fact that, being min-plus linear, £y is upper-semi-continuous. The rest of
the proposition follows from Theorem 4.2.1 and Theorem 4.3.1. |

The output of the greedy shaper is given by Equation (8.1). A time invariant
shaper isaspecial case; it correspondsto H (s, t) = o(t—s), where o isthe shaping
curve. In that case we find the well-known result in Theorem 1.5.1.

In general, Proposition 8.2.1 does not help much. In the rest of this chapter, we
specialize to the class of concave piecewise linear time varying shapers.

Proposition 8.2.2. Consider a set of J leaky buckets with time varying rates r;(t)
and bucket sizes b;(t). At time 0, all buckets are empty. A flow R(t) satisfies the
conjunction of the J leaky bucket constraintsif and only if for all 0 < s < ¢:

R(t) < H(t,s) + R(s)
with .
H(t,s) = 1§Inji£]{bj(t) —i—/ rj(u)du} (8.2
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Proof:  Consider the level of the jth bucket. It is the backlog of the variable ca-
pacity node (Section 1.3.2) with cumulative function

t
M;(t) = / rj(u)du
0
We know from Chapter 4 that the output of the variable capacity node is given by

Ri(t) = inf {M;(t) - M;(s) + R(s)}

0<s<t
The jth leaky bucket constraint is
R(t) = Rj(t) < b;(t)
Combining the two expresses the jth constraint as
R(t) — R(s) < Mj(t) — M;(s) + b;(t)

forall 0 < s < t. The conjunction of all these constraints gives Equation (8.2).

In the rest of this chapter, we give a practical and explicit computation of H
for H given in Equation (8.2), when the functions r;(¢) and b;(t) are piecewise
constant.

8.3 Timelnvariant Shaper with Non-zero I nitial Con-
ditions

We consider in this section some time invariant shapers. We start with a general
shaper with shaping curve o, whose buffer is not assumed to beinitially empty. Then
we will apply thisto analyze leaky bucket shapers with non-empty initial buckets.

8.3.1 Shaper with Non-empty Initial Buffer

Proposition 8.3.1 (Shaper with non-zero initial buffer). Consider a shaper sys-
temwith shaping curve . Assume that o is a good function. Assume that the initial
buffer content is wq. Then the output R* for agiveninput R is

R*(t) = a(t) A oiggfgt{R(s) +wo+o(t—s)} forallt>0 (8.3)
Proof:  First we derive the constraints on the output of the shaper. ¢ isthe shaping
function thus, forall ¢ > s > 0
R*(t) < R*(s)+o(t—s)
and given that the bucket at time zero is not empty, for any ¢ > 0, we have that
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Attime s = 0, no data has | ft the system; thisis expressed with
R*(t) < 8o(1)
The output is thus constrained by
R* < (0 ®@R") A (R+wo) A do

where ® isthe min-plus convol ution operation, defined by (f ® ¢)(t) = infs f(s) +
g(t — s). Since the shaper is an optimal shaper, the output is the maximum function
satisfying this inequality. We know from Lemma 1.5.1 that

R* =0 ®[(R+ wy) A do]
= [0 ® (R + wo)] A [0 ® 6o
=lc®(R+wy)| Ao

which after some expansion gives the formulain the proposition. .
Another way to look at the proposition consists in saying that the initial buffer
content is represented by an instantaneous burst at time 0.
The following is an immediate consequence.

Corollary 8.3.1 (Backlog for a shaper with non-zeroinitial buffer). The backiog
of the shaper buffer with theinitial buffer content wy is given by

w(t) = (R(t) —o(t) + wo) V sup {R(t) — R(s) —o(t — )} (8.9)

0<s<t

8.3.2 Leaky Bucket Shaperswith Non-zero Initial Bucket Level

Now we characterize aleaky-bucket shaper system with non-zero initial bucket lev-
els.

Proposition 8.3.2 (Compliancewith .J leaky bucketswith non-zeroinitial bucket
levels). A flow S(t) is compliant with J leaky buckets with leaky bucket specifica-
tions (r;,b;), j =1,2...J andinitial bucket level q? if and only if

S(t) —S(s) < 1r§11j1£1‘][rj “(t—s)+b;] forall0<s<t

< mi . . >
S(t)_lgng[rj t+b; —qj] forallt >0

Proof: Apply Section 8.3.1 to each of the buckets. |

Proposition 8.3.3 (Leaky-Bucket Shaper with non-zero initial bucket levels).
Consider a greedy shaper system defined by the conjunction of J leaky buckets
(rj,b;), withj =1,2...J. Assume that theinitial bucket level of the j-th bucket is
q;-). Theinitial level of the shaping buffer is zero. The output R* for a given input R
is

R*(t) = min[o%(t), (c ® R)(t)] forallt >0 (8.5)
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where o is the shaping function

o(u) = 121].131{%@)} = 121].131{7‘]' “u+bs}

and ¢° is defined as

0() = mi . g0
o°(u) = 1§mj1£J{rJ u+b; qj}

Proof: By Corollary 8.3.2 applied to S = R*, the condition that the output is
compliant with the J leaky bucketsis

R*(t) —R*(s) <o(t—s) forall0<s<t
R*(t) < o°(t) forallt >0

Since 0¥ (u) < o(u) we can extend the validity of the first equation to s = 0. Thus
we have the following constraint:

R*(t) < [(0 @ R") A (R A 0)](2)

Given that the system is a greedy shaper, R*(+) is the maximal solution satisfying
those constraints. Using the same min-plus result asin Proposition 8.3.1, we obtain:

R*=0®(RA")=(c®@R)A(0c® )

Asc® < o, weobtain
R*:(U®R)/\U()
O

We can now obtain the characterization of aleaky-bucket shaper with non-zero
initial conditions.

Theorem 8.3.1 (Leaky-Bucket Shaper with non-zero initial conditions). Con-
sider a shaper defined by J leaky buckets (r;, b;), with j = 1,2... J (leaky-bucket
shaper). Assume that the initial buffer level of is wg and the initial level of the jth
bucket is qg?. The output R* for agiveninput R is

R*(t) = min{o(t),wo + ir;%{R(u) +o(t—u)}} forallt>0 (8.6)

with
0 _ : . _ 0
o) = 121£J(Tj utbi—q;)

Proof:  Apply Proposition 8.3.3totheinput R’ = (R + wy) A do and observe that
0% < o. O

An interpretation of Equation (8.6) isthat the output of the shaper with non-zero
initial conditionsis either the output of the ordinary leaky-bucket shaper, taking into
account the initial level of the buffer, or, if smaller, the output imposed by the initial
conditions, independent of the input.
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8.4 Time Varying L eaky-Bucket Shaper

We consider now time varying leaky-bucket shapersthat are piecewise constant. The
shaper is defined by a fixed number J of leaky buckets, whose parameters change
attimest;. Fort € [t;,t;41) := I;, we have thus
ri(t) =7} and b;(t) = b}

At times t;, where the leaky bucket parameters are changed, we keep the leaky
bucket level g (t;) unchanged.

We say that o;(u) := minj<;{riu + b%} is the value of the time varying
shaping curve during interval I;. With the notation in Section 8.2, we have

H(t7t1) = O'i(t — tz) iftel;
We can now use the results in the previous section.

Proposition 8.4.1 (Bucket Level). Consider a piecewise constant time varying
leaky-bucket shaper with output R*. The bucket level ¢;(t) of the j-th bucket is,
fort e I;:

ai(t) = [R'() = B (t:) =i - (t =) + q;(t:)] V @7
SUPti<s§t{R* (t) = R*(s) — r; (t—s)}
Proof: We use atime shift, defined as follows. Consider a fixed interval I; and
define
x*(r) == R*(t; + 7) — R*(t;)

Observe that g;(t; + 7) is the backlog at time 7 (call it w(7) at the shaper with
shaping curve o (1) = r’ - t, fed with flow z*, and with an initial buffer level g;(t;).
By Chapter 8.3.1 we have

w(T) = [ac*(T) — rj ST+ qj(ti)] vV OgggT{x*(T) —x*(s') — rj (r =8N}

which after re-introducing R* gives Equation (8.7) O

Theorem 8.4.1 (Time Varying Leaky-Bucket Shapers). Consider a piecewise
constant time varying leaky-bucket shaper with time varying shaping curve o; in
theinterval I;. The output R* for a given input R is

R (6) = min [o2(t 1) + ()., inf (ot =)+ RO @)
with ¢! is defined by

ag(u) = 12?2] 7";- -u 4 bg — qj(ti)}
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and g, (t;) is defined recursively by Equation (8.7). The backlog at time ¢ is defined
recursively by

w(t) = max | ti<s<t tel; (8.9

Proof:  Use the same notation as in the proof of Proposition 8.4.1 and define in
addition
(1) := R(t; + 1) — R(t;)

We can now apply Theorem 8.3.1, with initial bucket levels equal to ¢;(¢;) as
given in Equation (8.7) and with an initial buffer level equa to w(t;). The input-
output characterization of this system is given by Equation (8.6), thus

a*(r) = 07 (1) Ao ® 2'](7)

where ") (t) 0
’ x(7) + wl(t; T >
‘”(T):{x(T) 7<0

Hence, re-introducing the original notation, we obtain

R*(t) — R*(t;) = {a?(t — ;) A tvi<nf<t{0i(t —s)+ R(s) — R(t;) + w(t;)}
which gives Equation (8.8).
The backlog at time ¢ follows immediately. O
Note that Theorem 8.4.1 provides arepresentation of H. However, the represen-
tation is recursive: in order to compute R*(t), we need to compute R*(¢;) for all
t; <t.

8.5 Bibliographic Notes

[67] illustrates how the formulas in Section 8.4 form the basis for defining a rene-
gotiable VBR service. It aso illustrates that, if some inconsistency exists between
network and user sides whether leaky buckets should be reset or not at every rene-
gotiation step, then this may result in inacceptable losses (or service degradation)
due to policing.

[12] analyzes the general concept of time varying shapers.
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Chapter 9

Systems with L osses

All chapters have dealt up to now with lossless systems. This chapter shows that
network cal culus can also be applied to lossy systems, if we model them asalossless
system preceded by a ‘clipper’ [16, 17], which is a controller dropping some data
when a buffer is full, or when a delay constraint would otherwise be violated. By
applying once again Theorem 4.3.1, we obtain a representation formula for losses.
We use this formulato compute various bounds. Thefirst oneisabound on the loss
rate in an element when both an arrival curve of theincoming traffic and aminimum
service curve of the element are known. We use it next to bound losses in a complex
with a complex service curve (e.g., VBR shapers) by means of losses with ssimpler
service curves (e.g., CBR shapers). Finally, we extend the clipper, which models
data drops due to buffer overflow, to a ‘compensator’, which models data accrual
to prevent buffer underflow, and use it to compute explicit solutions to Skorokhod
reflection mapping problem with two boundaries.

9.1 A Representation Formula for L osses

9.1.1 Lossesin aFinite Storage Element

We consider a network element offering a service curve 3, and having afinite stor-
age capacity (buffer) X. We denote by a the incoming traffic.

We suppose that the buffer is not large enough to avoid losses for al possible
input traffic patterns, and we would like to compute the amount of data lost at time
t, with the convention that the system is empty at time ¢ = 0. We model l0sses as
shown in Figure 9.1, where z(t) is the data that has actually entered the system in
the time interval [0, ¢]. The amount of data lost during the same period is therefore
L(t) = a(t) — x(¢).

The model of Figure 9.1 replaces the original lossy element, by an equivalent
concatenation a controller or regulator that separates the incoming flow a in two
separate flows, x and L, and that we call clipper, following the denomination in-

257
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troduced in [17], together with the original system, which is now lossless for flow
x.

Cipper

x(t)
a(t) —>D—> X y(t)

L(t)
Figure 9.1: System with losses

The amount of data (z(t) — x(s)) that actually entered the system in any time
interval (s,t] is aways bounded above by the total amount of data (a(t) — a(s))
that has arrived in the system during the same period. Therefore, for any 0 < s < ¢,
z(t) < z(s) + a(t) — a(s) or equivaently, using the linear idempotent operator
introduced by Definition 4.1.5,

2(t) < inf {a(t) — a(s) +2(s)} = ha(2)(0). @1

On the other hand, x is the part of a that does actually enter the system. If y
denotes its output, there is no loss for « if x(¢) — y(t) < X for any t. We do not
know the exact mapping y = I1(x) realized by the system, but we assumethat IT is
isotone. So at any time ¢

x(t) <y(t)+ X =(z)(t) + X 9.2

The data x that actually enters the system is therefore the maximum solution to
(9.1) and (9.2), which we can recast as

z <aA{II(z)+ X} Ahq(x), (9.3)

and which is precisely the same equation as (4.33) with W = X and M = a. Its
maximal solution is given by

v =({I+ X} Ahg)(a),
or equivaently, after applying Corollary 4.2.1, by
2= ((hao M+ X))o hy) (@) = ((hao M+ X)) (@) (94)

where the last equality follows from h,(a) = a.
We do not know the exact mapping 11, but we know that IT > Cg. We have thus
that
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x> (hg 0 Cstx)(a). (9.5
The amount of lost datain theinterval [0, ¢] is therefore given by

L(t) = alt) — z(t)
= a(t) = ha o {Crx (@)(8) = a(t) — inf {(ha 0 o)™ | (@)(2)

= sup {a(t) = (ha 0 C1.x)™ (a)(1)}

neN
= ig%{a(t) - ogs%g.i.pgf@gslgt{a(t) —a(s1)+6(s1 —s2)+ X
+a(s2) — ...+ a(s2,)}}
= sup{ sup {a(s1) = B(s1 — s2) — a(s2)

neEN 0<s2,<...<s2<51<¢

+...—a(s2,) —nX}}
Consequently, the loss process can be represented by the following formula:

L(t) <

sup { sup {Z [a(s2i—1) — a(s2;) — B(s2i-1 — S2i) — X]}}

neN | 0<san<...<s2<s1<t | 754
(9.6)

If the network element is a greedy shaper, with shaping curve g, then II(z) = Cg,
and the inequalitiesin (9.5) and (9.6) become equalities.

What the formula says is that 1osses up to time ¢ are obtained by summing the
losses over all intervals [so;—1, s2;], Where so; marks the end of an overflow period,
and where so; 1 isthelast time before s5; when the buffer was empty. These inter-
vals are therefore larger then the congestion intervals, and their number n is smaller
or egaul to the number of congestion intervals. Figure 9.2 shows an example where
n = 2 and where there are three congestion periods.

We will seeinthe next sections how the losses representation formula (9.6), can
help usto obtain deterministic bounds on the loss process in some systems.

9.1.2 Lossesin aBounded Delay Element

Before moving to these applications, we first derive a representation formula for a
similar problem, where data are discarded not because of a finite buffer limit, but
because of a delay constraint: any entering data must have exited the system after at
most d unit of time, otherwise it is discarded. Such discarded data are called losses
due to adelay constraint of d time units.

As above, let x be the part of a that does actually enter the system, and let y be
its output. All the data «(¢) that has entered the system during [0, ¢] must therefore
have left at timet + d at the latest, so that z(t) — y(t + d) < 0 for any . Thus

2(t) < y(t + d) = TM(@)(t + d) = (5_q 0 T (@) (1), @7
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B =ct

v
v

27y

Figure 9.2: Losses in a constant rate shaper (8 = A\¢). Fresh traffic a is
represented with a thin, solid line; accepted traffic = is represented by a
bold, solid line; the output process y is represented by a bold, dashed line.

where S_; is the shift operator (with forward shift of d time units) given by Defini-
tion4.1.7.

On the other hand, as in the previous example, the amount of data (z(¢) — z(s))
that actually entered the system in any time interval (s, ¢] is always bounded above
by the total amount of data (a(t) — a(s)) that has arrived in the system during the
same period. Therefore the data = that actually enters the system is therefore the
maximum solution to

x<aA(S_goll)(z) A hy(x), (9.8

whichis

= ({S_qo 1} Ahy)(a),
or equivalently, after applying Corollary 4.2.1, by
2= (hao({S-aeT} o ha) (@) = (hgoS—goT) (a).  (99)
Since Il > Cg, we aso have,
2> (ha 0S8 40Cs) (a). (9.10)

The amount of lost datain theinterval [0, ¢] is therefore given by

L(t) < sup {a(t) — (ha0S_q0C5)™ (a)(t)}

neN
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which can be developed as
L(t) <

sup { sup {Z [a(s2i—1) — a(s2;) — B(S2i-1 +d — 521)]}}

neN | 0<s2n<...<sa<s1<t | ;57
(9.12)

Once again, if IT = Cg, then (9.11) becomes an equality.
We can also combine a delay constraint with a buffer constraint, and repeat the
same reasoning, starting from

z<aA{ll(z) + X} A (S—goll)(x) A he(x). (9.12)

L(t) < sup{ sup > la(s2i-1) — al(s2)

neN 0<s2,<...<s52<s1 <t i—1

—(B(s2i—1 +d — s2:) AN{B(s2i-1 — s2:) + X})|}}. (9.13)

This can be recast as a recursion on time if ¢ € N, following the time method to
solve (9.12) instead of the space method. This recurstion is established in [16].

9.2 Application 1: Bound on Loss Rate

Let us return to the case of losses due to buffer overflow, and suppose that in this
section fresh traffic a is constrained by an arrival curve a.

The following theorem provide a bound on the lossrate [(t) = L(t)/a(t), and
isadirect consequence of the loss representation (9.6).

Theorem 9.2.1 (Bound on lossrate). Consider a system with storage capacity X,
offering a service curve 3 to a flow constrained by an arrival curve «.. Then theloss
ratel(t) = L(t)/a(t) is bounded above by

I(t)=1— inf b

0<s<t  afs) (©14)

Proof:  With(t) defined by (9.14), we have that for any 0 < u < v < t,

i) = i PEOEX B+ X Blu—w)+ X
o 0<82t a(s) = a(v—u) = a(v) — a(u)

because a(v) — a(u) < a(v — u) by definition of an arrival curve. Therefore, for
any 0 <u<wv<t,

a(v) — alu) — Blv — u) ~ X < i(t) - [alv) - a(u)].
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Forany n € Ny = {1,2,3,...}, and any sequence {sx }1<k<on, With0 < s9,, <
o< sp < t, setting v = s9;_1 and u = so; in the previous equation, and summing
over i, we obtain

Z [a(s9i-1) — a(s2:) — B(s2i-1 — s2;) — X| < (1) - Z [a(s2i—1) — a(s2;)] -
=1 =1
Because the s, areincreasing with k, the right hand side of thisinequality is always
lessthan, or equal to, I(t) - a(t). Therefore we have

L(t) < sup { sup {Z [a(s2i—1) — a(s2i) — B(s2i—1 — 52;) — X]}}

neN | 0<s2, <... <51 <t i—1
< (1) - alt),

which shows that i(t) > 1(t) = L(t)/a(t). O
To have a bound independent of time ¢, we take the sup over all ¢ of (9.14), to
get
Bl +X
aft) 7
and retrieve the result of Chuang and Chang [15].
A similar result for losses due to delay constraint d, instead of finite buffer X,
can be easily obtained, too:

| =supl(t) =1 — inf
i =1-f

(9.15)

I(t)y = 1_022 0 (9.16)
- . Bt +d)
I = lf%g(f)w. (9.17)

9.3 Application 2: Bound on Lossesin Complex Sys-
tems

As a particular application of the loss representation formula (9.6), we show how
it is possible to bound the losses in a system offering a somewhat complex service
curve 3, by lossesin simpler systems. Thefirst application isthe bound on the losses
in a shaper by a system that segregates the resources (buffer, bandwidth) between
a storage system and a policer. The second application deals with a VBR shaper,
which is compared with two CBR shapers. For both applications, the losses in the
origina system are bounded along every sample path by the losses in the simpler
systems. For congestion times however, the same conclusion does not aways hold.

9.3.1 Bound on Losses by Segregation between Buffer and Po-
licer

We will first compare the losses in two systems, having the same input flow a(t).
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The first system is the one of Figure 9.1 with service curve  and buffer X,
whose losses L(t) are therefore given by (9.6).

The second system is made of two parts, as shown in Figure 9.3(a). The first
part is a system with storage capacity X, that realizes some mapping IT’ of the input
that is not explicitly given, but that is assumed to be isotone, and not smaller than
IT (I" > II). We also know that a first clipper discards data as soon as the total
backlogged data in this system exceeds X. This operation is called buffer discard.
The amount of buffer discarded data in [0,¢] is denoted by Lp,¢(t). The second
part is a policer without buffer, whose output is the min-plus convolution of the
accepted input traffic by the policer by 8. A second clipper discards data as soon as
the total output flow of the storage system exceeds the maximum input alowed by
the policer. This operation is called policing discard. The amount of discarded data
by policing in [0, ¢] is denoted by Lpo(t).

Buffer Policer
Clipper Clipper
System with
_>
a(t) X(t) buffer X y(t)
Lgur(®) Lpoi(t)

(a)

Buffer Virtual segregated system

Clipper ,— — — — —
PP | Policer

|
v yi)'  clipper
—»
e
S e
ay(t) x}(t) X2 y2(0)

Lgui(®) Lpoi(t)

(b)

Figure 9.3: A storage/policer system with separation between losses due to
buffer discard and to policing discard (a) A virtual segregated system for
2 classes of traffic, with buffer discard and policing discard, as used by Lo
Presti et al [53] (b)

Theorem 9.3.1. Let L(t) be the amount of lost data in the original system, with
service curve 3 and buffer X.
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Let Lpus(t) (resp. Lpoi(t)) be the amount of data lost in the time interval [0, ¢]
by buffer (resp. policing) discard, as defined above.
Then L(t) < LBuf(t) + Lpol(t).

Proof: Let x and y denote respectively the admitted and output flows of the
buffered part of the second system. Then the policer impliesthat y = § ® =, and
any time s we have

a(s) — Lput(s) = X = x(s) — X < y(s) < z(s) = a(s) — Lput(s).
whichimpliesthat forany 0 < u < v <'t,
y(v) —y(u) — f(v —u)

> (a(v) = Lpur(v) = X) = (a(u) — Lpur(u)) — B(v —u)
a(v) —a(u) — B(v —u) — X — (Lput(v) — Lpus(u)).
We use the same reasoning as in the proof of Theorem 9.2.1: we pick any n € Ny

and any increasing sequence {sj }1<k<an, With0 < s5, < ... < 53 < t. Thenwe
set v = so;_1 and u = so; in the previous inequality, and we sum over 4, to obtain

Z [W(s2i—1) — y(s2i) — B(52i-1 — 525)] >

i=1

Z 321 1 —a 821) 5(321'71—821)—)(}

i=1
Z (Lut(s2i—1) — LBut(s2i))] -
=1

By taking the supremum over all n and all sequences { sy }1<k<2n, theleft hand side
isequal to Lpe(t), because of (9.6) (we can replace the inequality in (9.6) by an
equality, because the output of the policerisy = S ® ). Since { sy, } isawide-sense
increasing sequence, and since Lp,¢ is awide-sense increasing function, we obtain
therefore

Lpai(t) >
sup { sup la(s2i—1) — a(s2i) — B(s2i-1 — 82:) — X]} — Lpus(t)

neN (0<s2, <...<s1<t

= L(t) - LBuf(t)a

which compl etes the proof. O

Such a separation of resources between the “buffered system” and “policing
system” is used in the estimation of loss probability for devising statistical CAC
(Call Acceptance Control) algorithms as proposed by Elwalid et a [25], Lo Presti
et a. [53]. The incoming traffic is separated in two classes. All variables relating
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to the first (resp. second) class are marked with an index 1 (resp. 2), so that a(t) =
a1 (t)+aa(t). Theoriginal systemisaCBR shaper (8 = A¢) and the storage system
isavirtually segregated system asin Figure 9.3(b), made of 2 shaperswith rates C}
and C3 and buffers X7 and X3. Thevirtual shapers are large enough to ensure that
no loss occurs for al possible arrival functions a(¢) and ax(t). The total buffer
space (resp. bandwidth) is larger than the original buffer space (resp. bandwidth):
X7+ X3 > X (C} + C3 > C). However, the buffer controller discards data as
soon as the total backlogged data in the virtual system exceeds X and the policer
controller discards data as soon as the total output rate of the virtual system exceeds
C.

9.3.2 Boundon Lossesin a VBR Shaper

In this second example, we consider of a“buffered leaky bucket” shaper [46] with
buffer X, whose output must conform to a VBR shaping curve with peak rate P,
sustainable rate M and burst tolerance B so that here the mapping of the element is
IT = Cs with 8 = Ap A yar, 5. Wewill consider two systems to bound these losses:
first two CBR shapers in paralel (Figure 9.4(a)) and second two CBR shapers in
tandem (Figure 9.4(b)). Similar resultsalso holdsfor |osses due to adelay constraint
[50].

Clipper

a(t) »QM X k:)—>
v

Lesr(t)
Clipper
Xcgre(t
a(t) —» —> X+B
LCBR”(t)
(a)
Clipper Clipper

i o () s G O s
+ Yerr(t) +

LCBR'(t) LCBR‘”(t)

(b)

Figure 9.4: Two CBR shapers in parallel (a) and in tandem (b).
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We will first show that the amount of losses during [0,¢] in this system is
bounded by the sum of losses in two CBR shapers in paralel, as shown in Fig-
ure 9.4(a): the first one has buffer of size X and rate P, whereas the second one has
buffer of size X + B and rate M. Both receive the same arriving traffic a as the
original VBR shaper.

Theorem 9.3.2. Let L (t) bethe amount of lost data in thetime interval [0,¢] ina
VBR shaper with buffer X and shaping curve 5 = Ap A v, 3, When the data that
hasarrivedin [0,¢] iSa(t).

Let Legw (t) (resp. Lesr(t)) be the amount of lost data during [0, ¢] in a CBR
shaper with buffer X (resp. (X + B)) and shaping curve Ap (resp. Ays) with the
same incoming traffic a(t).

Then LVBR(t) < LCBR’ (t) + LCBR” (t)

Proof:  The proof isagain adirect application of (9.6). Pickany 0 < u < v < t.
Since 3 = Ap Ay, B,

a(v) —a(u) — B(v
{a(v) — a(u)
Pick any n € Ny and any increasing sequence {si }1<k<an, With0 < sg, < ... <

s1 < t.Setv = s9;_1 and u = sy, in the previous equation, and sum over 4, to
obtain

u)—X =
Plv—u)—X}Vi{aw)—alu)— M(v—u)— B— X}

Z [a(s2i—1) — a(s2:) — B(s2i-1 — 52;) — X]|

i=1
= i[{a(sm—l) — a(s2;) — P(s2i—1 — 82i) — X}
i=1
Vi{a(s2i—1) — a(s2;) — M(s2i—1 — s2;) — B — X}
< Zn: a(s2i—1) — a(s2;) — P(s2i-1 — s2:) — X]
i=1
+Z a(s2i—1) — a(s2;) — M(s2;,—1 — 82;) — B — X]
< Lesw(t )+ Leog (1),

because of (9.6). By taking the supremum over all n and all sequences {sy, }1<k<2n
in the previous inequality, we get the desired result. |

A similar exercise shows that the amount of losses during [0, ¢] in the VBR
system is also bounded above by the sum of losses in two CBR shapers in cascade
as shown in Figure 9.4(b): thefirst one has buffer of size X and rate P, and receives
the same arriving traffic a asthe original VBR shaper, whereasits output is fed into
the second one with buffer of size B and rate M.
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Theorem 9.3.3. Let L(t) be the amount of lost data in thetime interval [0,¢] ina
VBR shaper with buffer X and shaping curve 5 = Ap A v, 5, When the data that
hasarrivedin [0,t] isa(t).

Let Legr (t) (resp. Lesr (t)) be the amount of lost data during [0,¢] in a CBR
shaper with buffer X (resp. B) and shaping curve Ap (resp. As) with the same
incoming traffic a(¢) (resp. the output traffic of the first CBR shaper).

Then LVBR(t) < LCBR/ (t) + LCBR” (t)

The proof isleft as an exercise.

Neither of the two systemsin Figure 9.4 gives the better bound for any arbitrary
traffic pattern. For example, suppose that the VBR system parameters are P = 4,
M =1, B =12and X = 4, and that the traffic isa single burst of data sent at rate
R during four time units, so that

) = R-t if 0<t<4
Y=Y 4r i t>4

If R = 5, both the VBR system and the parallel set of the two CBR’ and CBR”
systems are lossless, whereas the amount of |ost data after five units of time in the
tandem of the two CBR’ and CBR/” systemsis equal to three.

On the other hand, if R = 6, theamount of lost data after five units of timein the
VBR system, the parallel system (CBR/ and CBR"’) and the tandem system (CBR/
and CBR'”) are respectively equal to four, eight and seven.

Interestingly enough, whereas both systems of Figure 9.4 will bound the amount
of lossesin the original system, it isno longer so for the congestion periods, i.e. the
timeintervals during which losses occur. The tandem system does not offer abound
on the congestion periods, contrary to the parallel system [50].

9.4 Solution to Skohorkhod’'sReflection Problem with
Two Boundaries

To obtain the model of Figure 9.1, we have added a regulator — called clipper —
before the system itself, whose input « is the maximal input ensuring a lossless
service, given a finite storage capacity X. The clipper eliminates the fraction of
fresh traffic a that exceeds x. We now generalize this model by adding a second
regulator after the lossless system, whose output is denoted with y, as shown on
Figure 9.5. This regulator complements y, so that the output of the full processis
now a given function b € F. The resulting process N = y — b is the amount of
traffic that needs to be fed to prevent the storage system to enter in starvation. N
compensates for possible buffer underflows, hence we name this second regulator
compensator.

We can explicitly compute the loss process 1. and the “compensation” process
N, from the arrival process a and the departure process b, using, once again, Theo-
rem 4.3.1. We are looking for the maximal solution



268 CHAPTER 9. SYSTEMSWITH LOSSES

Clipper Compensator
t y(t)
a(t) —»O& S;g:;%e —»O—» b(t)
L(t) N(t)

Figure 9.5: A storage system representing the variables used to solve Sko-
rokhod'’s reflection problem with two boundaries

where T' denotes transposition, to the set of inequalities

z(t) < O;r;fgt{a(t)—a(s)+x(s)} (9.18)
2(t) < ylt)+X (9.19)
y(t) < (1) (9.20)
y(O) < int {b(t) — b(s) + gl (0.21)

Thetwo first inequalities are identical to (9.1) and to (9.2). Thetwo last inequalities
are the dual constraints on . We can therefore recast this system as

aAhg(z)N{y+ X} (9.22)
bAx A hy(z). (9.23)

where H and @ are defined as
ait) = la(t) bt)]"

a(t) —a(s) do(t—s)+X
Hts) = | Ti—s)  bt) —bfs)

foral 0 < s < t. Instead of computing H, we go faster by first computing the
maximal solution of (9.23). Using properties of the linear idempotent operator, we
get _

y = hp(x A b) = hy(x A b) = hy(z) A hp(b) = hp(x).
Next we replace y by hy,(z) in (9.22), and we compute its maximal solution, which

IS
x = hg A {hy + X}(a).
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We work out the sub-additive closure using Corollary 4.2.1, and we obtain
x = (hgo{hy + X})(a) (9.24)
and thus
y = (hb o g o {hy + X}) (a). (9.25)

After some manipulations, we get

N(t) = b(t) —y(t) =

2n+1
sup { sup { Z (—=1)%(a(s;) — b(sz))} - nX} (9.26)

neEN | 0<s2,4+1<...<52<51 <t i—1

L(t) =a(t) —x(t) =

2n
sup { sup {Z(—l)”l(a(si) - b(sl))} - nX} . (9.27)

neEN | 0<s2, <...<s2<s1<t i=1

Interestingly enough, these two functions are the solution of the so-called Sko-
rokhod reflection problem with two fixed boundaries [70, 35].

L et us describe this reflection mapping problem following the exposition of [42].
We are given alower boundary that will be taken here asthe origin, an upper bound-
ay X > 0, and afree process z(t) € R such that 0 < z(0—) < X. Skorokhod's
reflection problem looks for functions N (t) (lower boundary process) and L(t) (up-
per boundary process) such that

1. The reflected process
W(t) = z(t) + N(t) — L(t) (9.28)
isin [0, X] forall ¢ > 0.

2. Both N(¢) and L(t) are non decreasing with N (0—) = L(0—) = 0, and N ()
(resp. L(t)) increases only when W (t) = 0 (resp. W(t) = X), i.e, with14
denoting the indicator function of A

/ Liwns0ydN(E) = 0 (9.29)
0
0

The solution to this problem exists and is unique [35]. When only one boundary
is present, explicit formulas are available. For instance, if X — oo, then thereis
only one lower boundary, and the solution is easily found to be

NE) = = inf {z(s)}

L(t) = o0.
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If X < oo, then the solution can be constructed by successive approximations but,
to our knowledge, no solution has been explicitly obtained. The following theorem
gives such explicit solutions for a continuous VF function z(¢). A VF function (VF
standing for Variation Finie[35, 66]) z(¢) on R™ isafunction such that for al ¢ > 0

n—1
sup sup {Z |2(s;) — z(si+1)|} < 00.
nENg 0=s5,<sp-1<...<s81<sp=t i—0

VF functions have the following property [66]: z(t) isaVF function on R* if and
only if it can be written as the difference of two wide-sense increasing functions on
R*.

Theorem 9.4.1 (Skorokhod's reflection mapping). Let the free process z(t) be a
continuous VF function on R™. Then the solution to Skorokhod's reflection problem
on [0, X]is

2n+1
N(t) = sup { sup { Z (—1)':,2(31')} - nX} (9.31)

neN | 0<san41<...<sa<s1<t | 55

L(t) = sup { sup {Z(l)”lz(sz)} — nX} . (9.32)

n€N | 0<s2n, <. <s2<s1<t | ;7

Proof:  Asz(t) isaVF function on [0, c0), there exist two increasing functions
a(t) and b(t) such that z(t) = a(t) — b(t) for al t > 0. Asz(0) > 0, we can take
b(0) = 0and a(0) = 2(0). Notethat a,b € F.

Wewill show nowthat L = a—x and N = b—y, wherez and y arethe maximal
solutions of (9.22) and (9.23), are the solutions of Skorokhod's reflection problem.

First note that
W(t) = 2(t)+N (1) L(t) = (a(t)=b(t))+(b(t) —y(t)) —(a(t) —x(t)) = 2(t)—y(t)
isin [0, X] for al ¢t > 0 because of (9.19) and (9.20).

Second, because of (9.21), note that N (0) = b(0) — y(0) = 0 and that for any
t>0and0 < s <t N(t)— N(s) = b(t) —b(s) + y(s) —y(t) > 0, which
shows that N (¢) is non decreasing. The same properties can be deduced for L(t)
from (9.18).

Finaly, if W(t) = x(t) — y(t) > 0, thereis some s* € [0, ¢] such that y(¢) =
y(s*) + b(t) — b(s*) because y isthe maximal solution satisfying (9.20) and (9.21).
Thereforefor al s € [s*, 1],

0 < N(t) = N(s) < N(t) = N(s") = b(t) = b(s™) + y(s") —y(t) =0

which showsthat N (¢) — N(s) = 0 and sothat N(¢) isnonincreasing if W (¢) > 0.
A similar reasoning showsthat L(¢) isnon increasing if W (t) < X.

Consequently, N (t) and L(t) are the lower and upper reflected processes that
we are looking for. We have already computed them: they are given by (9.26) and
(9.27). Replacing a(s;) —b(s;) inthesetwo expressions by z(s;), we establish (9.31)
and (9.32). O



9.5. BIBLIOGRAPHIC NOTES 271

9.5 Bibliographic Notes

The clipper was introduced by Cruz and Tengja, and was extended to get the loss
representation formula presented in this chapter in [16, 50]. Explicit expressions
when operator IT isageneral, time-varying operator, can befound in [16]. We expect
results of this chapter to form a starting point for obtaining bounds on probabilities
of loss or congestion for lossy shapers with complex shaping functions; the method
would consist in applying known bounds to virtual systems and take the minimum
over aset of virtual systems.
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C 4 (Vector min-plus convolution), 160

Co, (Min-plus convolution), 160

D, (Min-plus deconvolution), 160

Pr. (Packetization), 160

Ly (Min-plus linear operator), 163

N, 4

Ny, 260

II (Max-plus operator), 159

II (Min-plus operator), 159

RT, 4

Br,r (rate-latency function), 126

F (set of wide-sense increasing func-
tionsthat are zero for nega-
tive arguments), 126

G (set of wide-sense increasing func-
tions), 126

o (burst delay function), 126

~r» (affine function), 126

h (horizontal deviation), 152

he (Linear idempotent operator), 160

Ar (peak rate function), 126

Veriy 214

@ (min-plus deconvolution), 145

@ (min-plus deconvolution), 153

® (min-plus convolution), 131

® (max-plus convolution), 153

£ (sub-additive closure of f), 141

F (Set of wide-sense increasing bi-
variate functions), 159

ur,, (Staircase function), 127

v (step function), 127

v (vertical deviation), 152

V (max or sup), 145

A (minor inf), 123

Lexpr; (Indicator function), 49
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ABR, 247

adaptive guarantee, 234
AF, 105

affine function, 126
arrival curve, 8

Assured Forwarding, 105
Available Bit Rate, 247

bivariate function, 159
burst delay function, 126

caching, 199

causal, 167

CDVT (cell delay variation tolerance),
16

concave function, 130

controlled load service, 90

convex function, 130

convex set, 130

Critical Load Factor, 214

Cumulative Packet Length, 50

damper, 113

damping tolerance, 113
Delay Based Scheduler, 97
DGCRA, 247

dioid, 125

Earliest Deadline First (EDF) sched-
uler, 96

EDF see Earliest Deadline First, 96

EF, 105

epigraph, 131

Expedited Forwarding, 105

Finite lifetime, 149
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GCRA (Generic Cell Rate Algorithm
definition, 14

Good function, 18

GPS (generalized processor sharing,

22

GR, 87

greedy shaper, 37

greedy source, 19

guaranteed delay node, 25

Guaranteed Rate node, 87

guaranteed service, 90

horizontal deviation, 152

idempotent, 169

impulse response, 163, 166
infimum, 123

Intserv, 3

isotone, 162

limit to the left, 11

limit to the right, 7

linear idempotent operator, 160
look ahead delay, 183

lower semi-continuous, 162

max-plus convolution, 153
max-plus deconvolution, 153
maximum, 153

min-plus convolution, 131
min-plus deconvolution, 145
Min-pluslinear, 163, 166
minimum, 123

minimum rate server, 239

Packet Scale Rate Guarantee, 238

Packetizer, 51

peak rate function, 126

PGPS: packet generalized processor
sharing, 85

PL, 50

playback buffer, 183

playback delay, 183

policer, 37

Priority Node, 25, 207

pseudo-inverse function, 127

INDEX

rate-latency function, 126
Re-negotiable service, 247
RSVPR 91

SCED, 96

shaper, 37

shaping curve, 37

shift invariant, 168

Shift matrix, 163

smooth (a-smooth for some function
a(t), 8

smoothing, 183

staircase function, 127

star-shaped function, 131

step function, 127

strict service curve, 27

sub-additive closure, 141

sub-additive fucntion, 138

supremum, 153

T-SPEC (traffic specification), 17
time varying shaper, 248

upper semi-continuous, 161

variable capacity node, 27
vertical deviation, 152
Very good function, 20



