
NETWORK CALCULUS
Parts II and III

A Theory of Deterministic Queuing Systems
for the Internet

JEAN-YVES LE BOUDEC

PATRICK THIRAN

Online Version of the Book Springer Verlag -
LNCS 2050

Version January 16, 2002

121

122 CHAPTER 2. APPLICATION TO THE INTERNET

Part II

Mathematical Background

123

Chapter 3

Basic Min-plus and Max-plus
Calculus

In this chapter we introduce the basic results from Min-plus that are needed for the
next chapters. Max-plus algebra is dual to Min-plus algebra, with similar concepts
and results when minimum is replaced by maximum, and infimum by supremum. As
basic results of network calculus use more min-plus algebra than max-plus algebra,
we present here in detail the fundamentals of min-plus calculus. We briefly discuss
the care that should be used when max and min operations are mixed at the end of
the chapter. A detailed treatment of Min- and Max-plus algebra is provided in [26],
here we focus on the basic results that are needed for the remaining of the book.
Many of the results below can also be found in [11] for the discrete-time setting.

3.1 Min-plus Calculus

In conventional algebra, the two most common operations on elements of Z or R are
their addition and their multiplication. In fact, the set of integers or reals endowed
with these two operations verify a number of well known axioms that define alge-
braic structures: (Z,+,×) is a commutative ring, whereas (R,+,×) is a field. Here
we consider another algebra, where the operations are changed as follows: addition
becomes computation of the minimum, multiplication becomes addition. We will
see that this defines another algebraic structure, but let us first recall the notion of
minimum and infimum.

3.1.1 Infimum and Minimum

Let S be a nonempty subset of R. S is bounded from below if there is a number M
such that s ≥ M for all s ∈ S. The completeness axiom states that every nonempty
subset S of R that is bounded from below has a greatest lower bound. We will call
it infimumof S, and denote it by inf S. For example the closed and open intervals

125

126 CHAPTER 3. BASIC MIN-PLUS AND MAX-PLUS CALCULUS

[a, b] and (a, b) have the same infimum, which is a. Now, if S contains an element
that is smaller than all its other elements, this element is called minimumof S,
and is denoted by minS. Note that the minimum of a set does not always exist. For
example, (a, b) has no minimum since a /∈ (a, b). On the other hand, if the minimum
of a set S exists, it is identical to its infimum. For example, min[a, b] = inf[a, b] =
a. One easily shows that every finite nonempty subset of R has a minimum. Finally,
let us mention that we will often use the notation ∧ to denote infimum (or, when it
exists, the minimum). For example, a ∧ b = min{a, b}. If S is empty, we adopt the
convention that inf S = +∞.

If f is a function from S to R, we denote by f(S) its range:

f(S) = {t such that t = f(s) for some s ∈ S}.
We will denote the infimum of this set by the two equivalent notations

inf f(S) = inf
s∈S

{f(s)}.

We will also often use the following property.

Theorem 3.1.1 (“Fubini” formula for infimum). Let S be a nonempty subset of
R, andf be a function fromS to R. Let {Sn}n∈N be a collection of subsets ofS,
whose union isS. Then

inf
s∈S

{f(s)} = inf
n∈N

{
inf
s∈Sn

{f(sn)}
}

.

Proof: By definition of an infimum, for any sets Sn,

inf

{⋃
n

Sn
}
= inf

n
{inf Sn} .

On the other hands, since ∪nSn = S,

f

(⋃
n∈N

Sn
)
=
⋃
n∈N

f (Sn)

so that

inf
s∈S

{f(s)} = inf f(S) = inf f

(⋃
n∈N

Sn
)

= inf

{⋃
n∈N

f (Sn)
}
= inf

n∈N

{inf f (Sn)}

= inf
n∈N

{
inf
s∈Sn

{f(s)}
}

.

3.1. MIN-PLUS CALCULUS 127

3.1.2 Dioid (R ∪ {+∞},∧, +)

In traditional algebra, one is used to working with the algebraic structure (R,+,×),
that is, with the set of reals endowed with the two usual operations of addition and
multiplication. These two operations possess a number of properties (associativity,
commutativity, distributivity, etc) that make (R,+,×) a commutative field. As men-
tioned above, in min-plus algebra, the operation of ‘addition’ becomes computation
of the infimum (or of the minimum if it exists), whereas the one of ‘multiplication’
becomes the classical operation of addition. We will also include +∞ in the set of
elements on which min-operations are carried out, so that the structure of interest is
now (R ∪ {+∞},∧,+). Most axioms (but not all, as we will see later) defining a
field still apply to this structure. For example, distribution of addition with respect
to multiplication in conventional (‘Plus-times’) algebra

(3 + 4)× 5 = (3× 5) + (4× 5) = 15 + 20 = 35

translates in min-plus algebra as

(3 ∧ 4) + 5 = (3 + 5) ∧ (4 + 5) = 8 ∧ 9 = 8.

In fact, one easily verifies that ∧ and + satisfy the following properties:

• (Closure of ∧) For all a, b ∈ R ∪ {+∞}, a ∧ b ∈ R ∪ {+∞}.

• (Associativity of ∧) For all a, b, c ∈ R ∪ {+∞}, (a ∧ b) ∧ c = a ∧ (b ∧ c).

• (Existence of a zero element for ∧) There is some e = +∞ ∈ R ∪ {+∞}
such that for all a ∈ R ∪ {+∞}, a ∧ e = a.

• (Idempotency of ∧) For all a ∈ R ∪ {+∞}, a ∧ a = a.

• (Commutativity of ∧) For all a, b ∈ R ∪ {+∞}, a ∧ b = b ∧ a.

• (Closure of +) For all a, b ∈ R ∪ {+∞}, a+ b ∈ R ∪ {+∞}.

• (Associativity of +) For all a, b, c ∈ R ∪ {+∞}, (a+ b) + c = a+ (b+ c).

• (The zero element for ∧ is absorbing for +) For all a ∈ R∪{+∞}, a+e =
e = e + a.

• (Existence of a neutral element for +) There is some u = 0 ∈ R ∪ {+∞}
such that for all a ∈ R ∪ {+∞}, a+ u = a = u+ a.

• (Distributivity of + with respect to ∧) For all a, b, c ∈ R∪{+∞}, (a∧b)+
c = (a+ c) ∧ (b+ c) = c+ (a ∧ b).

A set endowed with operations satisfying all the above axioms is called a dioid.
Moreover as + is also commutative (for all a, b ∈ R ∪ {+∞}, a + b = b + a), the
structure (R∪{+∞},∧,+) is a commutative dioid. All the axioms defining a dioid
are therefore the same axioms as the ones defining a ring, except one: the axiom of
idempotency of the ‘addition’ , which in dioids replaces the axiom of cancellation of
‘addition’ in rings (i.e. the existence of an element (−a) that ‘ added’ to a gives the
zero element). We will encounter other dioids later on in this chapter.

128 CHAPTER 3. BASIC MIN-PLUS AND MAX-PLUS CALCULUS

3.1.3 A Catalog of Wide-sense Increasing Functions

A function f is wide-sense increasing if and only if f(s) ≤ f(t) for all s ≤ t.
We will denote by G the set of non-negative wide-sense increasing sequences or
functions and by F denote the set of wide-sense increasing sequences or functions
such that f(t) = 0 for t < 0. Parameter t can be continuous or discrete: in the latter
case, f = {f(t), t ∈ Z} is called a sequence rather than a function. In the former
case, we take the convention that the function f = {f(t), t ∈ R} is left-continuous.
The range of functions or sequences of F and G is R+ = [0,+∞].

Notation f +g (respectively f ∧g) denotes the point-wise sum (resp. minimum)
of functions f and g:

(f + g)(t) = f(t) + g(t)
(f ∧ g)(t) = f(t) ∧ g(t)

Notation f ≤ (=,≥)g means that f(t) ≤ (=,≥)g(t) for all t.
Some examples of functions belonging to F and of particular interest are the

following ones. Notation [x]+ denotes max{x, 0}, �x� denotes the smallest integer
larger than or equal to x.

Definition 3.1.1 (Peak rate functions λR).

λR(t) =
{

Rt if t > 0
0 otherwise

for someR ≥ 0 (the ‘rate’).

Definition 3.1.2 (Burst delay functions δT).

δT (t) =
{

+∞ if t > T
0 otherwise

for someT ≥ 0 (the ‘delay’).

Definition 3.1.3 (Rate-latency functions βR,T).

βR,T (t) = R[t− T]+ =
{

R(t− T) if t > T
0 otherwise

for someR ≥ 0 (the ‘rate’) andT ≥ 0 (the ‘delay’).

Definition 3.1.4 (Affine functions γr,b).

γr,b(t) =
{

rt+ b if t > 0
0 otherwise

for somer ≥ 0 (the ‘rate’) andb ≥ 0 (the ‘burst’).

3.1. MIN-PLUS CALCULUS 129

Definition 3.1.5 (Step Function vT).

vT (t) = 1{t>T} =
{

1 if t > T
0 otherwise

for someT > 0.

Definition 3.1.6 (Staircase Functions uT,τ).

uT,τ (t) =
{ � t+τT � if t > 0

0 otherwise

for someT > 0 (the ‘interval’) and0 ≤ τ ≤ T (the ‘tolerance’).

These functions are also represented in Figure 3.1. By combining these basic
functions, one obtains more general piecewise linear functions belonging to F . For
example, the two functions represented in Figure 3.2 are written using ∧ and + from
affine functions and rate-latency functions as follows, with r1 > r2 > . . . > rI and
b1 < b2 < . . . < bI

f1 = γr1,b1 ∧ γr2,b2 ∧ . . . γrI ,bI
= min

1≤i≤I
{γri,bi

} (3.1)

f2 = λR ∧ {βR,2T +RT} ∧ {βR,4T + 2RT} ∧ . . .

= inf
i≥0

{βR,2iT + iRT} . (3.2)

We will encounter other functions later in the book, and obtain other representations
with the min-plus convolution operator.

3.1.4 Pseudo-inverse of Wide-sense Increasing Functions

It is well known that any strictly increasing function is left-invertible. That is, if for
any t1 < t2, f(t1) < f(t2), then there is a function f−1 such that f−1(f(t)) =
t for all t. Here we consider slightly more general functions, namely, wide-sense
increasing functions, and we will see that a pseudo-inverse function can defined as
follows.

Definition 3.1.7 (Pseudo-inverse). Let f be a function or a sequence ofF . The
pseudo-inverse off is the function

f−1(x) = inf {t such that f(t) ≥ x} . (3.3)

For example, one can easily compute that the pseudo-inverses of the four func-
tions of Definitions 3.1.1 to 3.1.4 are

λ−1
R = λ1/R

δ−1
T = δ0 ∧ T

β−1
R,T = γ1/R,T

γ−1
r,b = β1/r,b.

The pseudo-inverse enjoys the following properties:

130 CHAPTER 3. BASIC MIN-PLUS AND MAX-PLUS CALCULUS

γ
r,b

(t) = 0 for t = 0
 = rt + b for t > 0

r

t

Affine function

b

Rate-latency function

T

R

t

β
R,T

(t) = R[t-T]+

R

t

Peak rate function

 λ
R

(t) = Rt

T

t

δ
T
(t) = 0

 = ∞ for t > T

Burst-delay function

for t ≤ T

t

u
T
(t) = 1

{t > T}
= 0 for t ≤ T
 1 for t > T

1

Step function

TT-τ t

v
T,τ

(t) = (t+τ)/T

1

2

3

Staircase function

2T-τ

4

3T-τ

Figure 3.1: A catalog of functions of F : Peak rate function (top left), burst-
delay function (top right), rate-latency function (center left), affine function
(center right), staircase function (bottom left) and step function (bottom
right).

3.1. MIN-PLUS CALCULUS 131

r
2

t

 f
1
(t)

T t

b
2 r

1b
1

r
3

b
3

 f
2
(t)

2T 3T

RT
2RT

Figure 3.2: Two piecewise linear functions of F as defined by (3.1) (left) and
(3.2) (right).

Theorem 3.1.2 (Properties of pseudo-inverse functions). Letf ∈ F , x, t ≥ 0.

• (Closure) f−1 ∈ F andf−1(0) = 0.

• (Pseudo-inversion) We have that

f(t) ≥ x ⇒ f−1(x) ≤ t (3.4)

f−1(x) < t ⇒ f(t) ≥ x (3.5)

• (Equivalent definition)

f−1(x) = sup {t such that f(t) < x} . (3.6)

Proof: Define subset Sx = {t such that f(t) ≥ x} ⊆ R+. Then (3.3) becomes
f−1(x) = inf Sx. (Closure) Clearly, from (3.3), f−1(x) = 0 for x ≤ 0 (and in

particular f−1(0) = 0). Now, let 0 ≤ x1 < x2. Then Sx1 ⊇ Sx2 , which implies
that inf Sx1 ≤ inf Sx2 and hence that f−1(x1) ≤ f−1(x2). Therefore f−1 is wide-
sense increasing. (Pseudo-inversion) Suppose first that f(t) ≥ x. Then t ∈ Sx, and

so is larger than the infimum of Sx, which is f−1(x): this proves (3.4). Suppose next
that f−1(x) < t. Then t > inf Sx, which implies that t ∈ Sx, by definition of an
infimum. This in turn yields that f(t) ≥ x and proves (3.5). (Equivalent definition)

Define subset S̃x = {t such that f(t) < x} ⊆ R+. Pick t ∈ Sx and t̃ ∈ S̃x. Then
f(t̃) < f(t), and since f is wide-sense increasing, it implies that t̃ ≤ t. This is true
for any t ∈ Sx and t̃ ∈ S̃x, hence sup S̃x ≤ inf Sx. As S̃x ∪ Sx = R+, we cannot
have sup S̃x < inf Sx. Therefore

sup S̃x = inf Sx = f−1(x).

132 CHAPTER 3. BASIC MIN-PLUS AND MAX-PLUS CALCULUS

3.1.5 Concave, Convex and Star-shaped Functions

As an important class of functions in min-plus calculus are the convex and concave
functions, it is useful to recall some of their properties.

Definition 3.1.8 (Convexity in Rn). Letu be any real such that0 ≤ u ≤ 1.

• SubsetS ⊆ Rn is convex if and only ifux+ (1− u)y ∈ S for all x, y ∈ S.

• Functionf from a subsetD ⊆ Rn to R is convex if and only iff(ux + (1 −
u)y) ≤ uf(x) + (1− u)f(y) for all x, y ∈ D.

• Functionf from a subsetD ⊆ Rn to R is concave if and only if−f is convex.

For example, the rate-latency function (Fig 3.1, center left) is convex, the piece-
wise linear function f1 given by (3.1) is concave and the piecewise linear function
f2 given by (3.2) is neither convex nor concave.

There are a number of properties that convex sets and functions enjoy [72].
Here are a few that will be used in this chapter, and that are a direct consequence of
Definition 3.1.8.

• The convex subsets of R are the intervals.

• If S1 and S2 are two convex subsets of Rn, their sum

S = S1 + S2 = {s ∈ Rn | s = s1 + s2 for some s1 ∈ S1 and s2 ∈ S2}

is also convex.

• Function f from an interval [a, b] to R is convex (resp. concave) if and only if
f(ux+ (1− u)y) ≤ (resp. ≥) uf(x) + (1− u)f(y) for all x, y ∈ [a, b] and
all u ∈ [0.1].

• The pointwise maximum (resp. minimum) of any number of convex (resp.
concave) functions is a convex (resp. concave) function.

• If S is a convex subset of Rn+1, n ≥ 1, the function from Rn to R defined by

f(x) = inf{µ ∈ R such that (x, µ) ∈ S}

is convex.

• If f is a convex function from Rn to R, the set S defined by

S = {(x, µ) ∈ Rn+1 such that f(x) ≤ µ}

is convex. This set is called the epigraph of f . It implies in the particular case
where n = 1 that the line segment between {a, f(a)} and {b, f(b)} lies above
the graph of the curve y = f(x).

3.1. MIN-PLUS CALCULUS 133

The proof of these properties is given in [72] and can be easily deduced from Def-
inition 3.1.8, or even from a simple drawing. Chang [11] introduced star-shaped
functions, which are defined as follows.

Definition 3.1.9 (Star-shaped function). Functionf ∈ F is star-shaped if and
only if f(t)/t is wide-sense decreasing for allt > 0.

Star-shaped enjoy the following property:

Theorem 3.1.3 (Minimum of star-shaped functions). Letf, g be two star-shaped
functions. Thenh = f ∧ g is also star-shaped.

Proof: Consider some t ≥ 0. If h(t) = f(t), then for all s > t, h(t)/t =
f(t)/t ≥ f(s)/s ≥ h(s)/s. The same argument holds of course if h(t) = g(t).
Therefore h(t)/t ≥ h(s)/s for all s > t, which shows that h is star-shaped.

We will see other properties of star-shaped functions in the next sections. Let us
conclude this section with an important class of star-shaped functions.

Theorem 3.1.4. Concave functions are star-shaped.

Proof: Let f be a concave function. Then for any u ∈ [0, 1] and x, y ≥ 0, f(ux+
(1−u)y) ≥ uf(x)+ (1−u)f(y). Take x = t, y = 0 and u = s/t, with 0 < s ≤ t.
Then the previous inequality becomes f(s) ≥ (s/t)f(t), which shows that f(t)/t
is a decreasing function of t.

On the other hand, a star-shaped function is not necessarily a concave function.
We will see one such example in Section 3.1.7.

3.1.6 Min-plus Convolution

Let f(t) be a real-valued function, which is zero for t ≤ 0. If t ∈ R, the integral of
this function in the conventional algebra (R,+,×) is∫ t

0

f(s)ds

which becomes, for a sequence f(t) where t ∈ Z,

t∑
s=0

f(s).

In the min-plus algebra (R ∪ {+∞},∧,+), where the ‘addition’ is ∧ and the ‘mul-
tiplication’ is +, an ‘ integral’ of the function f becomes therefore

inf
s∈R such that 0≤s≤t

{f(s)},

which becomes, for a sequence f(t) where t ∈ Z,

134 CHAPTER 3. BASIC MIN-PLUS AND MAX-PLUS CALCULUS

min
s∈Z such that 0≤s≤t

{f(s)}.

We will often adopt a shorter notation for the two previous expressions, which is

inf
0≤s≤t

{f(s)},

with s ∈ Z or s ∈ R depending on the domain of f .
A key operation in conventional linear system theory is the convolution between

two functions, which is defined as

(f ⊗ g)(t) =
∫ +∞

−∞
f(t− s)g(s)ds

and becomes, when f(t) and g(t) are two functions that are zero for t < 0,

(f ⊗ g)(t) =
∫ t

0

f(t− s)g(s)ds.

In min-plus calculus, the operation of convolution is the natural extension of the
previous definition:

Definition 3.1.10 (Min-plus convolution). Let f and g be two functions or se-
quences ofF . The min-plus convolution off andg is the function

(f ⊗ g)(t) = inf
0≤s≤t

{f(t− s) + g(s)} . (3.7)

(If t < 0, (f ⊗ g)(t) = 0).

Example. Consider the two functions γr,b and βR,T , with 0 < r < R, and let us
compute their min-plus convolution. Let us first compute it for 0 ≤ t ≤ T .

(γr,b ⊗ βR,T)(t) = inf
0≤s≤t

{
γr,b(t− s) +R[s− T]+

}
= inf

0≤s≤t
{γr,b(t− s) + 0} = γr,b(0) + 0 = 0 + 0 = 0

Now, if t > T , one has

(γr,b ⊗ βR,T)(t)
= inf

0≤s≤t
{
γr,b(t− s) +R[s− T]+

}
= inf

0≤s≤T
{
γr,b(t− s) +R[s− T]+

} ∧ inf
T≤s<t

{
γr,b(t− s) +R[s− T]+

}
∧ inf
s=t

{
γr,b(t− s) +R[s− T]+

}
= inf

0≤s≤T
{b+ r(t− s) + 0} ∧ inf

T<s<t
{b+ r(t− s) +R(s− T)}

∧ {0 +R(t− T)}
= {b+ r(t− T)} ∧

{
b+ rt−RT + inf

T<s<t
{(R− r)s}

}
∧ {R(t− T)}

= {b+ r(t− T)} ∧ {b+ r(t− T)} ∧ {R(t− T)}
= {b+ r(t− T)} ∧ {R(t− T)} .

3.1. MIN-PLUS CALCULUS 135

The result is shown in Figure 3.3. Let us now derive some useful properties for the

r

b

T

R

t

(γr,b ⊗ βR,T)(t)

Figure 3.3: Function γr,b ⊗ βR,T when 0 < r < R.

computation of min-plus convolution.

Theorem 3.1.5 (General properties of ⊗). Letf, g, h ∈ F .

• Rule 1 (Closure of ⊗) (f ⊗ g) ∈ F .

• Rule 2 (Associativity of ⊗) (f ⊗ g)⊗ h = f ⊗ (g ⊗ h).

• Rule 3 (The zero element for ∧ is absorbing for ⊗) The zero element for∧
belonging toF is the functionε, defined asε(t) = +∞ for all t ≥ 0 and
ε(t) = 0 for all t < 0. One hasf ⊗ ε = ε.

• Rule 4 (Existence of a neutral element for ⊗) The neutral element isδ0, as
f ⊗ δ0 = f .

• Rule 5 (Commutativity of ⊗) f ⊗ g = g ⊗ f .

• Rule 6 (Distributivity of⊗ with respect to ∧) (f ∧g)⊗h = (f⊗h)∧(g⊗h).

• Rule 7 (Addition of a constant) For anyK ∈ R+, (f+K)⊗g = (f⊗g)+K.

The proof of these rules is easy. We prove the two first rules, the proof of the
five others are left to the reader.

Proof: (Rule 1) Since f is wide-sense increasing,

f(t1 − s) + g(s) ≤ f(t2 − s) + g(s)

for all 0 ≤ t1 < t2 and all s ∈ R. Therefore

136 CHAPTER 3. BASIC MIN-PLUS AND MAX-PLUS CALCULUS

inf
s∈R

{f(t1 − s) + g(s)} ≤ inf
s∈R

{f(t2 − s) + g(s)}

and as f(t) = g(t) = 0 when t < 0, this inequality is equivalent to

inf
0≤s≤t1

{f(t1 − s) + g(s)} ≤ inf
0≤s≤t2

{f(t2 − s) + g(s)} ,

which shows that (f ⊗ g)(t1) ≤ (f ⊗ g)(t2) for all 0 ≤ t1 < t2. (Rule 2) One has

((f ⊗ g)⊗ h)(t) = inf
0≤s≤t

{
inf

0≤u≤t−s
{f(t− s− u) + g(u)}+ h(s)

}
= inf

0≤s≤t

{
inf

s≤u′≤t
{f(t− u′) + g(u′ − s) + h(s)}

}
= inf

0≤u′≤t

{
inf

0≤s≤u′
{f(t− u′) + g(u′ − s) + h(s)}

}
= inf

0≤u′≤t

{
f(t− u′) + inf

0≤s≤u′
{g(u′ − s) + h(s)}

}
= inf

0≤u′≤t
{f(t− u′) + (g ⊗ h)(u′)}

= (f ⊗ (g ⊗ h))(t).

Rules 1 to 6 establish a structure of a commutative dioid for (F ,∧,⊗), whereas
Rules 6 and 7 show that ⊗ is a linear operation on (R+,∧,+). Now let us also
complete these results by two additional rules that are helpful in the case of concave
or convex functions.

Theorem 3.1.6 (Properties of ⊗ for concave/convex functions). Letf, g ∈ F .

• Rule 8 (Functions passing through the origin) If f(0) = g(0) = 0 then
f ⊗ g ≤ f ∧ g. Moreover, iff andg are star-shaped, thenf ⊗ g = f ∧ g.

• Rule 9 (Convex functions) If f and g are convex thenf ⊗ g is convex. In
particular if f, g are convex and piecewise linear,f⊗g is obtained by putting
end-to-end the different linear pieces off andg, sorted by increasing slopes.

Since concave functions are star-shaped, Rule 8 also implies that if f, g are con-
cave with f(0) = g(0) = 0, then f ⊗ g = f ∧ g.

Proof: (Rule 8) As f(0) = g(0) = 0,

(f ⊗ g)(t) = g(t) ∧ inf
0<s<t

{f(t− s) + g(s)} ∧ f(t) ≤ f(t) ∧ g(t). (3.8)

Suppose now that, in addition, f and g are star-shaped. Then for any t > 0 and
0 ≤ s ≤ t f(t− s) ≥ (1− s/t)f(t) and g(s) ≥ (s/t)g(t), so that

f(t− s) + g(s) ≥ f(t) + (s/t)(g(t)− f(t)).

3.1. MIN-PLUS CALCULUS 137

Now, as 0 ≤ s/t ≤ 1, f(t) + (s/t)(g(t)− f(t)) ≥ f(t) ∧ g(t) so that

f(t− s) + g(s) ≥ f(t) ∧ g(t)

for all 0 ≤ s ≤ t. Combining this inequality with (3.8), we obtain the desired result.
(Rule 9) The proof uses properties of convex sets and functions listed in the previous

subsection. The epigraphs of f and g are the sets

S1 = {(s1, µ1) ∈ R2 such that f(s1) ≤ µ1}
S2 = {(s2, µ2) ∈ R2 such that g(s2) ≤ µ2}

Since f and g are convex, their epigraphs are also convex, and so is their sum S =
S1 + S2, which can be expressed as

S = {(t, µ) ∈ R2| for some (s, ξ) ∈ [0, t]× [0, µ], f(t− s) ≤ µ− ξ, g(s) ≤ ξ}.

As S is convex, function h(t) = inf{µ ∈ R such that (t, µ) ∈ S} is also convex.
Now h can be recast as

h(t)
= inf{µ ∈ R | for some(s, ξ) ∈ [0, t]× [0, µ], f(t− s) ≤ µ− ξ, g(s) ≤ ξ}
= inf{µ ∈ R | for some s ∈ [0, t], f(t− s) + g(s) ≤ µ}
= inf{f(t− s) + g(s), s ∈ [0, t]}
= (f ⊗ g)(t),

which proves that (f ⊗ g) is convex.
If f and g are piecewise linear, one can construct the set S = S1 + S2, which is

the epigraph of f ⊗ g, by putting end-to-end the different linear pieces of f and g,
sorted by increasing slopes [22].

Indeed, let h′ denote the function that results from this operation, and let us
show that h′ = f ⊗ g. Suppose that there are a total of n linear pieces from f
and g, and label them from 1 to n according to their increasing slopes: 0 ≤ r1 ≤
r2 ≤ . . . ≤ rn. Figure 3.4 shows an example for n = 5. Let Ti denote the length
of the projection of segment i onto the horizontal axis, for 1 ≤ i ≤ n. Then the
length of the projection of segment i onto the vertical axis is riTi. Denote by S ′ the
epigraph of h′, which is convex, and by ∂S ′ its boundary. Pick any point (t, h′(t))
on this boundary ∂S ′. We will show that it can always be obtained by adding a point
(t−s, f(t−s)) of the boundary ∂S1 of S1 and a point (s, g(s)) of the boundary ∂S2
of S2. Let k be the linear segment index to which (t, h′(t)) belongs, and assume,
with no loss of generality, that this segment is a piece of f (that is, k ⊆ ∂S1). We
can express h′(t) as

h′(t) = rk(t−
k−1∑
i=1

Ti) +
k−1∑
i=1

riTi. (3.9)

138 CHAPTER 3. BASIC MIN-PLUS AND MAX-PLUS CALCULUS

T2

t-s

f(t-s)

S1

r2T2

T4

r4T4

T1

r1T1

g(s)

S2

r3T3

T3 T5

r5T5

T1

r1T1

h’ (t)=(f⊗g)(t)

S’=S=S1+S2

r2T2

T3 T4

r4T4

T2

r3T3

s

t

r4

r4

r5

r3
r1

r1

r2

r3

r2

Figure 3.4: Convex, piecewise linear functions f (and its epigraph S1 (top
left)), g (and its epigraph S2 (top right)), and f ⊗ g (and its epigraph S =
S1 + S2 (bottom)).

3.1. MIN-PLUS CALCULUS 139

Now, let s be the sum of the lengths of the horizontal projections of the segments
belonging to g and whose index is less than k, that is,

s =
∑

i⊆∂S2,1≤i≤k−1

Ti.

Then we can compute that

t− s = t−
k−1∑
i=1

Ti +
k−1∑
i=1

Ti −
∑

i⊆∂S2,1≤i≤k−1

Ti

= t−
k−1∑
i=1

Ti +
∑

i⊆∂S1,1≤i≤k−1

Ti

and that

f(t− s) = rk(t−
k−1∑
i=1

Ti) +
∑

i⊆∂S1,1≤i≤k−1

riTi

g(s) =
∑

i⊆∂S2,1≤i≤k−1

riTi.

The addition of the right hand sides of these two equations is equal to h′(t), because
of (3.9), and therefore f(t − s) + g(s) = h′(t). This shows that any point of ∂S ′

can be broken down into the sum of a point of ∂S1 and of a point of ∂S2, and hence
that ∂S ′ = ∂S1 + ∂S2, which in turn implies that S ′ = S1 + S2 = S. Therefore
h′ = f ⊗ g.

The last rule is easy to prove, and states that ⊗ is isotone, namely:

Theorem 3.1.7 (Isotonicity of ⊗). Let f, g, f ′, g′ ∈ F .

• Rule 10 (Isotonicity) If f ≤ g and f ′ ≤ g′ then f ⊗ f ′ ≤ g ⊗ g′.

We will use the following theorem:

Theorem 3.1.8. For f and g in F , if in addition g is continuous, then for any t there
is some t0 such that

(f ⊗ g)(t) = fl(t0) + g(t− t0) (3.10)

where fl(t0) = sup{s<t0} f(s) is the limit to the left of f at t0. If f is left-
continuous, then fl(t0) = f(t0).

Proof: Fix t. There is a sequence of times 0 ≤ sn ≤ t such that

inf
t0≤t

(f(t0) + g(t− t0)) = lim
n→∞ (f(sn) + g(t− sn)) (3.11)

Since 0 ≤ sn ≤ t, we can extract a sub-sequence that converges towards some value
t0. We take a notation shortcut and write limn→∞ sn = t0. If f is continuous, the

140 CHAPTER 3. BASIC MIN-PLUS AND MAX-PLUS CALCULUS

right hand-side in 3.11 is equal to fl(t0) + g(t − t0) which shows the proposition.
Otherwise f has a discontinuity at t0. Define δ = f(t0)− fl(t0). We show that we
can again extract a subsequence such that sn < t0. Indeed, if this would not be true,
we would have sn ≥ t0 for all but a finite number of indices n. Thus for n large
enough we would have

f(sn) ≥ fl(t0) + δ

and by continuity of g:

g(t− sn) ≥ g(t− t0)− δ

2
thus

f(sn) + g(t− sn) ≥ fl(t0) + g(t− t0) +
δ

2
Now

fl(t0) + g(t− t0) ≥ inf
s≤t

(f(s) + g(t− s))

thus

f(sn) + g(t− sn) ≥ inf
s≤t

(f(s) + g(t− s)) +
δ

2

which contradicts 3.11. Thus we can assume that sn ≤ t0 for n large enough and
thus limn→∞ f(sn) = fl(t0).

Finally, let us mention that it will sometimes be useful to break down a some-
what complex function into the convolution of a number of simpler functions. For
example, observe that the rate-latency function βR,T can be expressed as

βR,T = δT ⊗ λR. (3.12)

3.1.7 Sub-additive Functions

Another class of functions will be important in network calculus are sub-additive
functions, which are defined as follows.

Definition 3.1.11 (Sub-additive function). Let f be a function or a sequence of F .
Then f is sub-additive if and only if f(t+ s) ≤ f(t) + f(s) for all s, t ≥ 0.

Note that this definition is equivalent to imposing that f ≤ f ⊗ f . If f(0) = 0,
it is equivalent to imposing that f ⊗ f = f .

We will see in the following theorem that concave functions passing through the
origin are sub-additive. So the piecewise linear function f1 given by (3.1), being
concave and passing through the origin, is sub-additive.

The set of sub-additive functions is however larger than that of concave func-
tions: the piecewise linear function f2 given by (3.2) is not concave, yet one check
that it verifies Definition 3.1.11 and hence is sub-additive.

Contrary to concave and convex functions, it is not always obvious, from a quick
visual inspection of the graph of a function, to establish whether it is sub-additive or
not. Consider the two functions βR,T +K ′ and βR,T +K ′′, represented respectively

3.1. MIN-PLUS CALCULUS 141

on the left and right of Figure 3.5. Although they differ only by the constants K′ and
K ′′, which are chosen so that 0 < K′′ < RT < K ′ < +∞, we will see βR,T +K ′

is sub-additive but not βR,T + K ′′. Consider first βR,T + K ′. If s + t ≤ T , then

T
t

 βR,T(t) + K’

K’
RT

T
t

 βR,T(t) + K”

K”
RT

RR

Figure 3.5: Functions βR,T + K ′ (left) and βR,T + K ′′ (right). The only differ-
ence between them is the value of the constant: K′′ < RT < K ′.

s, t ≤ T and

βR,T (s+ t) +K ′ = K ′ < 2K ′ = (βR,T (s) +K ′) + (βR,T (t) +K ′).

On the other hand, if s+ t > T , then, since K′ > RT ,

βR,T (t+ s) +K ′ = R(t+ s− T) +K ′

< R(s+ t− T) +K ′ + (K ′ −RT)
= (R(t− T) +K ′) + (R(s− T) +K ′)
≤ (βR,T (t) +K ′) + (βR,T (s) +K ′),

which proves that βR,T +K ′ is sub-additive. Consider next βR,T +K ′′. Pick s = T
and t > T . Then, since K′′ < RT ,

βR,T (t+ s) +K ′′ =
βR,T (t+ T) +K ′′ = Rt+K ′′ = R(t− T) +RT +K ′′

> R(t− T) +K ′′ +K ′′ = (βR,T (t) +K ′′) + (βR,T (s) +K ′′),

which proves that βR,T +K ′′ is not sub-additive.
Let us list now some properties of sub-additive functions.

Theorem 3.1.9 (Properties of sub-additive functions). Let f, g ∈ F .

• (Star-shaped functions passing through the origin) If f is star-shaped with
f(0) = 0, then f is sub-additive.

• (Sum of sub-additive functions) If f and g are sub-additive, so is (f + g).

142 CHAPTER 3. BASIC MIN-PLUS AND MAX-PLUS CALCULUS

• (Min-plus convolution of sub-additive functions) If f and g are sub-additive,
so is (f ⊗ g).

The first property also implies that concave functions passing through the origin
are sub-additive. The proof of the second property is simple and left to the reader,
we prove the two others.

Proof: (Star-shaped functions passing through the origin) Let s, t ≥ 0 be given.
If s or t = 0, one clearly has that f(s+ t) = f(s)+f(t). Assume next that s, t > 0.
As f is star-shaped,

f(s) ≥ s

s+ t
f(s+ t)

f(t) ≥ t

s+ t
f(s+ t)

which sum up to give f(s)+f(t) ≥ f(s+t). (Min-plus convolution of sub-additive

functions) Let s, t ≥ 0 be given. Then

(f ⊗ g)(s) + (f ⊗ g)(t)
= inf

0≤u≤s
{f(s− u) + g(u)}+ inf

0≤v≤t
{f(t− v) + g(v)}

= inf
0≤u≤s

inf
0≤v≤t

{f(s− u) + f(t− v) + g(u) + g(v)}
≥ inf

0≤u≤s
inf

0≤v≤t
{f(s+ t− (u+ v)) + g(u+ v)}

= inf
0≤u+v≤s+t

{f(s+ t− (u+ v)) + g(u+ v)}
= (f ⊗ g)(t+ s).

The minimum of any number of star-shaped (resp. concave) functions is still
a star-shaped (resp. concave) function. If one of them passes through the origin, it
is therefore a sub-additive function: for example, as already mentioned earlier, the
concave piecewise linear function f1 given by (3.1) is sub-additive. On the other
hand the minimum of two sub-additive functions is not, in general, sub-additive.
Take for example the minimum between a rate latency function βR′,T and function
f2 given by (3.2), when R′ = 2R/3. with R, T as defined in (3.2). Both functions
are sub-additive, but one can check that βR′,T ∧ f2 is not.

The first property of the previous theorem tells us that all star-shaped functions
are sub-additive. One can check for example that βR,T+K ′ is a star-shaped function
(which is not concave), but not βR,T +K ′′. One can also wonder if, conversely, all
sub-additive functions are star-shaped. The answer is no: take again function f2
given by (3.2), which is sub-additive. It is not star-shaped, because f(2T)/2T =
R/2 < 2R/3 = f(3T)/3T .

3.1. MIN-PLUS CALCULUS 143

3.1.8 Sub-additive Closure

Given a function f ∈ F , if f(0) = 0, then f ≥ f ⊗ f ≥ 0. By repeating this oper-
ation, we will get a sequence of functions that are each time smaller and converges
to some limiting function that, as we will see, is the largest sub-additive function
smaller than f and zero in t = 0, and is called sub-additive closure of f . The formal
definition is as follows.

Definition 3.1.12 (Sub-additive closure). Let f be a function or a sequence of F .
Denote f (n) the function obtained by repeating (n−1) convolutions of f with itself.
By convention, f (0) = δ0, so that f (1) = f , f (2) = f⊗f , etc. Then the sub-additive
closure of f , denoted by f , is defined by

f = δ0 ∧ f ∧ (f ⊗ f) ∧ (f ⊗ f ⊗ f) ∧ . . . = inf
n≥0

{
f (n)

}
. (3.13)

Example. Let us compute the sub-additive closure of the two functions βR,T + K ′

and βR,T + K ′′, represented respectively on the left and right of Figure 3.5. Note
first that Rule 7 of Theorem 3.1.5 and Rule 9 of Theorem 3.1.6 yield that for any
K > 0,

(βR,T +K)⊗ (βR,T +K) = (βR,T ⊗ βR,T) + 2K = βR,2T + 2K.

Repeating this convolution n times yields that for all integers n ≥ 1

(βR,T +K)(n) = βR,nT + nK.

Now, if K = K ′ > RT and t ≤ nT ,

βR,nT + nK ′ = nK ′ > (n− 1)RT +K ′ = R(nT − T) +K ′

≥ R[t− T]+ +K ′ = βR,T +K ′,

whereas if t > nT

βR,nT + nK ′ = R(t− nT) + nK ′ = R(t− T) + (n− 1)(K ′ −RT) +K ′

> R(t− T) +K ′ = βR,T +K ′

so that (βR,T +K ′)(n) ≥ βR,T +K ′ for all n ≥ 1. Therefore (3.13) becomes

βR,T +K ′ = δ0 ∧ inf
n≥1

{
(βR,T +K ′)(n)

}
= δ0 ∧ (βR,T +K ′),

and is shown on the left of Figure 3.6. On the other hand, if K = K′′ < RT , the
infimum in the previous equation is not reached in n = 1 for every t > 0, so that
the sub-additive closure is now expressed by

βR,T +K ′′ = δ0 ∧ inf
n≥1

{
(βR,T +K ′′)(n)

}
= δ0 ∧ inf

n≥1
{(βR,nT + nK ′′)} ,

and is shown on the right of Figure 3.6.
Among all the sub-additive functions that are smaller than f and that are zero in

t = 0, there is one that is an upper bound for all others; it is equal to f , as established
by the following theorem.

144 CHAPTER 3. BASIC MIN-PLUS AND MAX-PLUS CALCULUS

T
t

 βR,T(t) + K’

K’
RT

T
t

 βR,T(t) + K”

K”
2K”
3K”
4K”

2T 3T 4T

Figure 3.6: The sub-additive closure of functions βR,T + K ′ (left) and βR,T +
K ′′ (right), when K ′′ < RT < K ′.

Theorem 3.1.10 (Sub-additive closure). Let f be a function or a sequence of F ,
and let f be its sub-additive closure. Then (i) f ≤ f , f ∈ F and f is sub-additive.
(ii) if function g ∈ F is sub-additive, with g(0) = 0 and g ≤ f , then g ≤ f .

Proof: (i) It is obvious from Definition 3.1.12, that f ≤ f . By repeating (n− 1)
times Rule 1 of Theorem 3.1.5, one has that f (n) ∈ F for all n ≥ 1. As f (0) =
δ0 ∈ F too, f = infn≥0{f (n)} ∈ F . Let us show next that f is sub-additive. For
any integers n,m ≥ 0, and for any s, t ≥ 0,

f (n+m)(t+ s) = (f (n) ⊗ f (m))(t+ s) = inf
0≤u≤t+s

{f (n)(t+ s− u) + f (m)(u)}

≤ f (n)(t) + f (m)(s)

so that

f(t+ s) = inf
n+m≥0

{f (n+m)(t+ s)} = inf
n,m≥0

{f (n+m)(t+ s)}

≤ inf
n,m≥0

{f (n)(t) + f (m)(s)}

= inf
n≥0

{f (n)(t)}+ inf
m≥0

{f (m)(s)} = f(t) + f(s)

which shows that f is sub-additive. (ii) Next, suppose that g ∈ F is sub-additive,
g(0) = 0 and g ≤ f . Suppose that for some n ≥ 1, f (n) ≥ g. Clearly, this holds
for n = 0 (because g(0) = 0 implies that g ≤ δ0 = f (0)) and for n = 1. Now, this
assumption and the sub-additivity of g yield that for any 0 ≤ s ≤ t, f (n)(t − s) +
f(s) ≥ g(t − s) + g(s) ≥ g(t) and hence that f (n+1)(t) ≥ g(t). By recursion on
n, f (n) ≥ g for all n ≥ 0, and therefore f = infn≥0{f (n)} ≥ g.

Corollary 3.1.1 (Sub-additive closure of a sub-additive function). Let f ∈ F .
Then the three following statements are equivalent: (i) f(0) = 0 and f is sub-
additive (ii) f ⊗ f = f (iii) f = f .

3.1. MIN-PLUS CALCULUS 145

Proof: (i) ⇒ (ii) follows immediately from from Definition 3.1.11. (ii) ⇒ (iii):
first note that f ⊗ f = f implies that f (n) = f for all n ≥ 1. Second, note
that (f ⊗ f)(0) = f(0) + f(0), which implies that f(0) = 0. Therefore f =
infn≥0{f (n)} = δ0 ∧ f = f . (iii) ⇒ (i) follows from Theorem 3.1.10.

The following theorem establishes some additional useful properties of the sub-
additive closure of a function.

Theorem 3.1.11 (Other properties of sub-additive closure). Let f, g ∈ F

• (Isotonicity) If f ≤ g then f ≤ g.

• (Sub-additive closure of a minimum) f ∧ g = f ⊗ g.

• (Sub-additive closure of a convolution) f ⊗ g ≥ f ⊗ g. If f(0) = g(0) = 0
then f ⊗ g = f ⊗ g.

Proof: (Isotonocity) Suppose that we have shown that for some n ≥ 1, f (n) ≥
g(n) (Clearly, this holds for n = 0 and for n = 1). Then applying Theorem 3.1.7 we
get

f (n+1) = f (n) ⊗ f ≥ g(n) ⊗ g = g(n+1),

which implies by recursion on n that f ≤ g. (Sub-additive closure of a minimum)

One easily shows, using Theorem 3.1.5, that

(f ∧ g)(2) = (f ⊗ f) ∧ (f ⊗ g) ∧ (g ⊗ g).

Suppose that we have shown that for some n ≥ 0, the expansion of (f ∧ g)(n) is

(f ∧ g)(n) =
f (n) ∧ (f (n−1) ⊗ g) ∧ (f (n−2) ⊗ g(2)) ∧ . . . ∧ g(n) =

inf
0≤k≤n

{
f (n−k) ⊗ g(k)

}
.

Then

(f ∧ g)(n+1) = (f ∧ g)⊗ (f ∧ g)(n) =
{
f ⊗ (f ∧ g)(n)

}
∧
{
g ⊗ (f ∧ g)(n)

}
= inf

0≤k≤n

{
f (n+1−k) ⊗ g(k)

}
∧ inf

0≤k≤n

{
f (n−k) ⊗ g(k+1)

}
= inf

0≤k≤n

{
f (n+1−k) ⊗ g(k)

}
∧ inf

1≤k′≤n+1

{
f (n+1−k′) ⊗ g(k

′)
}

= inf
0≤k≤n+1

{
f (n+1−k) ⊗ g(k)

}
which establishes the recursion for all n ≥ 0. Therefore

146 CHAPTER 3. BASIC MIN-PLUS AND MAX-PLUS CALCULUS

f ∧ g = inf
n≥0

inf
0≤k≤n

{
f (n−k) ⊗ g(k)

}
= inf

k≥0
inf
n≥k

{
f (n−k) ⊗ g(k)

}
= inf

k≥0
inf
l≥0

{
f (l) ⊗ g(k)

}
= inf

k≥0

{
inf
l≥0
{f (l)} ⊗ g(k)

}
= inf

k≥0

{
f ⊗ g(k)

}
= f ⊗ inf

k≥0
{g(k)} = f ⊗ g.

(Sub-additive closure of a convolution) Using the same recurrence argument as
above, one easily shows that (f ⊗ g)(n) = f (n) ⊗ g(n), and hence that

f ⊗ g = inf
n≥0

{
(f ⊗ g)(n)

}
= inf

n≥0

{
f (n) ⊗ g(n)

}
≥ inf

n,m≥0

{
f (n) ⊗ g(m)

}
=

(
inf
n≥0

{
f (n)

})
⊗
(
inf
m≥0

{
g(m)

})
= f ⊗ g. (3.14)

If f(0) = g(0) = 0, Rule 8 in Theorem 3.1.6 yields that f⊗g ≤ f∧g, and therefore
that f ⊗ g ≤ f ∧ g. Now we have just shown above that f ∧ g = f ⊗ g, so that

f ⊗ g ≤ f ⊗ g.

Combining this result with (3.14), we get f ⊗ g = f ⊗ g.
Let us conclude this section with an example illustrating the effect that a differ-

ence in taking t continuous or discrete may have. This example is the computation
of the sub-additive closure of

f(t) =
{

t2 if t > 0
0 if t ≤ 0

Suppose first that t ∈ R. Then we compute that

(f ⊗ f)(t) = inf
0≤s≤t

{
(t− s)2 + s2

}
= (t/2)2 + (t/2)2 = t2/2

as the infimum is reached in s = t/2. By repeating this operation n times, we obtain

f (n)(t) = inf
0≤s≤t

{
(t− s)2 + (f (n−1))2(s)

}
=

inf
0≤s≤t

{
(t− s)2 + s2/(n− 1)

}
= t2/n

as the infimum is reached in s = t(1− 1/n). Therefore

f(t) = inf
n≥0

{t2/n} = lim
n→∞ t2/n = 0.

Consequently, if t ∈ R, the sub-additive closure of function f is

f = 0,

3.1. MIN-PLUS CALCULUS 147

t

f(t)

f (t)(2)

f (t)(n)

f(t)
t

f(t)

f(t)

f (t)(2)

f (t)(n)

1 2 3
1

Figure 3.7: The sub-additive closure of f(t) = tλ1(t), when t ∈ R (left) and
when t ∈ Z (right).

as shown on the left of Figure 3.7.
Now, if t ∈ Z, the sequence f(t) is convex and piecewise linear, as we can

always connect the different successive points (t, t2) for all t = 0, 1, 2, 3, . . .: the
resulting graph appears as a succession of segments of slopes equal to (2t+ 1) (the
first segment in particular has slope 1), and of projections on the horizontal axis
having a length equal to 1, as shown on the right of Figure 3.7. Therefore we can
apply Rule 9 of Theorem 3.1.6, which yields that f ⊗ f is obtained by doubling
the length of the different linear segments of f , and putting them end-to-end by
increasing slopes. The analytical expression of the resulting sequence is

(f ⊗ f)(t) = min
0≤s≤t

{
(t− s)2 + s2

}
= �t2/2�.

Sequence f (2) = f ⊗ f is again convex and piecewise linear. Note the first segment
has slope 1, but has now a double length. If we repeat n times this convolution, it
will result in a convex, piecewise linear sequence f (n)(t) whose first segment has
slope 1 and horizontal length n:

f (n)(t) = t if 0 ≤ t ≤ n,

as shown on the right of Figure 3.7. Consequently, the sub-additive closure of se-
quence f is obtained by letting n → ∞, and is therefore f(t) = t for t ≥ 0.
Therefore, if t ∈ Z,

f = λ1.

3.1.9 Min-plus Deconvolution

The dual operation (in a sense that will clarified later on) of the min-plus convolution
is the min-plus deconvolution. Similar considerations as the ones of Subsection 3.1.1
can be made on the difference between a sup and a max. Notation ∨ stands for sup
or, if it exists, for max: a ∨ b = max{a, b}.

148 CHAPTER 3. BASIC MIN-PLUS AND MAX-PLUS CALCULUS

Definition 3.1.13 (Min-plus deconvolution). Let f and g be two functions or se-
quences of F . The min-plus deconvolution of f by g is the function

(f � g)(t) = sup
u≥0

{f(t+ u)− g(u)} . (3.15)

If both f(t) and g(t) are infinite for some t, then Equation (3.15) is not defined.
Contrary to min-plus convolution, function (f � g)(t) is not necessarily zero for
t ≤ 0, and hence this operation is not closed in F , as shown by the following
example.

Example. Consider again the two functions γr,b and βR,T , with 0 < r < R, and
let us compute the min-plus deconvolution of γr,b by βR,T . We have that

(γr,b � βR,T)(t)
= sup

u≥0

{
γr,b(t+ u)−R[u− T]+

}
= sup

0≤u≤T

{
γr,b(t+ u)−R[u− T]+

} ∨ sup
u>T

{
γr,b(t+ u)−R[u− T]+

}
= sup

0≤u≤T
{γr,b(t+ u)} ∨ sup

u>T
{γr,b(t+ u)−Ru+RT}

= {γr,b(t+ T)} ∨ sup
u>T

{γr,b(t+ u)−Ru+RT} . (3.16)

Let us first compute this expression for t ≤ −T . Then γr,b(t + T) = 0 and (3.16)
becomes

(γr,b � βR,T)(t)
= 0 ∨ sup

T<u≤−t
{γr,b(t+ u)−Ru+RT}

∨ sup
u>−t

{γr,b(t+ u)−Ru+RT}
= 0 ∨ sup

T<u≤−t
{0−Ru+RT} ∨ sup

u>−t
{b+ r(t+ u)−Ru+RT}

= 0 ∨ 0 ∨ {b+Rt+RT} = [b+R(t+ T)]+ .

Let us next compute (γr,b � βR,T)(t) for t > −T . Then (3.16) becomes

(γr,b � βR,T)(t) = {b+ r(t+ T)} ∨ sup
u>T

{b+ r(t+ u)−Ru+RT}
= {b+ r(t+ T)} ∨ {b+ r(t+ T)} = b+ r(t+ T).

The result is shown in Figure 3.8.
Let us now state some properties of� (Other properties will be given in the next

section).

Theorem 3.1.12 (Properties of �). Let f, g, h ∈ F .

• Rule 11 (Isotonicity of �) If f ≤ g, then f � h ≤ g � h and h� f ≥ h� g.

3.1. MIN-PLUS CALCULUS 149

r

b

–T t

R

(γr,b ∅ βR,T)(t)

Figure 3.8: Function γr,b � βR,T when 0 < r < R.

• Rule 12 (Composition of �) (f � g)� h = f � (g ⊗ h).

• Rule 13 (Composition of � and ⊗) (f ⊗ g)� g ≤ f ⊗ (g � g).

• Rule 14 (Duality between � and ⊗) f � g ≤ h if and only if f ≤ g ⊗ h.

• Rule 15 (Self-deconvolution) (f � f) is a sub-additive function of F such
that (f � f)(0) = 0.

Proof: (Rule 11) If f ≤ g, then for any h ∈ F
(f � h)(t) = sup

u≥0
{f(t+ u)− h(u)} ≤ sup

u≥0
{g(t+ u)− h(u)} = (g � h)(t)

(h� f)(t) = sup
u≥0

{h(t+ u)− f(u)} ≥ sup
u≥0

{h(t+ u)− g(u)} = (h� g)(t).

(Rule 12) One computes that

((f � g)� h)(t) = sup
u≥0

{(f � g)(t+ u)− h(u)}

= sup
u≥0

{
sup
v≥0

{f(t+ u+ v)− g(v)} − h(u)
}

= sup
u≥0

{
sup
v′≥u

{f(t+ v′)− g(v′ − u)} − h(u)
}

= sup
u≥0

sup
v′≥u

{f(t+ v′)− {g(v′ − u) + h(u)}}

= sup
v′≥0

sup
0≤u≤v′

{f(t+ v′)− {g(v′ − u) + h(u)}}

= sup
v′≥0

{
f(t+ v′)− inf

0≤u≤v′
{g(v′ − u) + h(u)}

}
= sup

v′≥0
{f(t+ v′)− (g ⊗ h)(v′)} = (f � (g ⊗ h))(t).

150 CHAPTER 3. BASIC MIN-PLUS AND MAX-PLUS CALCULUS

(Rule 13) One computes that

((f ⊗ g)� g)(t) = sup
u≥0

{(f ⊗ g)(t+ u)− g(u)}

= sup
u≥0

inf
0≤s≤t+u

{f(t+ u− s) + g(s)− g(u)}

= sup
u≥0

inf
−u≤s′≤t

{f(t− s′) + g(s′ + u)− g(u)}

≤ sup
u≥0

inf
0≤s′≤t

{f(t− s′) + g(s′ + u)− g(u)}

≤ sup
u≥0

inf
0≤s′≤t

{
f(t− s′) + sup

v≥0
{g(s′ + v)− g(v)}

}
= inf

0≤s′≤t

{
f(t− s′) + sup

v≥0
{g(s′ + v)− g(v)}

}
= inf

0≤s′≤t
{f(t− s′) + (g � g)(s′)} = (f ⊗ (g � g))(t).

(Rule 14) Suppose first that (f � g)(s) ≤ h(s) for all s. Take any s, v ≥ 0. Then

f(s+ v)− g(v) ≤ sup
u≥0

{f(s+ u)− g(u)} = (f � g)(s) ≤ h(s)

or equivalently,
f(s+ v) ≤ g(v) + h(s).

Let t = s+ v. The former inequality can be written as

f(t) ≤ g(t− s) + h(s).

As it is verified for all t ≥ s ≥ 0, it is also verified in particular for the value of
s that achieves the infimum of the right-hand side of this inequality. Therefore it is
equivalent to

f(t) ≤ inf
0≤s≤t

{g(t− s) + h(s)} = (g ⊗ h)(t)

for all t ≥ 0. Suppose now that for all v, f(v) ≤ (g ⊗ h)(v). Pick any t ∈ R. Then,
since g, h ∈ F ,

f(v) ≤ inf
0≤s≤v

{g(v − s) + h(s)} = inf
s∈R

{g(v − s) + h(s)} ≤ g(t− v) + h(t).

Let u = t− v, the former inequality can be written as

f(t+ u)− g(u) ≤ h(t).

As this is true for all u, it is also verified in particular for the value of u that achieves
the supremum of the left-hand side of this inequality. Therefore it is equivalent to

sup
u∈R

{f(t+ u)− g(u)} ≤ h(t).

3.1. MIN-PLUS CALCULUS 151

Now if u < 0, g(u) = 0, so that supu<0{f(t + u) − g(u)} = f(t) and the former
inequality is identical to

sup
u≥0

{f(t+ u)− g(u)} ≤ h(t)

for all t. (Rule 15) It is immediate to check that (f � f)(0) = 0 and that f � f is

wide-sense increasing. Now,

(f � f)(s) + (f � f)(t)
= sup

u≥0
{f(t+ u)− f(u)}+ sup

v≥0
{f(s+ v)− f(v)}

= sup
u≥0

{f(t+ u)− f(u)}+ sup
w≥−t

{f(s+ t+ w)− f(t+ w)}

≥ sup
w≥0

{
sup
u≥0

{f(t+ u)− f(u) + f(s+ t+ w)− f(t+ w)}
}

≥ sup
w≥0

{f(t+ w)− f(w) + f(s+ t+ w)− f(t+ w)}

= (f � f)(s+ t).

Let us conclude this section by a special property that applies to self-deconvolution
of sub-additive functions.

Theorem 3.1.13 (Self-deconvolution of sub-additive functions). Let f ∈ F . Then
f(0) = 0 and f is sub-additive if and only if f � f = f .

Proof: (⇒) If f is sub-additive, then for all t, u ≥ 0, f(t+u)−f(u) ≤ f(t) and
therefore for all t ≥ 0,

(f � f)(t) = sup
u≥0

{f(t+ u)− f(u)} ≤ f(t).

On the other hand, if f(0) = 0,

(f � f)(t) = sup
u≥0

{f(t+ u)− f(u)} ≥ f(t)− f(0) = f(t).

Combining both equations, we get that f�f = f . (⇐) Suppose now that f�f = f .
Then f(0) = (f � f)(0) = 0 and for any t, u ≥ 0, f(t) = (f � f)(t) ≥ f(t+u)−
f(u) so that f(t) + f(u) ≥ f(t+ u), which shows that f is sub-additive.

3.1.10 Representation of Min-plus Deconvolution by Time In-
version

Min-plus deconvolution can be represented in the time inverted domain by min-
plus convolution, for functions that have a finite lifetime. Function g ∈ G has a

152 CHAPTER 3. BASIC MIN-PLUS AND MAX-PLUS CALCULUS

finite lifetime if there exist some finite T0 and T such that g(t) = 0 if t ≤ T0 and
g(t) = g(T) for t ≥ T . Call Ĝ the subset of G, which contains functions having a
finite lifetime. For function g ∈ Ĝ, we use the notation g(+∞) as a shorthand for
supt∈R{g(t)} = limt→+∞ g(t).

Lemma 3.1.1. Let f ∈ F be such that limt→+∞ f(t) = +∞. For any g ∈ Ĝ, g�f

is also in Ĝ and (g � f)(+∞) = g(+∞).

Proof: Define L = g(+∞) and call T a number such that g(t) = L for t ≥ T .
f(0) ≥ 0 implies that g � f ≤ g(+∞) = g(L). Thus

(g � f)(t) ≤ L for t ≥ T. (3.17)

Now since limt→+∞ f(t) = +∞, there is some T1 > T such that f(t) ≥ L for
all t > T1. Now let t > 2T1. If u > T1, then f(u) ≥ L. Otherwise, u ≤ T1 thus
t − u ≥ t − T1 > T1 thus g(t − u) ≥ L. Thus in all cases f(u) + g(t − u) ≥ L.
Thus we have shown that

(g ⊗ f)(t) ≥ L for t > 2T1. (3.18)

Combining (3.17) and (3.18) shows the lemma.

Definition 3.1.14 (Time Inversion). For a fixed T ∈ [0,+∞[, the inversion opera-
tor ΦT is defined on Ĝ by:

ΦT (f)(g) = g(+∞)− g(T − t)

Graphically, time inversion can be obtained by a rotation of 180o around the
point (T2 , g(+∞)

2). It is simple to check thatΦT (g) is in Ĝ, that time inversion is sym-
metrical (ΦT (ΦT (g)) = g) and preserves the total value (ΦT (g)(+∞) = g(+∞)).
Lastly, for any α and T , α is an arrival curve for g if and only if α is an arrival curve
for ΦT (g).

Theorem 3.1.14 (Representation of Deconvolution by Time Inversion). Let g ∈
Ĝ, and let T be such that g(T) = g(+∞). Let f ∈ F be such that limt→+∞ f(t) =
+∞. Then

g � f = ΦT (ΦT (g)⊗ f) (3.19)

The theorem says that g � f can be computed by first inverting time, then com-
puting the min-plus convolution between f , and the time-inverted function g, and
then inverting time again. Figure 3.9 shows a graphical illustration.

3.1. MIN-PLUS CALCULUS 153

g(t)

f(t)

T

T

t

0
T

(g)(t)ΦT

t

g(t)

T/2

g(T)/2

T

t

t

T/2

g(T)/2

(g)(t)ΦT

(g) ⊗ f)(t)(Φ
T

(g) ⊗ f)(t)(Φ
T

(g) ⊗ f))(t) = (g ∅ f)(t)(ΦT(ΦT

Figure 3.9: Representation of the min-plus deconvolution of g by f = γr,b
by time-inversion. From top to bottom: functions f and g, function ΦT (g),
function ΦT (g)⊗ f and finally function g � f = ΦT (ΦT (g)⊗ f).

154 CHAPTER 3. BASIC MIN-PLUS AND MAX-PLUS CALCULUS

Proof: The proof consists in computing the right handside in Equation (3.19).
Call ĝ = ΦT (g). We have, by definition of the inversion

ΦT (ΦT (g)⊗ f) = ΦT (ĝ ⊗ f) = (ĝ ⊗ f)(+∞)− (ĝ ⊗ f)(T − t)

Now from Lemma 3.1.1 and the preservation of total value:

(ĝ ⊗ f)(+∞) = ĝ(+∞) = g(+∞)

Thus, the right-handside in Equation (3.19) is equal to

g(+∞)− (ĝ ⊗ f)(T − t) = g(+∞)− inf
u≥0

{ĝ(T − t− u) + f(u)}

Again by definition of the inversion, it is equal to

g(+∞)− inf
u≥0

{g(+∞)− g(t+ u) + f(u)} = sup
u≥0

{g(t+ u)− f(u)}.

3.1.11 Vertical and Horizontal Deviations

The deconvolution operator allows to easily express two very important quantities in
network calculus, which are the maximal vertical and horizontal deviations between
the graphs of two curves f and g of F . The mathematical definition of these two
quantities is as follows.

Definition 3.1.15 (Vertical and horizontal deviations). Let f and g be two func-
tions or sequences of F . The vertical deviation v(f, g) and horizontal deviation
h(f, g) are defined as

v(f, g) = sup
t≥0

{f(t)− g(t)} (3.20)

h(f, g) = sup
t≥0

{inf {d ≥ 0 such that f(t) ≤ g(t+ d)}} . (3.21)

Figure 3.10 illustrates these two quantities on an example.
Note that (3.20) can be recast as

v(f, g) = (f � g)(0) (3.22)

whereas (3.20) is equivalent to requiring that h(f, g) is the smallest d ≥ 0 such that
for all t ≥ 0, f(t) ≤ g(t+ d) and can therefore be recast as

h(f, g) = inf {d ≥ 0 such that (f � g)(−d) ≤ 0} .

Now the horizontal deviation can be more easily computed from the pseudo-inverse
of g. Indeed, Definition 3.1.7 yields that

3.2. MAX-PLUS CALCULUS 155

t

f(t)

g(t)

h(f,g)

v(f,g)

Figure 3.10: The horizontal and vertical deviations between functions f and
g.

g−1(f(t)) = inf {∆ such that g(∆) ≥ f(t)}
= inf {d ≥ 0 such that g(t+ d) ≥ f(t)}+ t

so that (3.21) can be expressed as

h(f, g) = sup
t≥0

{
g−1(f(t))− t

}
= (g−1(f)� λ1)(0). (3.23)

We have therefore the following expression of the horizontal deviation between f
and g:

Proposition 3.1.1 (Horizontal deviation).

h(f, g) = sup
t≥0

{
g−1(f(t))− t

}
.

3.2 Max-plus Calculus

Similar definitions, leading to similar properties, can be derived if we replace the
infimum (or minimum, it is exists) by a supremum (or maximum, if it exists).
We use the notation ∨ for denoting sup or max. In particular, one can show that
(R∪{−∞},∨,+) is also a dioid, and construct a max-plus convolution and decon-
volution, which are defined as follows.

3.2.1 Max-plus Convolution and Deconvolution

Definition 3.2.1 (Max-plus convolution). Let f and g be two functions or se-
quences of F . The max-plus convolution of f and g is the function

(f⊗g)(t) = sup
0≤s≤t

{f(t− s) + g(s)} . (3.24)

156 CHAPTER 3. BASIC MIN-PLUS AND MAX-PLUS CALCULUS

(If t < 0, (f⊗g)(t) = 0).

Definition 3.2.2 (Max-plus deconvolution). Let f and g be two functions or se-
quences of F . The max-plus deconvolution of f by g is the function

(f�g)(t) = inf
u≥0

{f(t+ u)− g(u)} . (3.25)

3.2.2 Linearity of Min-plus Deconvolution in Max-plus Algebra

Min-plus deconvolution is, in fact, an operation that is linear in (R+,∨,+). Indeed,
one easily shows the following property.

Theorem 3.2.1 (Linearity of � in max-plus algebra). Let f, g, h ∈ F .

• Rule 16 (Distributivity of� with respect to ∨) (f∨g)�h = (f�h)∨(g�h).

• Rule 17 (Addition of a constant) For any K ∈ R+, (f+K)�g = (f�g)+K.

Min-plus convolution is not, however, a linear operation in (R+,∨,+), because
in general

(f ∨ g)⊗ h �= (f ⊗ h) ∨ (g ⊗ h).

Indeed, take f = β3R,T , g = λR and h = λ2R for some R, T > 0. Then using
Rule 9, one easily computes (see Figure 3.11) that

f ⊗ h = β3R,T ⊗ λ2R = β2R,T

g ⊗ h = λR ⊗ λ2R = λR

(f ∨ g)⊗ h = (β3R,T ∨ λR)⊗ λ2R = β2R,3T/4 ∨ λR

�= β2R,T ∨ λR = (f ⊗ h) ∨ (g ⊗ h).

Conversely, we have seen that min-plus convolution is a linear operation in (R+,∧,+),
and one easily shows that min–plus deconvolution is not linear in (R+,∧,+). Fi-
nally, let us mention that one can also replace + by ∧, and show that (R∪ {+∞}∪
{−∞},∨,∧) is also a dioid. Remark However, as we have seen above, as soon as
the three operations ∧, ∨ and + are involved in a computation, one must be careful
before applying any distribution.

3.3 Exercises

Exercise 3.1. 1. Compute α⊗ δ for any function α

2. Express the rate-latency function by means of δ and λ functions.

Exercise 3.2. 1. Compute
⊗

i βi when βi is a rate-latency function

2. Compute β1 ⊗ β2 with β1(t) = R(t− T)+ and β2(t) = (rt+ b)1{t>0}

Exercise 3.3. 1. Is ⊗ distributive with respect to the min operator ?

3.3. EXERCISES 157

t

 ((f⊗h)∨(g⊗h))(t)

3T/4 t

2R

2T 3T/2

3RT/2

R

T

 ((f∨g)⊗h))(t)

R

2R

2RT

Figure 3.11: Function (f ⊗ h) ∨ (g ⊗ h) (left) and (f ∨ g) ⊗ h (right) when
f = β3R,T , g = λR and h = λ2R for some R, T > 0.

158 CHAPTER 3. BASIC MIN-PLUS AND MAX-PLUS CALCULUS

Chapter 4

Min-plus and Max-plus System
Theory

In Chapter 3 we have introduced the basic operations to manipulate functions and
sequences in Min-Plus or Max-Plus algebra. We have studied in detail the opera-
tions of convolution, deconvolution and sub-additive closure. These notions form
the mathematical cornerstone on which a first course of network calculus has to be
built.

In this chapter, we move one step further, and introduce the theoretical tools to
solve more advanced problems in network calculus developed in the second half
of the book. The core object in Chapter 3 were functions and sequences on which
operations could be performed. We will now place ourselves at the level of operators
mapping an input function (or sequence) to an output function or sequence. Max-
plus system theory is developed in detail in [26], here we focus on the results that
are needed for the remaining chapters of the book. As in Chapter 3, we focus here
Min-Plus System Theory, as Max-Plus System Theory follows easily by replacing
minimum by maximum, and infimum by supremum.

4.1 Min-plus and Max-plus Operators

4.1.1 Vector Notations

Up to now, we have only worked with scalar operations on scalar functions in F or
G. In this chapter, we will also work with vectors and matrices. The operations are
extended in a straightforward manner.

Let J be a finite, positive integer. For vectors Ez, Ez′ ∈ R+ J , we define Ez ∧ Ez′ as
the coordinate-wise minimum of Ez and Ez′, and similarly for the + operator. We write
Ez ≤ Ez′ with the meaning that zj ≤ z′j for 1 ≤ j ≤ J . Note that the comparison

so defined is not a total order, that is, we cannot guarantee that either Ez ≤ Ez′ or

159

160 CHAPTER 4. MIN-PLUS AND MAX-PLUS SYSTEM THEORY

Ez′ ≤ Ez holds. For a constant K, we note Ez + K the vector defined by adding K to
all elements of Ez.

We denote by GJ the set of J-dimensional wide-sense increasing real-valued
functions or sequences of parameter t, and FJ the subset of functions that are zero
for t < 0.

For sequences or functions Ex(t), we note similarly (Ex ∧ Ey)(t) = Ex(t) ∧ Ey(t)
and (Ex + K)(t) = Ex(t) + K for all t ≥ 0, and write Ex ≤ Ey with the meaning that
Ex(t) ≤ Ey(t) for all t.

For matrices A,B ∈ R+ J ×R+ J , we define A∧B as the entry-wise minimum
of A and B. For vector Ez ∈ R+ J , the ‘multiplication’ of vector Ez ∈ R+ J by matrix
A is – remember that in min-plus algebra, multiplication is the + operation – by

A+ Ez,

and has entries min1≤j≤J(aij + zj). Likewise, the ‘product’ of two matrices A and
B is denoted by A+B and has entries min1≤j≤J(aij + bjk) for 1 ≤ i, k ≤ J .

Here is an example of a ‘multiplication’ of a vector by a matrix, when J = 2[
5 3
1 3

]
+
[
2
1

]
=
[
4
3

]
and an example of a matrix ‘multiplication’ is[

5 3
1 3

]
+
[
2 4
1 0

]
=
[
4 3
3 3

]
.

We denote by FJ2
the set of J × J matrices whose entries are functions or

sequences of F , and similarly for GJ2
.

The min-plus convolution of a matrix A ∈ FJ2
by a vector Ez ∈ FJ is the vector

of FJ defined by

(A⊗ Ez)(t) = inf
0≤s≤t

{A(t− s) + Ez(s)}

and whose J coordinates are thus

min
1≤j≤J

{aij ⊗ zj}(t) = inf
0≤s≤t

min
1≤j≤J

{aij(t− s) + zj(s)}.

Likewise, A⊗B is defined by

(A⊗B)(t) = inf
0≤s≤t

{A(t− s) +B(s)}

and has entries min1≤j≤J(aij ⊗ bjk) for 1 ≤ i, k ≤ J .
For example, we have[

λr ∞
∞ δT

]
⊗
[

γr/2,b
δ2T

]
=
[

λr ∧ γr/2,b
δ3T

]

4.1. MIN-PLUS AND MAX-PLUS OPERATORS 161

and [
λr ∞
∞ δT

]
⊗
[

γr/2,b γr,b
δ2T λr

]
=
[

λr ∧ γr/2,b λr
δ3T βr,T

]
.

Finally, we will also need to extend the set of wide-sense increasing functions
G to include non decreasing functions of two arguments. We adopt the following
definition (a slightly different definition can be found in [11]).

Definition 4.1.1 (Bivariate wide-sense increasing functions). We denote by G̃ the
set of bivariate functions (or sequences) such that for all s′ ≤ s and any t ≤ t′

f(t, s) ≤ f(t, s′)
f(t, s) ≤ f(t′, s).

We call such functions bivariate wide-sense increasing functions.

In the multi-dimensional case, we denote by G̃J the set of J×J matrices whose
entries are wide-sense increasing bivariate functions. A matrix of A(t) ∈ FJ2

is a
particular case of a matrix H(t, s) ∈ G̃J , with s set to a fixed value.

4.1.2 Operators

A system is an operator Π mapping an input function or sequence Ex onto an output
function or sequence Ey = Π(Ex). We will always assume in this book that Ex, Ey ∈ GJ ,
where J is a fixed, finite, positive integer. This means that each of the J coordinates
xj(t), yj(t), 1 ≤ j ≤ J , is a wide-sense increasing function (or sequence) of t.

It is important to mention that Min-plus system theory applies to more general
operators, taking RJ to RJ , where neither the input nor the output functions are
required to be wide-sense increasing. This requires minor modifications in the defi-
nitions and properties established in this chapter, see [26] for the theory described in
a more general setting. In this book, to avoid the unnecessary overhead of new no-
tations and definitions, we decided to expose min-plus system theory for operators
taking GJ to GJ .

Most often, the only operator whose output may not be in FJ is deconvolution,
but all other operators we need will take FJ to FJ .

Most of the time, the dimension of the input and output is J = 1, and the
operator takes F to F . We will speak of a scalar operator. In this case, we will drop
the arrow on the input and output, and write y = Π(x) instead.

We write Π1 ≤ Π2 with the meaning that Π1(Ex) ≤ Π2(Ex) for all Ex, which in
turn has the meaning that Π1(Ex)(t) ≤ Π2(Ex)(t) for all t.

For a set of operators Πs, indexed by s in some set S, we call infs∈S Πs the
operator defined by [infs∈S Πs](x(t)) = infs∈S [Πs(x(t))]. For S = {1, 2} we
denote it with Π1 ∧Π2.

We also denote by ◦ the composition of two operators:

(Π1 ◦Π2)(Ex) = Π1(Π2(Ex)).

We leave it to the alert reader to check that infs∈S Πs and Π1 ◦Π2 do map functions
in GJ to functions in GJ .

162 CHAPTER 4. MIN-PLUS AND MAX-PLUS SYSTEM THEORY

4.1.3 A Catalog of Operators

Let us mention a few examples of scalar operators of particular interest. The first two
have already been studied in detail in Chapter 3, whereas the third was introduced in
Section 1.7. The fact that these operators map GJ into GJ follows from Chapter 3.

Definition 4.1.2 (Min-plus convolution Cσ).

Cσ : F → F
x(t) → y(t) = Cσ(x)(t) = (σ ⊗ x)(t) = inf0≤s≤t {σ(t− s) + x(s)} ,

for some σ ∈ F .

Definition 4.1.3 (Min-plus deconvolution Dσ).

Dσ : F → G
x(t) → y(t) = Dσ(x)(t) = (x� σ)(t) = supu≥0 {x(t+ u)− σ(u)} ,

for some σ ∈ F .

Note that Min-plus deconvolution produces an output that does not always be-
long to F .

Definition 4.1.4 (Packetization PL).

PL : F → F
x(t) → y(t) = PL(x)(t) = PL(x(t)) = infi∈N

{
L(i)1L(i+1)>x

}
,

for some wide-sense increasing sequence L (defined by Definition 1.7.1).

We will also need later on the following operator, whose name will be justified
later in this chapter.

Definition 4.1.5 (Linear idempotent operator hσ).

hσ : F → F
x(t) → y(t) = hσ(x)(t) = inf0≤s≤t {σ(t)− σ(s) + x(s)} ,

for some σ ∈ F .

The extension of the scalar operators to the vector case is straightforward. The
vector extension of the convolution is for instance:

Definition 4.1.6 (Vector min-plus convolution CΣ).

CΣ : FJ → FJ

Ex(t) → Ey(t) = CΣ(Ex)(t) = (Σ⊗ Ex)(t) = inf0≤s≤t {Σ(t− s) + Ex(s)} ,

for some Σ ∈ FJ2
.

4.1. MIN-PLUS AND MAX-PLUS OPERATORS 163

If the (i, j)th entry of Σ is σij , the ith component of Ey(t) reads therefore

yi(t) = inf
0≤s≤t

min
1≤j≤J

{σij(t− s) + xj(s)}

Let us conclude with the shift operator, which we directly introduce in the vector
setting:

Definition 4.1.7 (Shift operator ST).

ST : GJ → GJ
Ex(t) → Ey(t) = ST (Ex)(t) = Ex(t− T),

for some T ∈ R.

Let us remark that S0 is the identity operator: S0(Ex) = Ex.

4.1.4 Upper and Lower Semi-continuous Operators

We now study a number of properties of min-plus linear operators. We begin with
that of upper-semi continuity.

Definition 4.1.8 (Upper semi-continuous operator). Operator Π is upper semi-
continuous if for any (finite or infinite) set of functions or sequences {Exn}, Exn ∈ GJ ,

Π
(
inf
n
{Exn}

)
= inf

n
{Π(Exn)} . (4.1)

We can check that Cσ , CΣ, hσ and ST are upper semi-continuous. For example,
for CΣ, we check indeed that

CΣ
(
inf
n
{Exn}

)
(t) = inf

0≤s≤t

{
Σ(t− s) + inf

n
{Exn(s)}

}
= inf

0≤s≤t
inf
n
{Σ(t− s) + Exn(s)}

= inf
n

inf
0≤s≤t

{Σ(t− s) + Exn(s)}
= inf

n
{CΣ(Exn)(t)} .

Likewise, noting that L(i + 1) ≤ infn∈N{xn} if and only if L(i + 1) ≤ xn for
all n ∈ N, we get that

1{L(i+1)≤infn∈N{xn}} = inf
n∈N

1{L(i+1)≤xn}

and thus we get that PL is upper semi-continuous:

PL
(
inf
n
{xn}

)
= inf

i∈N

{
L(i)1{L(i+1)>infn{xn}}

}
= sup

i∈N

{
L(i)1{L(i+1)≤infn{xn}

}

164 CHAPTER 4. MIN-PLUS AND MAX-PLUS SYSTEM THEORY

= sup
i∈N

{
inf
n

{
L(i)1{L(i+1)≤xn}

}}
= inf

i∈N

{
inf
n

{
L(i)1{L(i+1)>xn}

}}
= inf

n

{
inf
i∈N

{
L(i)1{L(i+1)>xn}

}}
= inf

n
{PL(xn)} .

On the other hand, Dσ is not upper semi-continuous, because its application to
an inf would involve the three operations sup, inf and +, which do not commute, as
we have seen at the end of the previous chapter.

It is easy to show that if Π1 and Π2 are upper semi-continuous, so are Π1 ∧ Π2

and Π1 ◦Π2.
The dual definition of upper semi-continuity is that of lower semi-continuity,

which is defined as follows.

Definition 4.1.9 (Lower semi-continuous operator). Operator Π is lower semi-
continuous if for any (finite or infinite) set of functions or sequences {Exn}, Exn ∈ GJ ,

Π
(
sup
n
{Exn}

)
= sup

n
{Π(Exn)} . (4.2)

It is easy to check that Dσ is lower semi-continuous, unlike other operators,
except ST which is also lower semi-continuous.

4.1.5 Isotone Operators

Definition 4.1.10 (Isotone operator). Operator Π is isotone if Ex1 ≤ Ex2 always
implies Π(Ex1) ≤ Π(Ex2).

All upper semi-continuous operators are isotone. Indeed, if Ex1 ≤ Ex2, then Ex1 ∧
Ex2 = Ex1 and since Π is upper semi-continuous,

Π(Ex1) = Π(Ex1 ∧ Ex2) = Π(Ex1) ∧Π(Ex2) ≤ Π(Ex2).

Likewise, all lower semi-continuous operators are isotone. Indeed, if Ex1 ≤ Ex2,
then Ex1 ∨ Ex2 = Ex2 and since Π is lower semi-continuous,

Π(Ex1) ≤ Π(Ex1) ∨Π(Ex2) = Π(Ex1 ∨ Ex2) = Π(Ex2).

4.1.6 Linear Operators

In classical system theory on (R,+,×), a system Π is linear if its output to a linear
combination of inputs is the linear combination of the outputs to each particular
input. In other words, Π is linear if for any (finite or infinite) set of inputs {xi}, and
for any constant k ∈ R,

4.1. MIN-PLUS AND MAX-PLUS OPERATORS 165

Π

(∑
i

xi

)
=
∑
i

Π(xi)

and for any input x and any constant k ∈ R,

Π(k · x) = k · Π(x).
The extension to min-plus system theory is straightforward. The first property

being replaced by that of upper semi-continuity, a min-plus linear operator is thus
defined as an upper semi-continuous operator that has the following property (“mul-
tiplication” by a constant):

Definition 4.1.11 (Min-plus linear operator). Operator Π is min-plus linear if it
is upper semi-continuous and if for any Ex ∈ GJ and for any k ≥ 0,

Π(Ex+ k) = Π (Ex) + k. (4.3)

One can easily check that Cσ , CΣ, hσ and ST are min-plus linear, unlike Dσ and
PL. Dσ is not linear because it is not upper semi-continuous, and PL is not linear
because it fails to verify (4.3).

In classical linear theory, a linear system is represented by its impulse response
h(t, s), which is defined as the output of the system when the input is the Dirac
function. The output of such a system can be expressed as

Π(x)(t) =
∫ ∞

−∞
h(t, s)x(s)ds

Its straightforward extension in Min-plus system theory is provided by the following
theorem [26]. To prove this theorem in the vector case, we need first to extend the
burst delay function introduced in Definition 3.1.2, to allow negative values of the
delay, namely, the value T in

δT (t) =
{

0 if t ≤ T
∞ if t > T,

is now taking values in R. We also introduce the following matrix DT ∈ GJ × GJ .

Definition 4.1.12 (Shift matrix). The shift matrix is defined by

DT (t) =



δT (t) ∞ ∞ · · · ∞
∞ δT (t) ∞
∞ ∞ δT (t)

. . .
...

...
...

. . . ∞
∞ · · · ∞ δT (t)


for some T ∈ R.

166 CHAPTER 4. MIN-PLUS AND MAX-PLUS SYSTEM THEORY

Theorem 4.1.1 (Min-plus impulse response). Π is a min-plus linear operator if
and only if there is a unique matrix H ∈ G̃J (called the impulse response), such
that for any Ex ∈ GJ and any t ∈ R,

Π(Ex)(t) = inf
s∈R

{H(t, s) + Ex(s)} . (4.4)

Proof: If (4.4) holds, one immediately sees that Π is upper semi-continuous and
verifies (4.3), and therefore is min-plus linear. Π maps GJ to GJ because H ∈ G̃J .

Suppose next that Π is min-plus linear, and let us prove that there is a unique
matrix H(t, s) ∈ G̃J such that (4.4) holds.

Let us first note that Ds(t)+ Ex(s) = Ex(s) for any s ≥ t. Since Ex ∈ GJ , we have

inf
s≥t

{Ds(t) + Ex(s)} = inf
s≥t

{Ex(s)} = Ex(t).

On the other hand, all entries of Ds(t) are infinite for s < t. We have therefore that

inf
s<t

{Ds(t) + Ex(s)} =∞

We can combine these two expressions as

Ex(t) = inf
s∈R

{Ds(t) + Ex(s)} ,

or, dropping explicit dependence on t,

Ex = inf
s∈R

{Ds + Ex(s)} .

Let Eds,j denote the jth column of Ds:

Eds,j =



∞
...
∞
δs
∞
...
∞


where δs is located at the jth position in this vector. Using repeatedly the fact Π is
min-plus linear, we get that

Π(Ex) = Π
(
inf
s∈R

{Ds + Ex(s)}
)

= inf
s∈R

{Π(Ds + Ex(s))}

= inf
s∈R

{
Π
(

min
1≤j≤J

{
Eds,j + xj(s)

})}

4.1. MIN-PLUS AND MAX-PLUS OPERATORS 167

= inf
s∈R

{
min

1≤j≤J

{
Π
(

Eds,j + xj(s)
)}}

= inf
s∈R

{
min

1≤j≤J

{
Π
(

Eds,j

)
+ xj(s)

}}
.

Defining

H(t, s) =
[
Eh1(t, s) . . . Ehj(t, s) . . . EhJ(t, s)

]
(4.5)

where
Ehj(t, s) = Π

(
Eds,j

)
(t) (4.6)

for all t ∈ R, we obtain therefore that

Π(Ex)(t) = inf
s∈R

{
min

1≤j≤J

{
Ehj(t, s) + xj(s)

}}
= inf

s∈R

{H(t, s) + Ex(s)} .

We still have to check that H(t, s) ∈ G̃J . Since for any fixed s, Π
(

Eds,j

)
∈ GJ , we

have that for any t ≤ t′

Ehj(t, s) = Π
(

Eds,j

)
(t) ≤ Π

(
Eds,j

)
(t′) = Ehj(t′, s),

hence H(t, s) ≤ H(t′, s). On the other hand, if s′ ≤ s, one easily check that
Eds,j ≤ Eds′,j . Therefore, since Π is isotone (because it is linear and thus upper semi-
continuous),

Ehj(t, s) = Π
(

Eds,j

)
(t) ≤ Π

(
Eds′,j

)
(t) = Ehj(t, s′)

and therefore H(t, s) ≤ H(t, s′) for any s ≥ s′. This shows that H(t, s) ∈ G̃J .
To prove uniqueness, suppose that there is another matrix H ′ ∈ G̃J that satisfies

(4.4), and let Eh′
j denote its jth column. Then for any u ∈ R and any 1 ≤ j ≤ J ,

taking Ex = Edu,j as the input, we get from (4.6) that for t ∈ R

Ehj(t, u) = Π
(

Edu,j

)
(t) = inf

s∈R

{
H ′(t, s) + Edu,j(s)

}
= inf

s∈R

{
Eh′
j(t, s) + δu(s)

}
= inf

s≤u

{
Eh′
j(t, s)

}
= Eh′

j(t, u).

Therefore H ′ = H .
We will denote a general min-plus linear operator whose impulse response is H

by LH . In other words, we have that

LH(Ex)(t) = inf
s∈R

{H(t, s) + Ex(s)} .

One can compute that the impulse response corresponding to CΣ is

H(t, s) =
{

Σ(t− s) if s ≤ t
Σ(0) if s > t

,

168 CHAPTER 4. MIN-PLUS AND MAX-PLUS SYSTEM THEORY

to hσ is

H(t, s) =
{

σ(t)− σ(s) if s ≤ t
0 if s > t

,

and to ST is
H(t, s) = DT (t− s).

In fact the introduction of the shift matrix allows us to write the shift operator as a
min-plus convolution: ST = CDT

if T ≥ 0.
Let us now compute the impulse response of the compostion of two min-plus

linear operators.

Theorem 4.1.2 (Composition of min-plus linear operators). Let LH and LH′ be
two min-plus linear operators. Then their composition LH ◦ LH′ is also min-plus
linear, and its impulse repsonse denoted by H ◦H ′ is given by

(H ◦H ′)(t, s) = inf
u∈R

{H(t, u) +H ′(u, s)} .

Proof: The composition LH ◦ LH′ applied to some Ex ∈ GJ is

LH(LH′(Ex))(t) = inf
u

{
H(t, u) + inf

s
{H ′(u, s) + Ex(s)}

}
= inf

u
inf
s
{H(t, u) +H ′(u, s) + Ex(s)}

= inf
s

{
inf
u
{H(t, s) +H ′(u, s)}+ Ex(s)

}
.

We can therefore write

LH ◦ LH′ = LH◦H′ .

Likewise, one easily shows that

LH ∧ LH′ = LH∧H′ .

Finally, let us mention the dual definition of a max-plus linear operator.

Definition 4.1.13 (Max-plus linear operator). Operator Π is max-plus linear if it
is lower semi-continuous and if for any Ex ∈ GJ and for any k ≥ 0,

Π(Ex+ k) = Π (Ex) + k. (4.7)

Max-plus linear operators can also be represented by their impulse response.

Theorem 4.1.3 (Max-plus impulse response). Π is a max-plus linear operator if
and only if there is a unique matrix H ∈ G̃J (called the impulse response), such
that for any Ex ∈ GJ and any t ∈ R,

Π(Ex)(t) = sup
s∈R

{H(t, s) + Ex(s)} . (4.8)

4.1. MIN-PLUS AND MAX-PLUS OPERATORS 169

One can easily check that Dσ and ST are max-plus linear, unlike CΣ, hσ and
PL.

For example, Dσ(x)(t) can be written as

Dσ(x)(t) = sup
u≥0

{x(t+u)−σ(u)} = sup
s≥t

{x(s)−σ(s−t)} = sup
s∈R

{x(s)−σ(s−t)}

which has the form (4.8) if H(t, s) = −σ(s− t).
Likewise, ST (x)(t) can be written as

ST (Ex) (t) = Ex(t− T) = sup
s∈R

{Ex(s)−D−T (s− t)}

which has the form (4.8) if H(t, s) = −D−T (s− t).

4.1.7 Causal Operators

A system is causal if its output at time t only depends on its input before time t.

Definition 4.1.14 (Causal operator). Operator Π is causal if for any t, Ex1(s) =
Ex2(s) for all s ≤ t always implies Π(Ex1)(t) = Π(Ex2)(t).

Theorem 4.1.4 (Min-plus causal linear operator). A min-plus linear system with
impulse response H is causal if H(t, s) = H(t, t) for s > t.

Proof: If H(t, s) = 0 for s > t and if Ex1(s) = Ex2(s) for all s ≤ t then since
Ex1, Ex2 ∈ GJ ,

LH(Ex1)(t) = inf
s∈R

{H(t, s) + Ex1(s)}
= inf

s≤t
{H(t, s) + Ex1(s)} ∧ inf

s>t
{H(t, s) + Ex1(s)}

= inf
s≤t

{H(t, s) + Ex1(s)} ∧ inf
s>t

{H(t, t) + Ex1(s)}
= inf

s≤t
{H(t, s) + Ex1(s)}

= inf
s≤t

{H(t, s) + Ex2(s)}
= inf

s≤t
{H(t, s) + Ex2(s)} ∧ inf

s>t
{H(t, t) + Ex2(s)}

= inf
s≤t

{H(t, s) + Ex2(s)} ∧ inf
s>t

{H(t, s) + Ex2(s)}
= inf

s∈R

{H(t, s) + Ex2(s)} = LH(Ex2)(t).

Cσ , CΣ, hσ and PL are causal. ST is causal if and only if T ≥ 0. Dσ is not
causal. Indeed if Ex1(s) = Ex2(s) for all s ≤ t, but that Ex1(s) �= Ex2(s) for all s > t,
then

170 CHAPTER 4. MIN-PLUS AND MAX-PLUS SYSTEM THEORY

Dσ(Ex1)(t) = sup
u≥0

{Ex1(t+ u)− σ(u)}

�= sup
u≥0

{Ex2(t+ u)− σ(u)}

= Dσ(Ex1)(t)

4.1.8 Shift-invariant Operators

A system is shift-invariant, or time-invariant, if a shift of the input of T time units
yields a shift of the output of T time units too.

Definition 4.1.15 (Shift-invariant operator). Operator Π is shift-invariant if it
commutes with all shift operators, i.e. if for any Ex ∈ G and for any T ∈ R

Π(ST (Ex)) = ST (Π(Ex)).

Theorem 4.1.5 (Shift-invariant min-plus linear operator). Let LH and LH′ be
two min-plus linear, shift-invariant operators.

(i) A min-plus linear operator LH is shift-invariant if and only if its impulse
response H(t, s) depends only on the difference (t− s).

(ii) Two min-plus linear, shift-invariant operators LH and LH′ commute. If they
are also causal, the impulse response of their composition is

(H ◦H ′)(t, s) = inf
0≤u≤t−s

{H(t− s− u) +H ′(u)} = (H ⊗H ′)(t− s).

Proof: (i) Let Ehj(t, s) and Eds,j(t) denote (respectively) the jth column of H(t, s)
and of Ds(t). Note that Eds,j(t) = Ss(Ed0,j)(t). Then (4.6) yields that

Ehj(t, s) = Π
(

Eds,j

)
(t) = Π

(
Ss(Ed0,j)

)
(t)

= Ss
(
Π(Ed0,j)

)
(t) =

(
Π(Ed0,j)

)
(t− s) = Ehj(t− s, 0)

Therefore H(t, s) can be written as a function of a single variable H(t− s).

(ii) Because of Theorem 4.1.2, the impulse response of LH ◦ LH′ is

(H ◦H ′)(t, s) = inf
u
{H(t, u) +H ′(u, s)} .

Since H(t, u) = H(t − u) and H ′(u, s) = H ′(u − s), and setting v = u − s, the
latter can be written as

(H ◦H ′)(t, s) = inf
u
{H(t− u) +H ′(u− s)} = inf

v
{H(t− s− v) +H ′(v)} .

Similarly, the impulse response of LH′ ◦ LH can be written as

(H ′ ◦H)(t, s) = inf
u
{H ′(t− u) +H(u− s)} = inf

v
{H(v) +H ′(t− s− v)}

4.2. CLOSURE OF AN OPERATOR 171

where this time we have set v = t− u. Both impulse responses are identical, which
shows that the two operators commute.

If they are causal, then their impulse response is infinite for t > s and the two
previous relations become

(H◦H ′)(t, s) = (H ′◦H)(t, s) = inf
0≤v≤t

{H(t− s− v) +H ′(v)} = (H⊗H ′)(t−s).

Min-plus convolution CΣ (including of course Cσ and ST) is therefore shift-
invariant. In fact, it follows from this theorem that the only min-plus linear, causal
and shift-invariant operator is min-plus convolution. Therefore hσ is not shift-
invariant.

Min-plus deconvolution is shift-invariant, as

Dσ(ST (x))(t) = sup
u≥0

{ST (x)(t+ u)− σ(u)} = sup
u≥0

{x(t+ u− T)− σ(u)}

= (x� σ)(t− T) = Dσ(x)(t− T) = ST (Dσ) (x)(t).

Finally let us mention that PL is not shift-invariant.

4.1.9 Idempotent Operators

An idempotent operator is an operator whose composition with itself produces the
same operator.

Definition 4.1.16 (Idempotent operator). Operator Π is idempotent if its self-
composition is Π, i.e. if

Π ◦Π = Π.

We can easily check that hσ and PL are idempotent. If σ is sub-additive, with
σ(0) = 0, then Cσ ◦ Cσ = Cσ , which shows that in this case, Cσ is idempotent too.
The same applies to Dσ .

4.2 Closure of an Operator

By repeatedly composing a min-plus operator with itself, we obtain the closure of
this operator. The formal definition is as follows.

Definition 4.2.1 (Sub-additive closure of an operator). Let Π be a min-plus oper-
ator taking GJ → GJ . Denote Π(n) the operator obtained by composing Π (n− 1)
times with itself. By convention, Π(0) = S0 = CD0 , so Π(1) = Π, Π(2) = Π◦Π, etc.
Then the sub-additive closure of Π, denoted by Π, is defined by

Π = S0 ∧Π ∧ (Π ◦Π) ∧ (Π ◦Π ◦Π) ∧ . . . = inf
n≥0

{
Π(n)

}
. (4.9)

172 CHAPTER 4. MIN-PLUS AND MAX-PLUS SYSTEM THEORY

In other words,

Π(Ex) = Ex ∧Π(Ex) ∧Π(Π(Ex)) ∧ . . .

It is immediate to check that Π does map functions in GJ to functions in GJ .
The next theorem provides the impulse response of the sub-additive closure of

a min-plus linear operator. It follows immediately from applying recursively Theo-
rem 4.1.2.

Theorem 4.2.1 (Sub-additive closure of a linear operator). The impulse response
of LH is

H(t, s) = inf
n∈N

inf
un,...,u2,u1

{H(t, u1) +H(u1, u2) + . . .+H(un, s)} . (4.10)

and LH = LH .

For a min-plus linear, shift-invariant and causal operator, (4.10) becomes

H(t− s)
= inf

n∈N

inf
s≤un≤...≤u2≤u1≤t

{H(t− u1) +H(u1 − u2) + . . .+H(un − s)}
= inf

n∈N

inf
0≤vn≤...≤v2≤v1≤t−s

{H(t− s− v1) +H(v1 − v2) + . . .+H(vn)}

= inf
n∈N

{H(n)}(t− s) (4.11)

where H(n) = H ⊗H ⊗ . . .⊗H (n times, n ≥ 1) and H(0) = S0.
In particular, if all entries σij(t) of Σ(t) are sub-additive functions, we find that

CΣ = CΣ.

In the scalar case, the closure of the min-plus convolution operator Cσ reduces
to the min-plus convolution of the sub-additive closure of σ:

Cσ = Cσ.
If σ is a “good” function (i.e., a sub-additive function with σ(0) = 0), then Cσ = Cσ .

The sub-additive closure of the idempotent operators hσ and PL are easy to
compute too. Indeed, since hσ(x) ≤ x and PL(x) ≤ x,

hσ = hσ

and
PL = PL.

The following result is easy to prove. We write Π ≤ Π′ to express that Π(Ex) ≤
Π′(Ex) for all Ex ∈ GJ .

Theorem 4.2.2 (Sub-additive closure of an isotone operator). If Π and Π′ are
two isotone operators, and Π ≤ Π′, then Π ≤ Π′.

4.2. CLOSURE OF AN OPERATOR 173

Finally, let us conclude this section by computing the closure of the minimum
between two operators.

Theorem 4.2.3 (Sub-additive closure of Π1 ∧ Π2). Let Π1,Π2 be two isotone
operators taking GJ → GJ . Then

Π1 ∧Π2 = (Π1 ∧ S0) ◦ (Π2 ∧ S0). (4.12)

Proof: (i) Since S0 is the identity operator,

Π1 ∧Π2 = (Π1 ◦ S0) ∧ (S0 ◦Π2)
≥ ((Π1 ∧ S0) ◦ S0) ∧ (S0 ◦ (Π2 ∧ S0))
≥ ((Π1 ∧ S0) ◦ (Π2 ∧ S0)) ∧ ((Π1 ∧ S0) ◦ (Π2 ∧ S0))
= (Π1 ∧ S0) ◦ (Π2 ∧ S0).

SinceΠ1 andΠ2 are isotone, so areΠ1∧Π2 and (Π1∧S0)◦(Π2∧S0). Consequently,
Theorem 4.2.2 yields that

Π1 ∧Π2 ≥ (Π1 ∧ S0) ◦ (Π1 ∧ S0). (4.13)

(ii) Combining the two inequalities

Π1 ∧ S0 ≥ Π1 ∧Π2 ∧ S0
Π2 ∧ S0 ≥ Π1 ∧Π2 ∧ S0

we get that

(Π1 ∧ S0) ◦ (Π1 ∧ S0) ≥ (Π1 ∧Π2 ∧ S0) ◦ (Π1 ∧Π2 ∧ S0). (4.14)

Let us show by induction that

((Π1 ∧Π2) ∧ S0)(n) = min
0≤k≤n

{
(Π1 ∧Π2)(k)

}
.

Clearly, the claim holds for n = 0, 1. Suppose it is true up to some n ∈ N. Then

((Π1 ∧Π2) ∧ S0)(n+1)

= ((Π1 ∧Π2) ∧ S0) ◦ ((Π1 ∧Π2) ∧ S0)(n)

= ((Π1 ∧Π2) ∧ S0) ◦
(

min
0≤k≤n

{
(Π1 ∧Π2)(k)

})
=
(
(Π1 ∧Π2) ◦ min

0≤k≤n

{
(Π1 ∧Π2)(k)

})
∧
(
S0 ◦ min

0≤k≤n

{
(Π1 ∧Π2)(k)

})
= min

1≤k≤n+1

{
(Π1 ∧Π2)(k)

}
∧ min

0≤k≤n

{
(Π1 ∧Π2)(k)

}
= min

0≤k≤n+1

{
(Π1 ∧Π2)(k)

}
.

174 CHAPTER 4. MIN-PLUS AND MAX-PLUS SYSTEM THEORY

Therefore the claim holds for all n ∈ N, and

(((Π1 ∧Π2) ∧ S0) ◦ ((Π1 ∧Π2) ∧ S0))(n) = ((Π1 ∧Π2) ∧ S0)(2n)

= min
0≤k≤2n

{
(Π1 ∧Π2)(k)

}
.

Consequently,

(Π1 ∧Π2 ∧ S0) ◦ (Π1 ∧Π2 ∧ S0) = inf
n∈N

min
0≤k≤2n

{
(Π1 ∧Π2)(k)

}
= inf

k∈N

{
(Π1 ∧Π2)(k)

}
= Π1 ∧Π2

and combining this result with (4.13) and (4.14), we get (4.12).
If one of the two operators is an idempotent operator, we can simplify the previ-

ous result a bit more. We will use the following corollary in Chapter 9.

Corollary 4.2.1 (Sub-additive closure of Π1∧hM). Let Π1 be an isotone operator
taking F → F , and let M ∈ F . Then

Π1 ∧ hM = (hM ◦Π1) ◦ hM . (4.15)

Proof: Theorem 4.2.3 yields that

Π1 ∧ hM = (Π1 ∧ S0) ◦ hM (4.16)

because hM ≤ S0. The right hand side of (4.16) is the inf over all integers n of

({Π1 ∧ S0} ◦ hM)(n)

which we can expand as

{Π1 ∧ S0} ◦ hM ◦ {Π1 ∧ S0} ◦ hM ◦ . . . ◦ {Π1 ∧ S0} ◦ hM .

Since

hM ◦ {Π1 ∧ S0} ◦ hM = {hM ◦Π1 ◦ hM} ∧ hM

= ({hM ◦Π1} ∧ S0) ◦ hM

= min
0≤q≤1

{
(hM ◦Π1)

(q)
}
◦ hM ,

the previous expression is equal to

min
0≤q≤n

{
(hM ◦Π1)

(q)
}
◦ hM .

Therefore we can rewrite the right hand side of (4.16) as

4.3. FIXED POINT EQUATION (SPACE METHOD) 175

(Π1 ∧ S0) ◦ hM = inf
n∈N

{
min

0≤q≤n

{
(hM ◦Π1)

(q)
}
◦ hM

}
= inf

q∈N

{
(hM ◦Π1)

(q)
}
◦ hM = (hM ◦Π1) ◦ hM ,

which establishes (4.15).
Therefore we can rewrite the right hand side of (4.16) as

(Π1 ∧ S0) ◦ hM = inf
n∈N

{
min

0≤q≤n

{
(hM ◦Π1)

(q)
}
◦ hM

}
= hM ◦ inf

q∈N

{
(hM ◦Π1)

(q)
}
◦ hM = hM ◦ (hM ◦Π1) ◦ hM ,

which establishes (4.15).
The dual of super-additive closure is that of super-additive closure, defined as

follows.

Definition 4.2.2 (Super-additive closure of an operator). Let Π be an operator
taking GJ → GJ . The super-additive closure of Π, denoted by Π, is defined by

Π = S0 ∨Π ∨ (Π ◦Π) ∨ (Π ◦Π ◦Π) ∨ . . . = sup
n≥0

{
Π(n)

}
. (4.17)

4.3 Fixed Point Equation (Space Method)

4.3.1 Main Theorem

We now have the tools to solve an important problem of network calculus, which has
some analogy with ordinary differential equations in conventional system theory.

The latter problem reads as follows: let Π be an operator from RJ to RJ , and let
Ea ∈ RJ . What is then the solution Ex(t) to the differential equation

dEx

dt
(t) = Π(Ex)(t) (4.18)

with the inital condition
Ex(0) = Ea. (4.19)

Here Π is an operator taking GJ → GJ , and Ea ∈ GJ . The problem is now to find
the largest function Ex(t) ∈ GJ , which verifies the recursive inequality

Ex(t) ≤ Π(Ex)(t) (4.20)

and the initial condition
Ex(t) ≤ Ea(t). (4.21)

The differences are however important: first we have inequalities instead of
equalities, and second, contrary to (4.18), (4.20) does not describe the evolution

176 CHAPTER 4. MIN-PLUS AND MAX-PLUS SYSTEM THEORY

of the trajectory Ex(t) with time t, starting from a fixed point Ea, but the successive
iteration of Π on the whole trajectory Ex(t), starting from a fixed, given function
Ea(t) ∈ GJ .

The following theorem provides the solution this problem, under weak, technical
assumptions that are almost always met.

Theorem 4.3.1 (Space method). Let Π be an upper semi-continuous operator tak-
ing GJ → GJ . For any fixed function Ea ∈ GJ , the problem

Ex ≤ Ea ∧Π(Ex) (4.22)

has one maximum solution in GJ , given by Ex� = Π(Ea).

The theorem is proven in [26]. We give here a direct proof that does not have the
pre-requisites in [26]. It is based on a fixed point argument. We call the application
of this theorem “Space method” , because the iterated variable is not time t (as in the
“Time method” described shortly later) but the full sequence Ex itself. The theorem
applies therefore indifferently whether t ∈ Z or t ∈ R.

Proof: (i) Let us first show thatΠ(Ea) is a solution of (4.22). Consider the sequence
{Exn} of decreasing sequences defined by

Ex0 = Ea

Exn+1 = Exn ∧Π(Exn), n ≥ 0.

Then one checks that
Ex� = inf

n≥0
{Exn}

is a solution to (4.22) because Ex� ≤ Ex0 = Ea and becauseΠ is upper-semi-continuous
so that

Π(Ex�) = Π(inf
n≥0

{Exn}) = inf
n≥0

{Π(Exn)} ≥ inf
n≥0

{Exn+1} ≥ inf
n≥0

{Exn} = Ex�.

Now, one easily checks that Exn = inf0≤m≤n{Π(m)(Ea)}, so

Ex� = inf
n≥0

{Exn} = inf
n≥0

inf
0≤m≤n

{Π(m)(Ea)} = inf
n≥0

{Π(n)(Ea)} = Π(Ea).

This also shows that Ex� ∈ GJ .

(ii) Let Ex be a solution of (4.22). Then Ex ≤ Ea and since Π is isotone, Π(Ex) ≤ Π(Ea).
From (4.22), Ex ≤ Π(Ex), so that Ex ≤ Π(Ea). Suppose that for some n ≥ 1, we
have shown that Ex ≤ Π(n−1)(Ea). Then as Ex ≤ Π(Ex) and as Π is isotone, it yields
that Ex ≤ Π(n)(Ea). Therefore Ex ≤ infn≥0{Π(n)(Ea)} = Π(Ea), which shows that
Ex� = Π(Ea) is the maximal solution.

Similarly, we have the following result in Max-plus algebra.

Theorem 4.3.2 (Dual space method). Let Π be a lower semi-continuous operator
taking GJ → GJ . For any fixed function Ea ∈ GJ , the problem

Ex ≥ Ea ∨Π(Ex) (4.23)

has one minimum solution, given by Ex� = Π(Ea).

4.3. FIXED POINT EQUATION (SPACE METHOD) 177

4.3.2 Examples of Application

Let us now apply this theorem to five particular examples. We will first revisit the
input-output characterization of the greedy shaper of Section 1.5.2, and of the vari-
able capacity node described at the end of Section 1.3.2. Next we will apply it to
two window flow control problems (with a fixed length window). Finally, we will
revisit the variable length packet greedy shaper of Section 1.7.4.

Input-Output Characterization of Greedy Shapers

Remember that a greedy shaper is a system that delays input bits in a buffer, when-
ever sending a bit would violate the constraint σ, but outputs them as soon as possi-
ble otherwise. If R is the input flow, the output is thus the maximal function x ∈ F
satisfying the set of inequalities (1.13), which we can recast as

x ≤ R ∧ Cσ(x).
It is thus given by R∗ = Cσ(x) = Cσ(x) = σ ⊗ x. If σ is a “good” function, one
therefore retrieves the main result of Theorem 1.5.1.

Input-Output Characterization of Variable Capacity Nodes

The variable capacity node was introduced at the end of Section 1.3.2, where the
variable capacity is modeled by a cumulative function M(t), where M(t) is the total
capacity available to the flow between times 0 and t. If m(t) is the instantaneous
capacity available to the flow at time t, then M(t) is the primitive of this function.
In other words, if t ∈ R,

M(t) =
∫ t

0

m(s)ds (4.24)

and if t ∈ Z the integral is replaced by a sum on s. If R is the input flow and x is
the output flow of the variable capacity node, then the variable capacity constraint
imposes that for all 0 ≤ s ≤ t

x(t)− x(s) ≤ M(t)−M(s),

which we can recast using the idempotent operator hM as

x ≤ hM (x). (4.25)

On the other hand, the system is causal, so that

x ≤ R. (4.26)

The output of the variable capacity node is therefore the maximal solution of system
(4.25) and (4.26). It is thus given by

R∗(t) = hM (R)(t) = hM (R)(t) = inf
0≤s≤t

{M(t)−M(s) +R(s)}

because the sub-additive closure of an idempotent operator is the operator itself, as
we have seen in the previous section.

178 CHAPTER 4. MIN-PLUS AND MAX-PLUS SYSTEM THEORY

Static window flow control – example 1

Let us now consider an example of a feedback system. This example is found inde-
pendently in [10] and [64, 2]. A data flow a(t) is fed via a window flow controller to
a network offering a service curve β. The window flow controller limits the amount
of data admitted into the network in such a way that the total backlog is less than or
equal to W , where W > 0 (the window size) is a fixed number (Figure 4.1).

a(t) x(t)

y(t)

network

controller

Figure 4.1: Static window flow control, from [10] or [64]

Call x(t) the flow admitted to the network, and y(t) the output. The definition
of the controller means that x(t) is the maximum solution to{

x(t) ≤ a(t)
x(t) ≤ y(t) +W

(4.27)

We do not know the mapping Π : x → y = Π(x), but we assume that Π is isotone,
and we assume that y(t) ≥ (β ⊗ x)(t), which can be recast as

Π(x) ≥ Cβ(x). (4.28)

We also recast System (4.27) as

x ≤ a ∧ {Π(x) +W} , (4.29)

and direclty apply Theorem 4.3.1 to derive that the maximum solution is

x = (Π +W)(a).

Since Π is isotone, so is Π + W . Therefore, because of (4.28) and applying
Theorem 4.2.2, we get that

x = (Π +W)(a) ≥ (Cβ +W)(a). (4.30)

Because of Theorem 4.2.1,

(Cβ +W)(a) = Cβ+W (a) = Cβ+W (a) = (β +W)⊗ a.

Combining this relationship with (4.30) we have that

y ≥ β ⊗ x ≥ β ⊗
(
(β +W)⊗ a

)
=
(
β ⊗ (β +W)

)
(a),

4.3. FIXED POINT EQUATION (SPACE METHOD) 179

which shows that the complete, closed-loop system of Figure 4.1 offers to flow a a
service curve [10]

βwfc1 = β ⊗ (β +W). (4.31)

For example, if β = βR,T then the service curve of the closed-loop system is
the function represented on Figure 4.2. When RT ≤ W , the window does not add
any restriction on the service guarantee offered by the open-loop system, as in this
case βwfc1 = β. If RT > W on the other hand, the service curve is smaller than
the open-loop service curve.

T

R

t

βwfc1(t) = β(t) = R[t-T]+

T

R
t

βwfc1(t)

W

2T 3T 4T

Case 1: RT ≤ W

W

Case 2: RT > W

Figure 4.2: The service curve βwfc1 of the closed-loop system with static
window flow control, when the service curve of the open loop system is βR,T
with RT ≤ W (left) and RT > W (right).

Static window flow control – example 2

Let us extend the window flow control model to account for the existence of back-
ground traffic, which constraints the input traffic rate at time t, dx/dt(t) (if t ∈ R)
or x(t)− x(t− 1) (if t ∈ Z), to be less that some given rate m(t). Let M(t) denote
the primitive of this prescribed rate function. Then the rate constraint on x becomes
(4.25). Function M(t) is not known, but we assume that there is some function
γ ∈ F such that

M(t)−M(s) ≥ γ(t− s)

for any 0 ≤ s ≤ t, which we can recast as

hM ≥ Cγ . (4.32)

This is used in [43] to derive a service curve offered by the complete system to the
incoming flow x, which we shall also compute now by applying Theorem 4.3.1.

With the additional constraint (4.25), one has to compute the maximal solution
of

180 CHAPTER 4. MIN-PLUS AND MAX-PLUS SYSTEM THEORY

x ≤ a ∧ {Π(x) +W} ∧ hM (x), (4.33)

which is
x = ({Π+W} ∧ hM)(a). (4.34)

As in the previous subsection, we do not know Π but we assume that it is isotone
and that Π ≥ Cβ . We also know that hM ≥ Cγ . A first approach to get a service
curve for y, is to compute a lower bound of the right hand side of (4.34) by time-
invariant linear operators, which commute as we have seen earlier in this chapter.
We get

{Π+W} ∧ hM ≥ {Cβ +W} ∧ Cγ = C{β+W}∧γ ,

and therefore (4.34) becomes

x ≥ C{β+W}∧γ(a) = C{β+W}∧γ(a) = ({β +W} ∧ γ)⊗ a.

Because of Theorem 3.1.11,

{β +W} ∧ γ = (β +W)⊗ γ

so that
y ≥ β ⊗ x ≥

(
β ⊗ (β +W)⊗ γ

)
⊗ a

and thus a service curve for flow a is

β ⊗ (β +W)⊗ γ. (4.35)

Unfortunately, this service curve can be quite useless. For example, if for some
T > 0, γ(t) = 0 for 0 ≤ t ≤ T , then γ(t) = 0 for all t ≥ 0, and so the service
curve is zero.

A better bound is obtained by differing the lower bounding of hM by the time-
invariant operator Cγ after having used the idempotency property in the computation
of the sub-additive closure of the right hand side of (4.34), via Corollary 4.2.1.
Indeed, this corollary allows us to replace (4.34) by

x =
(
(hM ◦ (Π +W)) ◦ hM

)
(a).

Now we can bound hM below by Cγ to obtain

(hM ◦ (Π +W)) ◦ hM ≥ (Cγ ◦ Cβ+W) ◦ Cγ
= Cγ⊗(β+W) ◦ Cγ
= Cβ⊗γ+W ◦ Cγ
= C

γ⊗(β⊗γ+W)
.

We obtain a better service curve than by our initial approach, where we had directly
replaced hM by Cγ :

βwfc2 = β ⊗ γ ⊗ (β ⊗ γ +W). (4.36)

is a better service curve than (4.35).
For example, if β = βR,T and γ = βR′,T ′ , with R > R′ and W < R′(T +

T ′), then the service curve of the closed-loop system is the function represented on
Figure 4.3.

4.4. FIXED POINT EQUATION (TIME METHOD) 181

T

R

t

β(t) = R[t-T]+

T+T’

R’
t

βwfc2(t)

W

T+T’

R’

t

(β ⊗ γ)(t)

T’

R’

t

γ(t) = R’[t-T’]+

Figure 4.3: The service curve βwfc2 of the closed-loop system with window
flow control (bottom right), when the service curve of the open loop system
is β = βR,T (top left) and when γ = βR′,T ′ (top right), with R > R′ and
W < R′(T + T ′).

Packetized greedy shaper

Our last example in this chapter is the packetized greedy shaper introduced in Sec-
tion 1.7.4. It amounts to computing the maximum solution to the problem

x ≤ R ∧ PL(x) ∧ Cσ(x)
where R is the input flow, σ is a “good” function and L is a given sequence of
cumulative packet lengths.

We can apply Theorem 4.3.1 and next Theorem 4.2.2 to obtain

x = PL ∧ Cσ(R) = PL ◦ Cσ(R)
which is precisely the result of Theorem 1.7.4.

4.4 Fixed Point Equation (Time Method)

We conclude this chapter by another version of Theorem 4.3.1 that applies only to
the disrete-time setting. It amounts to compute the maximum solution Ex = Π(Ea) of
(4.22) by iterating on time t instead of interatively applying operator Π to the full
trajectory Ea(t). We call this method the “ time method” (see also [11]). It is valid

182 CHAPTER 4. MIN-PLUS AND MAX-PLUS SYSTEM THEORY

Operator Cσ Dσ ST hσ PL
Upper semi-continuous yes no yes yes yes
Lower semi-continuous no yes yes no no

Isotone yes yes yes yes yes
Min-plus linear yes no yes yes no
Max-plus linear no yes yes no no

Causal yes no yes (1) yes yes
Shift-invariant yes yes yes no no

Idempotent no (2) no (2) no (3) yes yes

(1) (if T ≥ 0)
(2) (unless σ is a ‘good’ function)
(3) (unless T = 0)

Table 4.1: A summary of properties of some common operators

under stronger assumptions than the space method, as we require here that operator
Π be min-plus linear.

Theorem 4.4.1. Let Π = LH be a min-plus linear operator taking FJ → FJ , with
impulse response H ∈ G̃J . For any fixed function Ea ∈ FJ , the problem

Ex ≤ Ea ∧ LH(Ex) (4.37)

has one maximum solution, given by

Ex�(0) = Ea(0)
Ex�(t) = Ea(0) ∧ inf

0≤u≤t−1
{H(t, u) + Ex�(u)}.

Proof: Note that the existence of a maximum solution is given by Theorem 4.3.1.
Define Ex� by the recursion in the Theorem. As H ∈ G̃J it follows easily by induction
that Ex� is a solution to problem (4.37). Conversely, for any solution Ex, Ex(0) ≤
a(0) = Ex�(0) and if Ex(u) ≤ Ex�(u) for all 0 ≤ u ≤ t−1, it follows that Ex(t) ≤ Ex�(t)
which shows that Ex� is the maximal solution.

4.5 Conclusion

This chapter has introduced min-plus and max-plus operators, and discussed their
properties, which are summarized in Table 4.5. The central result of this chapter,
which will be applied in the next chapters, is Theorem 4.3.1, which enables us to
compute the maximal solution of a set of inqualities involving the iterative applica-
tion of an upper semi-continuous operator.

Part III

A Second Course in Network
Calculus

183

Chapter 5

Optimal Multimedia
Smoothing

In this chapter we apply network calculus to smooth multimedia data over a network
offering reservation based services, such as ATM or RSVP/IP, for which we know
one minimal service curve. One approach to stream video is to act on the quantiza-
tion levels at the encoder output: this is called rate control, see e.g. [24]. Another
approach is to smooth the video stream, using a smoother fed by the encoder, see
e.g. [65, 68, 56]. In this chapter, we deal with this second approach.

A number of smoothing algorithms have been proposed to optimize various per-
formance metrics, such as peak bandwidth requirements, variability of transmission
rates, number of rate changes, client buffer size [27]. With network calculus, we are
able to compute the minimal client buffer size required given a maximal peak rate,
or even a more complex (VBR) smoothing curve. We can also compute the minimal
peak rate required given a given client buffer size. We will see that the scheduling
algorithm that must be implemented to reach these bounds is not unique, and we will
determine the full set of video transmission schedules that minimize these resources
and achieve these optimal bounds.

5.1 Problem Setting

A video stream stored on the server disk is directly delivered to the client, through
the network, as shown on Figure 5.1. At the sender side, a smoothing device reads
the encoded video stream R(t) and sends a stream x(t) that must conform to an
arrival curve σ, which we assume to be a ‘good’ function, i.e. is sub-additive and
such that σ(0) = 0. The simplest and most popular smoothing curve in practice is a
constant rate curve (or equivalently, a peak rate constraint) σ = λr for some r > 0.

We take the transmission start as origin of time: this implies that x(t) = 0 for
t ≤ 0.

185

186 CHAPTER 5. OPTIMAL MULTIMEDIA SMOOTHING

R(t+d) y(t) R(t-D)x(t)
β

display
video
Client

Network

Client

buffer

σ

Smoother
playback

B

Video
Server

Figure 5.1: Video smoothing over a single network.

At the receiver side, the video stream R will be played back after D units of
times, the playback delay: the output of the decoding buffer B must therefore be
R(t−D).

The network offers a guaranteed service to the flow x. If y denotes the output
flow, it is not possible, in general, to express y as a function of x. However we as-
sume that the service guarantee can be expressed by a service curve β. For example,
as we have seen in Chapter 1, the IETF assumes that RSVP routers offer a rate-
latency service curve β of the form βL,C(t) = C[t − L]+ = max{0, C(t − L)}.
Another example is a network which is completely transparent to the flow (i.e. which
does not incur any jitter to the flow nor rate limitation, even if it can introduce a fixed
delay, which we ignore in this chapter as we can always take it into account sepa-
rately). We speak of a null network. It offers a service curve β(t) = δ0(t).

To keep mathematical manipulations simple, we assume that the encoding buffer
size is large enough to contain the full data stream. On the other hand, the receiver
(decoding) buffer is a much more scarce resource. Its finite size is denoted by B.

As the stream is pre-recorded and stored in the video server, it allows the
smoother to prefetch and send some of the data before schedule. We suppose that the
smoother is able to look ahead data for up to d time units ahead. This look-ahead de-
lay can take values ranging from zero (in the most restrictive case where no prefetch-
ing is possible) up to the length of the full stream. The sum of the look-ahead delay
and playback delay is called the total delay, and is denoted by T : T = D + d.

These constraints are described more mathematically in Section 5.2.
We will then apply Theorem 4.3.1 to solve the following problems:

(i) we first compute, in Section 5.3, the minimal requirements on the playback delay
D, on the look-ahead delay d, and on the client buffer size B guaranteeing a lossless
transmission for given smoothing and service curves σ and β.

(ii) we then compute, in Section 5.4, all scheduling strategies at the smoother that
will achieve transmission in the parameter setting computed in Section 5.3. We call
the resulting scheduling “optimal smoothing” .

(iii) in the CBR case (σ = λr), for a given rate r and for a rate-latency service
curve (β = βL,C), we will obtain, in Section 5.5, closed-form expressions of the
minimal values of D, T = D + d and B required for lossless smoothing. We will

5.2. CONSTRAINTS IMPOSED BY LOSSLESS SMOOTHING 187

also solve the dual problem of computing the minimal rate r needed to deliver video
for a given playback delay D, look-ahead delay d and client buffer size B.

We will then compare optimal smoothing with greedy shaping in Section 5.6 and
with separate delay equalization in Section 5.7. Finally, we will repeat problems (i)
and (iii) when intermediate caching is allowed between a backbone network and an
access network.

5.2 Constraints Imposed by Lossless Smoothing

We can now formalize the constraints that completely define the smoothing problem
illustrated on Figure 5.1).

• Flow x ∈ F : As mentioned above, the chosen origin of time is such that
x(t) = 0 for t ≤ 0, or equivalently

x(t) ≤ δ0(t). (5.1)

• Smoothness constraint: Flow x is constrained by an arrival curve σ(·). This
means that for all t ≥ 0

x(t) ≤ (x⊗ σ)(t) = Cσ(x)(t). (5.2)

• Playback delay constraint (no playback buffer underflow): The data is
read out from the playback buffer after D unit of times at a rate given by
R(t − D). This implies that y(t) ≥ R(t − D). However we do not know
the exact expression of y as a function of x. All we know is that the network
guarantees a service curve β, namely that y(t) ≥ (x ⊗ β)(t). The output
flow may therefore be as low as (x ⊗ β)(t), and hence we can replace y in
the previous inequality to obtain (x ⊗ β)(t) ≥ R(t − D). Using Rule 14 in
Theorem 3.1.12, we can recast this latter inequality as

x(t) ≥ (R� β)(t−D) = Dβ(R)(t−D) (5.3)

for all t ≥ 0.

• Playback buffer constraint (no playback buffer overflow): The size of the
playback buffer is limited to B, and to prevent any overflow of the buffer, we
must impose that y(t)−R(t−D) ≤ B for all t ≥ 0. Again, we do not know
the exact value of y, but we know that it can be as high as x, but not higher,
because the network is a causal system. Therefore the constraint becomes, for
all t ≥ 0,

x(t) ≤ R(t−D) +B. (5.4)

• Look-ahead delay constraint: We suppose that the encoder can prefetch data
from the server up to d time units ahead, which translates in the following
inequality:

x(t) ≤ R(t+ d). (5.5)

188 CHAPTER 5. OPTIMAL MULTIMEDIA SMOOTHING

5.3 Minimal Requirements on Delays and Playback
Buffer

Inequalities (5.1) to (5.5) can be recast as two sets of inequalities as follows:

x(t) ≤ δ0(t) ∧R(t+ d) ∧ {R(t−D) +B} ∧ Cσ(x)(t) (5.6)

x(t) ≥ (R� β)(t−D). (5.7)

There is a solution x to the smoothing problem if and only if it simultaneously
verifies (5.6) and (5.7). This is equivalent to requiring that the maximal solution of
(5.6) is larger than the right hand side of (5.7) for all t.

Let us first compute the maximal solution of (5.6). Inequality (5.6) has the form

x ≤ a ∧ Cσ(x) (5.8)

where
a(t) = δ0(t) ∧R(t+ d) ∧ {R(t−D) +B}. (5.9)

We can thus apply Theorem 4.3.1 to compute the unique maximal solution of (5.8),
which is xmax = Cσ(a) = σ ⊗ a because σ is a ‘good’ function. Replacing a by its
expression in (5.9), we compute that the maximal solution of (5.6) is

xmax(t) = σ(t) ∧ {(σ ⊗R)(t+ d)} ∧ {(σ ⊗R)(t−D) +B} . (5.10)

We are now able to compute the smallest values of the playback delay D, of
the total delay T and of the playback buffer B ensuring the existence of a solution
to the smoothing problem, thanks to following theorem. The requirement on d for
reaching the smallest value of D is therefore d = T −D.

Theorem 5.3.1 (Requirements for optimal smoothing). The smallest values of
D, T and B ensuring a lossless smoothing to a ‘good’ curve σ through a network
offering a service curve β are

Dmin = h(R, (β ⊗ σ)) = inf {t ≥ 0 : (R� (β ⊗ σ))(−t) ≤ 0} (5.11)

Tmin = h((R�R), (β ⊗ σ)) (5.12)

= inf {t ≥ 0 : ((R�R)� (β ⊗ σ))(−t) ≤ 0}
Bmin = v((R�R), (β ⊗ σ)) = ((R�R)� (β ⊗ σ))(0). (5.13)

where h and v denote respectively the horizontal and vertical distances given by
Definition 3.1.15.

Proof: The set of inequalities (5.6) and (5.7) has a solution if, and only if, the
maximal solution of (5.6) is larger or equal to the right hand side of (5.7) at all
times. This amounts to impose that for all t ∈ R

5.4. OPTIMAL SMOOTHING STRATEGIES 189

(R� β)(t−D)− σ(t) ≤ 0
(R� β)(t−D)− (σ ⊗R)(t+ d) ≤ 0
(R� β)(t−D)− (σ ⊗R)(t−D) ≤ B.

Using the deconvolution operator and its properties, the latter three inequalities can
be recast as

(R� (β ⊗ σ))(−D) ≤ 0
((R�R)� (β ⊗ σ)) (−T) ≤ 0
((R�R)� (β ⊗ σ)) (0) ≤ B.

The minimal values of D, T and B satisfying these three inequalities are given by
(5.11), (5.12) and (5.13). These three inequalities are therefore the necessary and
sufficient conditions ensuring the existence of a solution to the smoothing problem.

5.4 Optimal Smoothing Strategies

An optimal smoothing strategy is a solution x(t) to the lossless smoothing problem
where D, T = D + d and B take their minimal value given by Theorem 5.3.1. The
previous section shows that there exists at least one optimal solution, namely (5.10).
It is however not the only one, as we will see in this section.

5.4.1 Maximal Solution

The maximal solution (5.10) requires only the evaluation of an infimum at time t
over the past values of R and over the future values of R up to time t + dmin, with
dmin = Tmin −Dmin. Of course, we need the knowledge of the traffic trace R(t) to
dimension Dmin, dmin and Bmin. However, once we have these values, we do not
need the full stream for the computation of the smoothed input to the network.

5.4.2 Minimal Solution

To compute the minimal solution, we reformulate the lossless smoothing problem
slightly differently. Because of Rule 14 of Theorem 3.1.12, an inequality equivalent
to (5.2) is

x(t) ≥ (x� σ)(t) = Dσ(x)(t). (5.14)

We use this equivalence to replace the set of inequalities (5.6) and (5.7) by the
equivalent set

x(t) ≤ δ0(t) ∧R(t+ d) ∧ {R(t−D) +B}
(5.15)

x(t) ≥ (R� β)(t−D) ∨ Dσ(x)(t). (5.16)

190 CHAPTER 5. OPTIMAL MULTIMEDIA SMOOTHING

One can then apply Theorem 4.3.2 to compute the minimal solution of (5.16), which
is xmin = Dσ(b) = b�σ where b(t) = δ0(t)∧R(t+d)∧{R(t−D)+B}, because
σ is a ‘good’ function. Eliminating b from these expressions, we compute that the
minimal solution is

xmin(t) = (R� (β ⊗ σ))(t−D), (5.17)

and compute the constraints on d, D and B ensuring that it verifies (5.15): one
would get the very same values of Dmin, Tmin and Bmin given by (5.11) (5.12) and
(5.13).

It does achieve the values of Dmin and Bmin given by (5.11) and (5.13), but
requires nevertheless the evaluation, at time t, of a supremum over all values of
R up to the end of the trace, contrary to the maximal solution (5.10). Min-plus
deconvolution can however be represented in the time inverted domain by a min-plus
convolution, as we have seen in Section 3.1.10. As the duration of the pre-recorded
stream is usually known, the complexity of computing a min-plus deconvolution can
thus be reduced to that of computing a convolution.

5.4.3 Set of Optimal Solutions

Any function x ∈ F such that

xmin ≤ x ≤ xmax

and
x ≤ x⊗ σ

is therefore also a solution to the lossless smoothing problem, for the same minimal
values of the playback delay, look-ahead delay and client buffer size. This gives
the set of all solutions. A particular solution among these can be selected to further
minimize another metric, such as the ones discussed in [27], e.g. number of rate
changes or rate variability.

The top of Figure 5.2 shows, for a synthetic trace R(t), the maximal solution
(5.10) for a CBR smoothing curve σ(t) = λr(t) and a service curve β(t) = δ0(t),
whereas the bottom shows the minimal solution (5.17). Figure 5.3 shows the same
solutions on a single plot, for the MPEG trace R(t) of the top of Figure 1.2.4 rep-
resenting the number of packet arrivals per time slot of 40 ms corresponding to a
MPEG-2 encoded video when the packet size is 416 bytes for each packet.

An example of VBR smoothing on the same MPEG trace is shown on Figure 5.4,
with a smoothing curve derived from the T-SPEC field, which is given by σ =
γP,M ∧ γr,b, where M is the maximum packet size (here M = 416 Bytes), P
the peak rate, r the sustainable rate and b the burst tolerance. Here we roughly
have P = 560 kBytes/sec, r = 330 kBytes/sec and b = 140 kBytes The service
curve is a rate-latency curve βL,C with L = 1 second and r = 370 kBytes/sec.
The two traces have the same envelope, thus the same minimum buffer requirement
(here, 928kBytes). However the second trace has its bursts later, thus, has a smaller
minimum playback delay (D2 = 2.05s versus D1 = 2.81s).

5.5. OPTIMAL CONSTANT RATE SMOOTHING 191

xmax(t)

R(t-Dmin)

R(t)

σ (t)=rt

Dmin t

Bmin

dmin

R(t+dmin)

xmin(t)

R(t-Dmin)

R(t)

Dmin

Bmin

dmin

R(t+dmin)

t

Figure 5.2: In bold, the maximal solution (top figure) and minimal solution (bottom
figure) to the CBR smoothing problem with a null network.

5.5 Optimal Constant Rate Smoothing

Let us compute the above values in the case of a constant rate (CBR) smoothing
curve σ(t) = λr(t) = rt (with t ≥ 0) and a rate-latency service curve of the
network β(t) = βL,C(t) = C[t − L]+. We assume that r < C, the less interesting
case where r ≥ C being handled similarly. We will often use the decomposition of
a rate-latency function as the min-plus convolution of a pure delay function, with a
constant rate function: βL,C = δL ⊗ λC . We will also use the following lemma.

192 CHAPTER 5. OPTIMAL MULTIMEDIA SMOOTHING

0 100 200 300 400 500
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

frame number

cu
m

ul
at

iv
e

flo
w

 [K
by

te
s]

x (t)
min

max
x (t)

min
D

min
d

t

R(t - D)min

R(t + d)
R(t)min

minB

Figure 5.3: In bold, the maximal and minimal solutions to the CBR smoothing prob-
lem of an MPEG trace with a null network. A frame is generated every 40 msec.

�

 �

 �

 .

�

.

<

=

�

�

 �

 �

 .

�

.

<

=

�

�

 �

 �

 .

�

�

�

.

5

<

>

�

 �

 �

 .

�

�

�

.

5

<

>

�

 �

 �

 .

�

�

�

.

5

<

>

�

 �

 �

 .

�

�

�

.

5

<

>

�

 �

 �

 .

�

.

<

=

�

�

 �

 �

 .

�

.

<

=

�

� �

� �

Figure 5.4: Two MPEG traces with the same arrival curve (left). The corresponding
playback delays D1 and D2 are the horizontal deviations between the cumulative
flows R(t) and function σ ⊗ β (right).

5.5. OPTIMAL CONSTANT RATE SMOOTHING 193

Lemma 5.5.1. If f ∈ F ,

h(f, βL,C) = L+
1
C
(f � λC)(0). (5.18)

Proof: As f(t) = 0 for t ≤ 0 and as βL,C = δL⊗λC , we can write for any t ≥ 0

(f � βL,C)(−t) = sup
u≥0

{f(u− t)− (δL ⊗ λC)(u)}

= sup
u≥0

{f(u− t)− λC(u− L)}

= sup
v≥−t

{f(v)− λC(v + t− L)}

= sup
v≥0

{f(v)− λC(v + t− L)}

= sup
v≥0

{f(v)− λC(v)} − C(t− L)

= (f � λC)(0)− Ct+ CL,

from which we deduce the smallest value of t making the left-hand side of this
equation non-positive is given by (5.18).

In the particular CBR case, the optimal values (5.11), (5.12) and (5.13) become
the following ones.

Theorem 5.5.1 (Requirements for CBR optimal smoothing). If σ = λr and
β = βL,C with r < C, the smallest values of D, of T and of B are

Dmin = L+
1
r
(R� λr)(0) (5.19)

Tmin = L+
1
r
((R�R)� λr)(0) (5.20)

Bmin = ((R�R)� λr))(L) ≤ rTmin. (5.21)

Proof: To establish (5.19) and (5.20), we note that R and (R � R) ∈ F . Since
r < C

β ⊗ σ = βL,C ⊗ λr = δL ⊗ λC ⊗ λr = δL ⊗ λr = βL,r

so that we can apply Lemma 5.5.1 with f = R and f = (R�R), respectively.
To establish (5.21), we develop (5.13) as follows

((R�R)� (β ⊗ σ))(0) = ((R�R)� (δL ⊗ λr))(0)
= sup

u≥0
{(R�R)(u)− λr(u− L)}

= ((R�R)� λr)(L)
= sup

u≥L
{(R�R)(u)− λr(u− L)}

= sup
u≥L

{(R�R)(u)− λr(u)}+ rL

194 CHAPTER 5. OPTIMAL MULTIMEDIA SMOOTHING

≤ sup
u≥0

{(R�R)(u)− λr(u)}+ rL

= ((R�R)� λr)(0) + rL = rTmin.

This theorem provides the minimal values of playback delay Dmin and buffer
Bmin, as well as the minimal look-ahead delay dmin = Tmin − Dmin for a given
constant smoothing rate r < C and a given rate-latency service curve βL,C . We can
also solve the dual problem, namely compute for given values of playback delay
D, of the look-ahead delay d, of the playback buffer B and for a given rate-latency
service curve βL,C , the minimal rate rmin which must be reserved on the network.

Theorem 5.5.2 (Optimal CBR smoothing rate). If σ = λr and β = βL,C with
r < C, the smallest value of r, given D ≥ L, d and B ≥ (R�R)(L), is

rmin = sup
t>0

{
R(t)

t+D − L

}
∨ sup

t>0

{
(R�R)(t)

t+D + d− L

}
∨ sup
t>0

{
(R�R)(t+ L)−B

t

}
. (5.22)

Proof: Let us first note that because of (5.19), there is no solution if D < L. On
the other hand, if D ≥ L, then (5.19) implies that the rate r must be such that for all
t > 0

D ≥ L+
1
r
(R(t)− rt)

or equivalently r ≥ R(t)/(t + D − L). The latter being true for all t > 0, we must
have r ≥ supt≥0{R(t)/(t + D − L)}. Repeating the same argument with (5.20)
and (5.21), we obtain the minimal rate (5.22).

In the particular case where L = 0 and r < C the network is completely trans-
parent to the flow, and can be considered as a null network: can replace β(t) by
δ0(t). The values (5.19), (5.20) and (5.21) become, respectively,

Dmin =
1
r
(R� λr)(0) (5.23)

Tmin =
1
r
((R�R)� λr)(0) (5.24)

Bmin = ((R�R)� λr))(0) = rTmin. (5.25)

It is interesting to compute these values on a real video trace, such as the first
trace on top of Figure 1.2.4. Since Bmin is directly proportional to Tmin because
of (5.25), we show only the graphs of the values of Dmin and dmin = Tmin −
Dmin, as a function of the CBR smoothing rate r on Figure 5.5. We observe three
qualitative ranges of rates: (i) the very low ones where the playback delay is very
large, and where look-ahead does not help in reducing it; (ii) a middle range where
the playback delay can be kept quite small, thanks to the use of look-ahead and (iii)
the high rates above the peak rate of the stream, which do not require any playback

5.6. OPTIMAL SMOOTHING VERSUS GREEDY SHAPING 195

nor lookahead of the stream. These three regions can be found on every MPEG
trace [75], and depend on the location of the large burst in the trace. If it comes
sufficiently late, then the use of look-ahead can become quite useful in keeping the
playback delay small.

0 100 200 300 400 500 600 700
0

10

20

30

40

50

60

rate r [kBytes/sec]

D
m

in
 [s

ec
]

0 100 200 300 400 500 600 700
0

0.5

1

1.5

2

rate r [kBytes/sec]

dm
in

 [s
ec

]

Figure 5.5: Minimum playback delay Dmin and corresponding look-ahead delay
dmin for a constant rate smoothing r of the MPEG-2 video trace shown on top of
Figure 1.2.4.

5.6 Optimal Smoothing versus Greedy Shaping

An interesting question is to compare the requirements on D and B, due to the
scheduling obtained in Section 5.4, which are minimal, with those that a simpler
scheduling, namely the greedy shaper of Section 1.5, would create. As σ is a ‘good’
function, the solution of a greedy shaper is

xshaper(t) = (σ ⊗R)(t). (5.26)

To be a solution for the smoothing problem, it must satisfy all constraints listed
in Section 5.2. It already satisfies (5.1), (5.2) and (5.5). Enforcing (5.3) is equivalent
to impose that for all t ∈ R

(R� β)(t−D) ≤ (σ ⊗R)(t),

which can be recast as

196 CHAPTER 5. OPTIMAL MULTIMEDIA SMOOTHING

((R�R)� (β ⊗ σ))(−D) ≤ 0. (5.27)

This implies that the minimal playback delay needed for a smoothing using a greedy
shaping algorithm is equal to the minimal total delay Tmin, the sum of the playback
and lookahead delays, for the optimal smoothing algorithm. It means that the only
way an optimal smoother allows to decrease the playback delay is its ability to look
ahead and send data in advance. If this look-ahead is not possible (d = 0) as for
example for a live video transmission, the playback delay is the same for the greedy
shaper and the optimal smoother.

The last constraint that must be verified is (5.4), which is equivalent to impose
that for all t ∈ R

(σ ⊗R)(t) ≤ R(t−D) +B,

which can be recast as
((R⊗ σ)�R)(D) ≤ B. (5.28)

Consequently, the minimal requirements on the playback delay and buffer using
a greedy shaper instead of an optimal smoother are given by the following theorem.

Theorem 5.6.1 (Requirements for greedy shaper). If σ is a ‘good’ function, then
the smallest values of D and B for lossless smoothing of flow R by a greedy shaper
are

Dshaper = Tmin = h((R�R), (β ⊗ σ)) (5.29)

Bshaper = ((R⊗ σ)�R)(Dshaper) ∈ [Bmin, σ(Dshaper)]. (5.30)

Proof: The expressions of Dshaper and Bshaper follow immediately from (5.27)
and (5.28). The only point that remains to be shown is that Bshaper ≤ σ(Dshaper),
which we do by picking s = u in the inf below:

Bshaper = (R� (R⊗ σ)) (Dshaper)

= sup
u≥0

{
inf

0≤s≤u+Dshaper

{
R(s) + σ(u+Dshaper − s)

}
−R(u)

}
≤ sup

u≥0

{
R(u) + σ(u+Dshaper − u)−R(u)

}
= σ(Dshaper).

Consequently, a greedy shaper does not minimize, in general, the playback
buffer requirements, although it does minimize the playback delay when look-ahead
is possible. Figure 5.6 shows the maximal solution xmax of the optimal shaper (top)
and the solution xshaper of the greedy shaper (bottom) when the shaping curve is a
one leaky bucket affine curve σ = γr,b, when the look-ahead delay d = 0 (no look
ahead possible) and for a null network (β = δ0). In this case the playback delays
are identical, but not the playback buffers.

5.6. OPTIMAL SMOOTHING VERSUS GREEDY SHAPING 197

σ(t)

t

b

R(t– Dmin)

Dmin

R(t)

σ(t)

t

b

R(t– Dshaper)

Dshaper

xshaper(t)

Bshaper

R(t)

Bmin

xmax(t)

(a) Optimal smoothing solution, with
playback buffer requirements

(a) Greedy shaper solution, with
playback buffer requirements

Figure 5.6: In bold, the maximal solution (top figure) and minimal solution (bottom
figure) to the smoothing problem with a null network, no look-ahead and an affine
smoothing curve σ = γr,b .

Another example is shown on Figure 5.7 for the MPEG-2 video trace shown
on top of Figure 1.2.4. Here the solution of the optimal smoother is the minimal
solution xmin.

There is however one case where a greedy shaper does minimize the playback
buffer: a constant rate smoothing (σ = λr) over a null network (β = δ0). Indeed, in
this case, (5.25) becomes

Bmin = rTmin = rDshaper = σ(Dshaper),

198 CHAPTER 5. OPTIMAL MULTIMEDIA SMOOTHING

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

6

Frame number

C
um

m
ul

at
iv

e

of
 b

its

Video trace R(t)
Optimal shaping

0 50 100 150 200 250 300 350 400 450
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

6

Frame number

C
um

m
ul

at
iv

e

of
 b

its

Video trace R(t)
Optimal smoothing

Figure 5.7: Example of optimal shaping versus optimal smoothing for the MPEG-2
video trace shown on top of Figure 1.2.4. The example is for a null network and
a smoothing curve σ = γP,M ∧ γr,b with M = 416 bytes, P = 600 kBytes/sec,
r = 300 kBytes/sec and b = 80 kBytes. The figure shows the optimal shaper [resp.
smoother] output and the original signal (video trace), shifted by the required play-
back delay. The playback delay is 2.76 sec for optimal shaping (top) and 1.92 sec
for optimal smoothing (bottom).

and therefore Bshaper = Bmin. Consequently, if no look-ahead is possible and if
the network is transparent to the flow, greedy shaping is an optimal CBR smoothing
strategy.

5.7 Comparison with Delay Equalization

A common method to implement a decoder is to first remove any delay jitter caused
by the network, by delaying the arriving data in a delay equalization buffer, be-
fore using the playback buffer to compensate for fluctuations due to pre-fetching.
Figure 5.8 shows such a system. If the delay equalization buffer is properly config-

5.7. COMPARISON WITH DELAY EQUALIZATION 199

ured, its combination with the guaranteed service network results into a fixed delay
network, which, from the viewpoint we take in this chapter, is equivalent to a null
network. Compared to the original scenario in Figure 5.1, there are now two separate
buffers for delay equalization and for compensation of prefetching. We would like
to understand the impact of this separation on the minimum playback delay Dmin.

R(t-D)

display
video
Client

Client

buffer
playback

R(t+d)

σ

x(t)

Smoother

β

Network

y(t)Delay
equalizer

Video
Server

Guaranteed service network

Figure 5.8: Delay equalization at the receiver.

The delay equalization buffer operates by delaying the first bit of data by an
initial delay Deq , equal to the worst case delay through the network. We assume that
the network offers a rate-latency service curve βL,C . Since the flow x is constainted
by the arrival curve σ which is assumed to be a ‘good’ function, we know from
Theorem 1.4.4, that the worst-case delay is

Deq = h(σ, βL,C).

On the other hand, the additional part of the playback delay to compensate for
fluctuations due to pre-fetching, denoted by Dpf , is given by (5.11) with β replaced
by δ0:

Dpf = h(R, δ0 ⊗ σ) = h(R, σ).

The sum of these two delays is, in general, larger than the optimal playback de-
lay (without a separation between equalization and compensation for prefetching),
Dmin, given by (5.11):

Dmin = h(R, βL,C ⊗ σ).

Consider the example of Figure 5.9, where σ = γr,b with r < C. Then one easily
computes the three delays Dmin, Deq and Dpf , knowing that

βL,C ⊗ σ = δL ⊗ λC ⊗ γr,b = δL ⊗ (λC ∧ γr,b)
= (δL ⊗ λC) ∧ (δL ⊗ γr,b) = βL,C ∧ (δL ⊗ γr,b).

One clearly has Dmin < Deq + Dpf : separate delay equalization gives indeed a
larger overall playback delay. In fact, looking carefully at the figure (or working out
the computations), we can observe that the combination of delay equalization and
compensation for prefetching in a single buffer accounts for the busrtiness of the

200 CHAPTER 5. OPTIMAL MULTIMEDIA SMOOTHING

min
D

β(t)

t

R(t)

eqD

pf
D

σ(t)

(σ⊗β)(t)

Figure 5.9: Delays Dmin, Deq and Dpf for a rate-latency service curve βL,C and an
affine smoothing curve σ = γr,b .

(optimally) smoothed flow only once. This is another instance of the “pay bursts
only once” phenomenon, which we have already met in Section 1.4.3.

We must however make – once again – an exception for a constant rate smooth-
ing. Indeed, if σ = λr (with r < C), then Dpf is given by (5.23) and Dmin by
(5.19), so that

Deq = h(λr, βL,C) = L

Dpf =
1
r
(R� λr)(0)

Dmin = L+
1
r
(R� λr)(0)

and therefore Dmin = Deq + Dpf . In the CBR case, separate delay equalization is
thus able to attain the optimal playback delay.

5.8 Lossless Smoothing over Two Networks

We now consider the more complex setting where two networks separate the video
server from the client: the first one is a backbone network, offering a service curve
β1 to the flow, and the second one is a local access network, offering a service curve
β2 to the flow, as shown on Figure 5.10. This scenario models intelligent, dynamic
caching often done at local network head-ends. We will compute the requirements
on D, d, B and on the buffer X of this intermediate node in Subsection 5.8.1.
Moreover, we will see in Subsection 5.8.2 that for constant rate shaping curves

5.8. LOSSLESS SMOOTHING OVER TWO NETWORKS 201

and rate-latency service curves, the size of the client buffer B can be reduced by
implementing a particular smoothing strategy instead of FIFO scheduling at the
intermediate node.

R(t-D)

display
video
Client

Client

buffer
playback

R(t+d)
B

σ1

x1(t)

Backbone
Network

Video
Server

Network
Access

Smoother

Node
storage

Intermediate

β1 β2

σ2

y2(t)x2(t)
Smoother

y1(t)
X

Figure 5.10: Smoothing over two networks with a local caching node.

Two flows need therefore to be computed: the first one x1(t) at the input of the
backbone network, and the second one x2(t) at the input of the local access network,
as shown on Figure 5.10.

The constraints on both flows are now as follows:

• Causal flow x1: This constraint is the same as (5.1), but with x replaced by
x1:

x1(t) ≤ δ0(t), (5.31)

• Smoothness constraint: Both flows x1 and x2 are constrained by two arrival
curves σ1 and σ2:

x1(t) ≤ (x1 ⊗ σ1)(t) (5.32)

x2(t) ≤ (x2 ⊗ σ2)(t). (5.33)

• No playback and intermediate server buffers underflow: The data is read
out from the playback buffer after D unit of times at a rate given by R(t −
D), which implies that y2(t) ≥ R(t − D). On the other hand, the data is
retrieved from the intermediate server at a rate given by x2(t), which implies
that y1(t) ≥ x2(t). As we do not know the expressions of the outputs of each
network, but only a service curve β1 and β2 for each of them, we can replace
y1 by x1 ⊗ β1 and y2 by x2 ⊗ β2, and reformulate these two constraints by

x2(t) ≤ (x1 ⊗ β1)(t) (5.34)

x2(t) ≥ (R� β2)(t−D). (5.35)

• No playback and intermediate server buffers overflow: The size of the
playback and cache buffers are limited to B and X , respectively, and to pre-
vent any overflow of the buffer, we must impose that y1(t)− x2(t) ≤ X and
y2(t)− R(t−D) ≤ B for all t ≥ 0. Again, we do not know the exact value

202 CHAPTER 5. OPTIMAL MULTIMEDIA SMOOTHING

of y1 and y2, but we know that they are bounded by x1 and x2, respectively,
so that the constraints becomes, for all t ≥ 0,

x1(t) ≤ x2(t) +X (5.36)

x2(t) ≤ R(t−D) +B. (5.37)

• Look-ahead delay constraint: this constraint is the same as in the single
network case:

x1(t) ≤ R(t+ d). (5.38)

5.8.1 Minimal Requirements on the Delays and Buffer Sizes for
Two Networks

Inequalities (5.31) to (5.38) can be recast as three sets of inequalities as follows:

x1(t) ≤ δ0(t) ∧R(t+ d) ∧ (σ1 ⊗ x1)(t) ∧ (x2(t) +X) (5.39)

x2(t) ≤ {R(t−D) +B} ∧ (β1 ⊗ x1)(t) ∧ (σ2 ⊗ x2)(t) (5.40)

x2(t) ≥ (R� β2)(t−D). (5.41)

We use the same technique for solving this problem sa in Section 5.3, except
that now the dimension of the system J is 2 instead of 1.

With T denoting transposition, let us introduce the following notations:

Ex(t) = [x1(t) x2(t)]T

Ea(t) = [δ0(t) ∧R(t+ d) R(t−D) +B]T
Eb(t) = [0 (R� β2)(t−D)]T

Σ(t) =
[

σ1(t) δ0(t) +X
β1(t) σ2(t)

]
.

With these notations, the set of inequalities (5.39), (5.40) and (5.41) can there-
fore be recast as

Ex ≤ Ea ∧ (Σ⊗ Ex) (5.42)

Ex ≥ Eb. (5.43)

We will follow the same approach as in Section 5.3: we first compute the maximal
solution of (5.42) and then derive the constraints on D, T (and hence d), X and B
ensuring the existence of this solution. We apply thus Theorem 4.3.1 again, but this
time in the two-dimensional case, to obtain an explicit formulation of the maximal
solution of (5.42). We get

Exmax = CΣ(Ea) = (Σ⊗ Ea) (5.44)

where Σ is the sub-additive closure of Σ, which is, as we know from Section 4.2,

5.8. LOSSLESS SMOOTHING OVER TWO NETWORKS 203

Σ = inf
n∈N

{Σ(n)} (5.45)

where Σ(0) = D0 and Σ(n) denotes the nth self-convolution of Σ. Application of
(5.45) to matrix Σ is straightforward, but involves a few manipulations which are
skipped. Denoting

α = σ1 ⊗ σ2 ⊗ inf
n∈N

{
β
(n+1)
1 + nX

}
(5.46)

= σ1 ⊗ σ2 ⊗ β1 ⊗ β1 +X,

we find that

Σ =
[

σ1∧(α+X) (σ1⊗σ2+X)∧(α + 2X)
α σ2 ∧ (α +X)

]
and therefore the two coordinates of the maximal solution of (5.42) are

x1max(t) = σ1(t) ∧ {α(t) +X} ∧ (σ1 ⊗R)(t+ d) ∧ {(α⊗R)(t+ d) +X}
∧ {(σ1 ⊗ σ2 ⊗R)(t−D) +B +X}
∧ {(α⊗R)(t−D) +B + 2X} (5.47)

x2max(t) = α(t) ∧ (α⊗R)(t+ d) ∧ {(σ2 ⊗R)(t−D) +B}
∧ {(α⊗R)(t−D) +B +X} . (5.48)

Let us mention that an alternative (and computationally simpler) approach to obtain
(5.47) and (5.48) would have been to first compte the maximal solution of (5.40), as
a function of x1, and next to replace x2 in (5.39) by this latter value.

We can now express the constraints on X , B, D and d that will ensure that a
solution exists by requiring that (5.48) be larger than (5.41). The result is stated in
the following theorem, whose proof is similar to that of Theorem 5.3.1.

Theorem 5.8.1. The lossless smoothing of a flow to (sub-additive) curves σ1 and
σ2, respectively, over two networks offering service curves β1 and β2 has a solution
if and only if the D, T , X and B verify the following set of inequalities, with α
defined by (5.46):

(R� (α⊗ β2)(−D) ≤ 0 (5.49)

((R�R)� (α⊗ β2)) (−T) ≤ 0 (5.50)

((R�R)� (σ2 ⊗ β2)) (0) ≤ B (5.51)

((R�R)� (α⊗ β2)) (0) ≤ B +X. (5.52)

5.8.2 Optimal Constant Rate Smoothing over Two Networks

Let us compute the values of Theorem 5.8.1 in the case of two constant rate (CBR)
smoothing curves σ1 = λr1 and σ2 = λr2 . We assume that each network offers a
rate-latency service curve βi = βLi,Ci

, i = 1, 2. We assume that ri ≤ Ci In this
case the optimal values of D, T and B become the following ones, depending on
the value of X .

204 CHAPTER 5. OPTIMAL MULTIMEDIA SMOOTHING

Theorem 5.8.2. Let r = r1∧ r2. Then we have the following three cases depending
on X:
(i) If X ≥ rL1, then Dmin, Tmin and Bmin are given by

Dmin = L1 + L2 +
1
r
(R� λr)(0) (5.53)

Tmin = L1 + L2 +
1
r
((R�R)� λr)(0) (5.54)

Bmin = ((R�R)� λr2)(L2) ∨ {((R�R)� λr)(L1 + L2)−X}
≤ ((R�R)� λr)(L2). (5.55)

(ii) If 0 < X < rL1 then Dmin, Tmin and Bmin are bounded by

X

r
+ L2 +

L1

X
(R� λ X

L1
)(0) ≤ Dmin

≤ L1 + L2 +
L1

X
(R� λ X

L1
)(0) (5.56)

X

r
+ L2 +

L1

X
((R�R)� λ X

L1
)(0) ≤ Tmin

≤ L1 + L2 +
L1

X
((R�R)� λ X

L1
)(0) (5.57)

((R�R)� λ X
L1
)(L1 + L2)− r2L1 ≤ Bmin

≤ ((R�R)� λ X
L1
)(L2) (5.58)

(iii) Let K be duration of the stream. If X = 0 < rL1 then Dmin = K.

Proof. One easily verifies that δ
(n+1)
L1

= δ(n+1)L1 and that λ
(n+1)
C1

= λC1 . Since
β1 = βL1,C1 = δL1 ⊗ λC1 , and since r = r1 ∧ r2 ≤ C1, (5.46) becomes

α = λr ⊗ inf
n∈N

{
δ(n+1)L1 ⊗ λC1 + nX

}
= δL1 ⊗ inf

n∈N

{δnL1 ⊗ λr + nX} . (5.59)

(i) If X ≥ rL1, then for t ≥ nL1

(δnL1 ⊗ λr)(t) + nX = λr(t− nL1) + nX = rt+ n(X − rL1) ≥ rt = λr(t)

whereas for 0 ≤ t < nL1

(δnL1 ⊗ λr)(t) + nX = λr(t− nL1) + nX = nX ≥ nrL1 > rt = λr(t).

Consequently, for all t ≥ 0, α(t) ≥ (δL1 ⊗ λr)(t). On the other hand, taking
n = 0 in the infimum in (5.59) yields that α ≤ δL1 ⊗ λr. Combining these two
inequalities, we get that

α = δL1 ⊗ λr

and hence that

5.9. BIBLIOGRAPHIC NOTES 205

α⊗ β2 = δL1 ⊗ λr ⊗ δL2 ⊗ λr2 = δL1+L2 ⊗ λr = βL1+L2,r. (5.60)

Inserting this last relation in (5.49) to (5.52), and using Lemma 5.5.1 we establish
(5.53), (5.54) and the equality in (5.55). The inequality in (5.55) is obtained by
noticing that r2 ≥ r and that

((R�R)� λr)(L1 + L2)−X = sup
u≥0

{(R�R)(u+ L1 + L2)− ru} −X

= sup
v≥L1

{(R�R)(v + L2)− r(v − L1)} −X

≤ sup
v≥0

{(R�R)(v + L2)− rv}+ (rL1 −X)

≤ ((R�R)� λr)(L2).

(ii) If 0 < X < rL1, the computation of α does not provide a rate-latency curve
anymore, but a function that can be bounded below and above by the two following
rate-latency curves: βL1,X/L1 ≤ α ≤ βX/r,X/L1 . Therefore, replacing (5.60) by

δL1+L2 ⊗ λ X
L1
≤ α⊗ β2 ≤ δX

r +L2
⊗ λ X

L1
,

and applying Lemma 5.5.1 to both bounding rate-latency curves βL1,X/L1 and
βX/r,X/L1 , we get respectively the lower and upper bounds (5.56) to (5.58).

(iii) If X = 0 and rL1 > 0 then (5.59) yields that α(t) = 0 for all t ≥ 0. In this
case (5.49) becomes supu≥0{R(u−D)} ≤ 0. This is possible only if D is equal to
the duration of the stream.

It is interesting to examine these results for two particular values of X .
The first one is X = ∞. If the intermediate server is a greedy shaper whose

output is x2(t) = (σ2⊗y1)(t), one could have applied Theorem 5.5.1 with σ2 = λr
and β = β1 ⊗ σ2 ⊗ β2 = δL1+L2 ⊗ λr2 = βL1+L2,r2 to find out that D and T are
still given by (5.53) and (5.54) but that B = ((R�R)�λr)(L1+L2) is larger than
(5.55). Using the caching scheduling (5.48) instead of a greedy shaping one allows
therefore to decrease the playback buffer size, but not the delays. The buffer X of
the intermediate node does not need to be infinite, but can be limited to rL1.

The second one is X = 0. Then whatever the rate r > 0, if L1 > 0, the
playback delay is the length of the stream, which makes streaming impossible in
practice. When L1 = L2 = 0 however (in which case we have two null networks)
X = rL1 = 0 is the optimal intermediate node buffer allocation. This was shown
in [65](Lemma 5.3) using another approach. We see that when L1 > 0, this is no
longer the case.

5.9 Bibliographic Notes

The first application of network calculus to optimal smoohting is found in [51], for
an unlimited value of the look-ahead delay. The minimal solution (5.17) is shown

206 CHAPTER 5. OPTIMAL MULTIMEDIA SMOOTHING

to be an optimal smoothing scheme. The computation of the minimum look-ahead
delay, and of the maximal solution, is done in [75]. Network calculus allows to re-
trieve some results found using other methods, such as the optimal buffer allocation
of the intermdiate node for two null networks computed in [65].

It also allows to extend these results, by computing the full set of optimal sched-
ules and by taking into account non null networks, as well as by using more complex
shaping curves σ than constant rate service curves. For example, with the Resource
Reservation Protocol (RSVP), σ is derived from the T-SPEC field in messages used
for setting up the reservation, and is given by σ = γP,M ∧γr,b, where M is the max-
imum packet size, P the peak rate, r the sustainable rate and b the burst tolerance,
as we have seen in Section 1.4.3.

The optimal T-SPEC field is computed in [51]. More precisely, the following
problem is solved. As assumed by the Intserv model, every node offers a service
of the form βL,C for some latency L and rate C, with the latency parameter L
depending on the rate C according to L = C0

ρ + D0. The constants C0 and D0

depends on the route taken by the flow throughout the network. Destinations choose
a target admissible network delay Dnet. The choice of a specific service curve βL,C
(or equivalently, of a rate parameter C) is done during the reservation phase and
cannot be known exactly in advance. The algorithm developed in [51] computes
the admissible choices of σ = γP,M ∧ γr,b and of Dnet in order to guarantee that
the reservation that will subsequently be performed ensures a playback delay not
exceeding a given value D.

Chapter 6

Aggregate Scheduling

6.1 Introduction

Aggregate scheduling arises naturally in many case. Let us just mention here the dif-
ferentiated services framework (Section 2.4 on Page 105) and high speed switches
with optical switching matrix and FIFO outputs. The state of the art for aggregate
multiplexing is not very rich. In this chapter, we give a panorama of results, a num-
ber of which are new.

In a first step (Section 6.2), we evaluate how an arrival curve is transformed
through aggregate multiplexing; we give a catalog of results, when the multiplexing
node is either a service curve element with FIFO scheduling, or a Guaranteed Rate
node (Section 2.1.3), or a service curve element with strict service curve property.
This provides many simple, explicit bounds which can be used in practice.

In a second step (Section 6.3), we consider a global network using aggregate
multiplexing (see assumptions below); given constraints at the inputs of the network,
can we obtain some bounds for backlog and delay ? Here, the story is complex. The
question of delay bounds for a network with aggregate scheduling was first raised by
Chang [8]. For a given family of networks, we call critical load factor νcri a value
of utilization factor below which finite bounds exist, and above which there exist
unstable networks, i.e., networks whose backlog grow to infinity. For feed-forward
networks with aggregate multiplexing, an iterative application of Section 6.2 easily
shows that νcri = 1. However, many networks are not feed-forward, and this result
does not hold in general. Indeed, and maybe contrary to intuition, Andrews [3] gave
some examples of FIFO networks with νcri < 1. Still, the iterative application of
Section 6.2, augmented with a time-stopping argument, provides lower bounds of
νcri (which are less than 1).

In a third step (Section 6.4), we give a number of cases where we can say more.
We recall the result in Theorem 2.4.1 on Page 107, which says that, for a gen-
eral network with either FIFO service curve elements, or with GR nodes, we have
νcri ≥ 1

h−1 where h is abound on the number of hops seen by any flow. Then, in

207

208 CHAPTER 6. AGGREGATE SCHEDULING

Section 6.4.1, we show that the unidirectional ring always always has νcri = 1;
thus, and this may be considered a surprise, the ring is not representative of non
feed-forward topologies. This result is actually true under the very general assump-
tion that the nodes on the ring are service curve elements, with any values of link
speeds, and with any scheduling policy (even non FIFO) that satisfies a service curve
property. As far as we know, we do not really understand why the ring is always sta-
ble, and why other topologies may not be. Last, and not least surprising, we present
in Section 6.4.2 a particular case, originally found by Chlamtac, Faragó, Zhang, and
Fumagalli [14], and refined by Zhang [79] and Le Boudec and Hébuterne [49] which
shows that, for a homogeneous network of FIFO nodes with constant size packets,
strong rate limitations at all sources have the effect of providing simple, closed form
bounds.

Throughout the chapter, we make the following assumptions.

Assumption and Notation

• Consider a network with a fixed number I of flows, following fixed paths.
The collection of paths is called the topology of the network. A network node
is modeled as a collection of output buffers, with no contention other than at
the output buffers. Every buffer is associated with one unidirectional link that
it feeds.

• Flow i is constrained by one leaky bucket of rate ρi and burstiness σi at the
input.

• Inside the network, flows are treated as an aggregate by the network; within an
aggregate, packets are served according to some unspecified arbitration pol-
icy. We assume that the node is such that the aggregate of all flows receives
a service curve at node m equal to the rate-latency function with rate rm and
latency em

rm
. This does not imply that the node is work-conserving. Also note

that we do not require, unless otherwise specified, that the service curve prop-
erty be strict. In some parts of the chapter, we make additional assumptions,
as explained later.

em accounts for the latency on the link that exits node m; it also account for
delays due to the scheduler at node m.

• We write i m to express that node m is on the route of flow i. For any node

m, define ρ(m) =
∑

i�m ρi. The utilization factor of link m is ρ(m)

rm
and the

load factor of the network is ν = maxm ρ(m)

rm
.

• The bit rate of the link feeding node m is Cm < +∞, with Cm ≥ rm.

We say that such a network is stable if the backlog at any node remains bounded.

6.2. TRANSFORMATION OF ARRIVAL CURVE THROUGH AGGREGATE SCHEDULING209

6.2 Transformation of Arrival Curve through Aggre-
gate Scheduling

Consider a number of flows served as an aggregate in a common node. Without loss
of generality, we consider only the case of two flows. Within an aggregate, packets
are served according to some unspecified arbitration policy. In the following sub-
sections, we consider three additional assumptions.

6.2.1 Aggregate Multiplexing in a Strict Service Curve Element

The strict service curve property is defined in Definition 1.3.2 on Page 27. It applies
to some isolated schedulers, but not to complex nodes with delay elements.

Theorem 6.2.1 (Blind multiplexing). Consider a node serving two flows, 1 and
2, with some unknown arbitration between the two flows. Assume that the node
guarantees a strict service curve β to the aggregate of the two flows. Assume that
flow 2 is α2-smooth. Define β1(t) := [β(t)−α2(t)]+. If β1 is wide-sense increasing,
then it is a service curve for flow 1.

Proof: The proof is a straightforward extension of that of Proposition 1.3.4 on
Page 26.

We have seen an example in Section 1.3.2: if β(t) = Ct (constant rate server or
GPS node) and α2 = γr,b (constraint by one leaky bucket) then the service curve for
flow 1 is the rate-latency service curve with rate C − r and latency b

C−r . Note that
the bound in Theorem 6.2.1 is actually for a preemptive priority scheduler where
flow 1 has low priority. It turns out that if we have no other information about the
system, it is the only bound we can find. For completeness, we give the following
case.

Corollary 6.2.1 (Non preemptive priority node). Consider a node serving two
flows, H and L, with non-preemptive priority given to flow H . Assume that the
node guarantees a strict service curve β to the aggregate of the two flows. Then the
high priority flow is guaranteed a service curve βH(t) = [β(t)− lLmax]

+ where lLmax

is the maximum packet size for the low priority flow.
If in addition the high priority flow is αH -smooth, then define βL by βL(t) =

[β(t) − αH(t)]+. If βL is wide-sense increasing, then it is a service curve for the
low priority flow.

Proof: The first part is an immediate consequence of Theorem 6.2.1. The second
part is proven in the same way as Proposition 1.3.4.

If the arrival curves are affine, then the following corollary of Theorem 6.2.1
expresses the burstiness increase due to multiplexing.

Corollary 6.2.2 (Burstiness Increase due to Blind Multiplexing). Consider a
node serving two flows in an aggregate manner. Assume the aggregate is guaran-
teed a strict service curve βR,T . Assume also that flow i is constrained by one leaky

210 CHAPTER 6. AGGREGATE SCHEDULING

bucket with parameters (ρi, σi). If ρ1 + ρ2 ≤ R the output of the first flow is con-
strained by a leaky bucket with parameters (ρ1, b∗1) with

b∗1 = σ1 + ρ1T + ρ1
σ2 + ρ2T

R− ρ2

Note that the burstiness increase contains a term ρ1T that is found even if there
is no multiplexing; the second term ρ1

σ2+ρ2T
R−ρ2

comes from multiplexing with flow
2. Note also that if we further assume that the node is FIFO, then we have a better
bound (Section 6.2.2).

Proof: From Theorem 6.2.1, the first flow is guaranteed a service curve βR′,T ′

with R′ = R − ρ2 and T ′ = σ2+Tρ2
R−ρ2

. The result follows from a direct application
of Theorem 1.4.3 on Page 29.

Do we need that the service curve property be strict ? If we relax the assump-
tion that the service curve property is strict, then the above results do not hold. A
counter-example can be built as follows. All packets have the same size, 1 data unit,
and input flows have a peak rate equal to 1. Flow 1 sends one packet at time 0, and
then stops. The node delays this packet forever. With an obvious notation, we have,
for t ≥ 0:

R1(t) = min(t, 1) and R′
1(t) = 0

Flow 2 sends one packet every time unit, starting at time t = 1. The output is a
continuous stream of packets, one per time unit, starting from time 1. Thus

R2(t) = (t− 1)+ and R′
2(t) = R2(t)

The aggregate flows are, for t ≥ 0:

R(t) = t and R′(t) = (t− 1)t

In other words, the node offers to the aggregate flow a service curve δ1. Obviously,
Theorem 6.2.1 does not apply to flow 1: if it would, flow 1 would receive a service
curve (δ1−λ1)+ = δ1, which is not true since it receives 0 service. We can interpret
this example in the light of Section 1.4.4 on Page 36: if the service curve property
would be strict, then we could bound the duration of the busy period, which would
give a minimum service guarantee to low priority traffic. We do not have such a
bound on this example. In Section 6.2.2 we see that if we assume FIFO scheduling,
then we do have a service curve guarantee.

6.2.2 Aggregate Multiplexing in a FIFO Service Curve Element

Now we relax the strict service curve property; we assume that the node guaran-
tees to the aggregate flow a minimum service curve, and in addition assume that it
handles packets in order of arrival at the node. We find some explicit closed forms
bounds for some simple cases.

6.2. TRANSFORMATION OF ARRIVAL CURVE THROUGH AGGREGATE SCHEDULING211

Proposition 6.2.1 (FIFO Minimum Service Curves [18]). Consider a lossless
node serving two flows, 1 and 2, in FIFO order. Assume that packet arrivals are
instantaneous. Assume that the node guarantees a minimum service curve β to the
aggregate of the two flows. Assume that flow 2 is α2-smooth. Define the family of
functions β1

θ by
β1
θ (t) = [β(t)− α2(t− θ)]+1{t>θ}

Call R1(t), R′
1(t) the input and output for flow 1. Then for any θ ≥ 0

R′
1 ≥ R1 ⊗ β1

θ (6.1)

If β1
θ is wide-sense increasing, flow 1 is guaranteed the service curve β1

θ

The assumption that packet arrivals are instantaneous means that we are either
in a fluid system (one packet is one bit or one cell), or that the input to the node is
packetized prior to being handled in FIFO order.

Proof: We give the proof for continuous time and assume that flow functions are
left-continuous. All we need to show is Equation (6.1). Call Ri the flow i input,
R = R1 +R2, and similarly R′

i, R
′ the output flows.

Fix some arbitrary parameter θ and time t. Define

u := sup{v : R(v) ≤ R′(t)}

Note that u ≤ t and that

R(u) ≤ R′(t) and R(u+) ≥ R′(t) (6.2)

where Rr(u) = infv>u[R(v)] is the limit to the right of R at u.
(Case 1) consider the case where u = t. It follows from the above and from

R′ ≤ R that R′
1(t) = R1(t). Thus for any θ, we have R′

1(t) = R1(t) + β1
θ (0)

which shows that R′
1(t) ≥ (R1 ⊗ β1

θ)(t) in that case.
(Case 2), assume now that u < t. We claim that

R1(u) ≤ R′
1(t) (6.3)

Indeed, if this is not true, namely, R1(u) > R′
1(t), it follows from the first part of

Equation (6.2) that R2(u) < R′
2(t). Thus some bits from flow 2 arrived after time u

and departed by time t, whereas all bits of flow 1 arrived up to time u have not yet
departed at time t. This contradicts our assumption that the node is FIFO and that
packets arrive instantaneously.

Similarly, we claim that

(R2)r(u) ≥ R′
2(t) (6.4)

Indeed, otherwise x := R′
2(t) − (R2)r(u) > 0 and there is some v0 ∈ (u, t] such

that for any v ∈ (u, v0] we have R2(v) < R′
2(t)− x

2 . From Equation (6.2), we can

212 CHAPTER 6. AGGREGATE SCHEDULING

find some v1 ∈ (u, v0] such that if v ∈ (u, v1] then R1(v) +R2(v) ≥ R′(t)− x
4 . It

follows that
R1(v) ≥ R′

1(t) +
x

4

Thus we can find some v with R1(v) > R′
1(t) whereas R2(v) < R′

2(t), which
contradicts the FIFO assumption.

Call s a time such that R′(t) ≥ R(s) + β(t − s). We have R(s) ≤ R′(t) thus
s ≤ u.

(Case 2a) Assume that u < t − θ thus also t − s > θ. From Equation (6.4) we
derive

R′
1(t) ≥ R1(s)+β(t−s)+R2(s)−R′

2(t) ≥ R1(s)+β(t−s)+R2(s)−(R2)r(u)

Now there exist some ε > 0 such that u + ε ≤ t − θ, thus (R2)r(u) ≤ R2(t − θ)
and

R′
1(t) ≥ R1(s) + β(t− s)− α2(t− s− θ)

It follows from Equation (6.3) that

R′
1(t) ≥ R1(s)

which shows that
R′
1(t) ≥ R1(s) + β1

θ (t− s)

(Case 2b) Assume that u ≥ t− θ. By Equation (6.3):

R′
1(t) ≥ R1(u) = R1(u) + β1

θ (t− u)

We cannot conclude from Proposition 6.2.1 that infθ β1
θ is a service curve. How-

ever, we can conclude something for the output.

Proposition 6.2.2 (Bound for Output with FIFO). Consider a lossless node serv-
ing two flows, 1 and 2, in FIFO order. Assume that packet arrivals are instantaneous.
Assume that the node guarantees to the aggregate of the two flows a minimum ser-
vice curve β. Assume that flow 2 is α2-smooth. Define the family of functions as in
Proposition 6.2.1. Then the output of flow 1 is α∗

1-smooth, with

α∗
1(t) = inf

θ≥0

(
α1 � β1

θ

)
(t)

Proof: Observe first that the network calculus output bound holds even if β is not
wide-sense increasing. Thus, from Proposition 6.2.1, we can conclude that α1 � β1

θ

is an arrival curve for the output of flow 1. This is true for any θ.
We can apply the last proposition and obtain the following practical result.

6.2. TRANSFORMATION OF ARRIVAL CURVE THROUGH AGGREGATE SCHEDULING213

Theorem 6.2.2 (Burstiness Increase due to FIFO, General Case). Consider a
node serving two flows, 1 and 2, in FIFO order. Assume that flow 1 is constrained
by one leaky bucket with rate ρ1 and burstiness σ1, and flow 2 is constrained by
a sub-additive arrival curve α2. Assume that the node guarantees to the aggregate
of the two flows a rate latency service curve βR,T . Call ρ2 := inft>0

1
tα2(t) the

maximum sustainable rate for flow 2.
If ρ1 + ρ2 < R, then at the output, flow 1 is constrained by one leaky bucket

with rate ρ1 and burstiness b∗1 with

b∗1 = σ1 + ρ1

(
T +

B̂

R

)

and
B̂ = sup

t≥0
[α2(t) + ρ1t−Rt]

The bound is a worst case bound.

Proof: (Step 1) Define β1
θ as in Proposition 6.2.1. Define B2 = supt≥0 [α2(t)−Rt].

Thus B2 is the buffer that would be required if the latency T would be 0. We first
show the following

if θ ≥ B2

R
+ T then for t ≥ θ : β1

θ (t) = Rt−RT − α2(t− θ) (6.5)

To prove this, call φ(t) the right hand-side in Equation (6.5), namely, for t ≥ θ
define φ(t) = Rt− α2(t− θ)−RT . We have

inf
t>θ

φ(t) = inf
v>0

[Rv − α2(v)−RT +Rθ]

From the definition of B2:

inf
t>θ

φ(t) = −B2 +Rθ −RT

If θ ≥ B2
R + T then φ(t) ≥ 0 for all t > θ. The rest follows from the definition of

β1
θ .

(Step 2) We apply the second part of Proposition 6.2.1 with θ = B̂
R + T . An

arrival curve for the output of flow 1 is given by

α∗
1 = λρ1,σ1 � β1

θ

We now compute α∗
1. First note that obviously B̂ ≤ B2, and therefore β1

θ (t) =
Rt−RT − α2(t− θ) for t ≥ θ. α∗

1 is thus defined for t > 0 by

α∗
1(t) = sup

s≥0

[
ρ1t+ σ1 + ρ1s− β1

θ (s)
]
= ρ1t+ σ1 + sup

s≥0

[
ρ1s− β1

θ (s)
]

Define ψ(s) := ρ1s− β1
θ (s). Obviously:

214 CHAPTER 6. AGGREGATE SCHEDULING

sup
s∈[0,θ]

[ψ(s)] = ρ1θ

Now from Step 1, we have

sup
s>θ

[ψ(s)] = sup
s>θ

[ρ1s−Rs+RT + α2(s− θ)]

= sup
v>0

[ρ1v −Rvα2(v)] + (ρ1 −R)θ +RT

From the definition of B̂, the former is equal to

sup
s>θ

[ψ(s)] = B̂ + (ρ1 −R)θ +RT = ρ1θ

which shows the burstiness bound in the theorem.
(Step 3) We show that the bound is attained. There is a time a θ̂ such that B̂ =

(α2)r(θ̂)− (R− ρ1)θ̂. Define flow 2 to be greedy up to time θ̂ and stop from there
on: {

R2(t) = α2(t) for t ≤ θ̂

R2(t) = (R2)r(θ̂) for t > θ̂

Flow 2 is α2-smooth because α2 is sub-additive. Define flow 1 by{
R1(t) = ρ1t for t ≤ θ̂

R1(t) = ρ1t+ σ1 for t > θ̂

Flow 1 is λρ1,σ1-smooth as required. Assume the server delays all bits by T at
time 0, then after time T operates with a constant rate R, until time θ̂ + θ, when it
becomes infinitely fast. Thus the server satisfies the required service curve property.
The backlog just after time θ̂ is precisely B̂ + RT . Thus all flow-2 bits that arrive
just after time θ̂ are delayed by B̂

R + T = θ. The output for flow 1 during the time

interval (θ̂+θ, θ̂+θ+ t] is made of the bits that have arrived in (θ̂, θ̂+ t], thus there
are ρ1t+ b∗1 such bits, for any t.

The following corollary is an immediate consequence.

Corollary 6.2.3 (Burstiness Increase due to FIFO). Consider a node serving two
flows, 1 and 2, in FIFO order. Assume that flow i is constrained by one leaky bucket
with rate ρi and burstiness σi. Assume that the node guarantees to the aggregate
of the two flows a rate latency service curve βR,T . If ρ1 + ρ2 < R, then flow 1
has a service curve equal to the rate latency function with rate R − ρ2 and latency
T + σ2

R and at the output, flow 1 is constrained by one leaky bucket with rate ρ1 and
burstiness b∗1 with

b∗1 = σ1 + ρ1

(
T +

σ2
R

)
Note that this bound is better than the one we used in Corollary 6.2.2 (but the

assumptions are slightly different). Indeed, in that case, we would obtain the rate-
latency service curve with the same rate R−ρ2 but with a larger latency: T+ σ2+ρ2T

R−ρ2
instead of T + σ2

R . The gain is due to the FIFO assumption.

6.3. STABILITY AND BOUNDS FOR A NETWORK WITH AGGREGATE SCHEDULING215

6.2.3 Aggregate Multiplexing in a GR Node

We assume now that the node is of the Guaranteed Rate type (Section 2.1.3 on
Page 86). A FIFO service curve element with rate-latency service curve satisfies
this assumption, but the converse is not true (Theorem 2.1.2 on Page 88).

Theorem 6.2.3. Consider a node serving two flows, 1 and 2 in some aggregate
manner. Arbitration between flows is unspecified, but the node serves the aggregrate
as a GR node with rate R and latency T . Assume that flow 1 is constrained by one
leaky bucket with rate ρ1 and burstiness σ1, and flow 2 is constrained by a sub-
additive arrival curve α2. Call ρ2 := inft>0

1
tα2(t) the maximum sustainable rate

for flow 2.
If ρ1 + ρ2 < R, then at the output, flow 1 is constrained by one leaky bucket

with rate ρ1 and burstiness b∗1 with

b∗1 = σ1 + ρ1

(
T + D̂

)
and

D̂ = sup
t>0

[
α2(t) + ρ1t+ σ1

R
− t]

Proof: From Theorem 2.1.3 on Page 88, the delay for any packet is bounded by
D̂ + T . Thus an arrival curve at the output of flow 1 is α1(t+ D̂).

Corollary 6.2.4. Consider a node serving two flows, 1 and 2 in some aggregate
manner. Arbitration between flows is unspecified, but the node serves the aggregrate
as a GR node with rate R and latency T . Assume that flow i is constrained by one
leaky bucket with rate ρi and burstiness σi. If ρ1+ ρ2 < R, then, at the output, flow
1 is constrained by one leaky bucket with rate ρ1 and burstiness b∗1 with

b∗1 = σ1 + ρ1

(
T +

σ1 + σ2
R

)
We see that the bound in this section is less good than Corollary 6.2.3 (but the

assumptions are more general).

6.3 Stability and Bounds for a Network with Aggre-
gate Scheduling

6.3.1 The Issue of Stability

In this section we consider the following global problem: Given a network with
aggregate scheduling and arrival curve constraints at the input (as defined in the
introduction) can we find good bounds for delay and backlog ? Alternatively, when
is a network with aggregate scheduling stable (i.e., the backlog remains bounded) ?
As it turns out today, this problem is open in many cases.

216 CHAPTER 6. AGGREGATE SCHEDULING

In the context of the following definition, we call “network” N a system satisfy-
ing the assumptions in the introduction, where all parameters except ρi, σi, rm, em
are fixed. In some cases (Section 6.3.2), we may add additional constraints on these
parameters.

Definition 6.3.1 (Critical Load Factor). We say that νcri is the critical load factor
for a network N if

• for all values of ρi, σi, rm, em such that ν < νcri, N is stable

• there exists values of ρi, σi, rm, em with ν > νcri such that N is unstable.

It can easily be checked that νcri is unique for a given network N .
It is also easy to see that for all well defined networks, the critical load factor is

≤ 1. However, Andrews gave in [3] an example of a FIFO network with νcri < 1.
The problem of finding the critical load factor, even for the simple case of a FIFO
network of constant rate servers, seems to remain open. Hajek [34] shows that, in
this last case, the problem can be reduced to that where every source i sends a burst
σi instantly at time 0, then sends at a rate limited by ρi.

In the rest of this section and in Section 6.4, we give lower bounds on νcri for
some well defined sub-classes.

Feed-Forward Networks A feed-forward network is one in which the graph of
unidirectional links has no cycle. Examples are interconnection networks used in-
side routers or multiprocessor machines. For a feed-forward network made of strict
service curve element or GR nodes, νcri = 1. This derives from applying the bursti-
ness increase bounds given in Section 6.2 repeatedly, starting from network access
points. Indeed, since there is no loop in the topology, the process stops and all input
flows have finite burstiness.

A Lower Bound on the Critical Load Factor It follows immediately from The-
orem 2.4.1 on Page 107 that for a network of GR nodes (or FIFO service curve
elements), we have νcri ≥ 1

h−1 , where h is the maximum hop count for any flow.
A slightly better bound can be found if we exploit the values of the peak rates Cm

(Theorem 2.4.2).

6.3.2 The Time Stopping Method

For a non feed-forward network made of strict service curve element or GR nodes,
we can find a lower bound on νcri (together with bounds on backlog or delay), using
the time stopping method. It was introduced by Cruz in [20] together with bounds
on backlog or delay. We illustrate the method on a specific example, shown on
Figure 6.1. All nodes are constant rate servers, with unspecified arbitration between
the flows. Thus we are in the case where all nodes are strict service curve elements,
with service curves of the form βm = λCm

.

6.3. STABILITY AND BOUNDS FOR A NETWORK WITH AGGREGATE SCHEDULING217

The method has two steps. First, we assume that there is a finite burstiness
bound for all flows; using Section 6.2 we obtain some equations for computing
these bounds. Second, we use the same equations to show that, under some condi-
tions, finite bounds exist.

; � � 	 �

9 ' � 7 �

9 ' � 7 � �

; � � 	 � �; � � 	 � �

Figure 6.1: A simple example with aggregate scheduling, used to illustrate
the bounding method. There are three nodes numbered 0, 1, 2 and six flows,
numbered 0, ..., 5. For i = 0, 1, 2, the path of flow i is i, (i + 1) mod 3, (i +
2) mod 3 and the path of flow i+3 is i, (i+2) mod 3, (i+1) mod 3. The fresh
arrival curve is the same for all flows, and is given by αi = γρ,σ. All nodes
are constant rate, work conserving servers, with rate C. The utilization factor
at all nodes is 6 ρ

C .

First step: inequations for the bounds For any flow i and any node m ∈ i,
define σmi as the maximum backlog that this flow would generate in a constant rate
server with rate ρi. By convention, the fresh inputs are considered as the outputs of
a virtual node numbered −1. In this first step, we assume that σmi is finite for all i
and m ∈ i.

By applying Corollary 6.2.2 we find that for all i and m ∈ i:
σ0
i ≤ σi

σmi = σ
pred

i
(m)

i + ρi

∑
j�m,j �=i σ

pred
j
(m)

j

C−∑ j�m,j �=i ρj

(6.6)

where predi(m) is the predecessor of node m. If m is the first node on the path of
flow i, we set by convention predi(m) = −1 and σ−1

i = σi.
Now put all the σmi , for all (i,m) such that m ∈ i, into a vector Ex with one

column and n rows, for some appropriate n. We can re-write Equation (6.6) as

Ex ≤ AEx+ Ea (6.7)

where A is an n× n, non-negative matrix and Ea is a non-negative vector depending
only on the known quantities σi. The method now consists in assuming that the

218 CHAPTER 6. AGGREGATE SCHEDULING

spectral radius of matrix A is less than 1. In that case the power series I+A+A2+
A3 + ... converges and is equal to (I −A)−1, where I is the n× n identity matrix.
Since A is non-negative, (I − A)−1 is also non-negative; we can thus multiply
Equation (6.6) to the left by (I −A)−1 and obtain:

Ex ≤ (I −A)−1Ea (6.8)

which is the required result, since Ex describes the burstiness of all flows at all nodes.
From there we can obtain bounds on delays and backlogs.

Let us apply this step to our network example. By symmetry, we have only two
unknowns x and y, defined as the burstiness after one and two hops:{

x = b00 = b11 = σ2
2 = b03 = b24 = b15

y = b10 = b21 = σ0
2 = b23 = b14 = b05

Equation (6.6) becomes{
x ≤ σ + ρ

C−5ρ (σ + 2x+ 2y)
y ≤ x+ ρ

C−5ρ (2σ + x+ 2y)

Define η = ρ
C−5ρ ; we assume that the utilization factor is less than 1, thus 0 ≤ η <

1. We can now write Equation (6.7) with

Ex =
(

x
y

)
, A =

(
2η 2η

1 + η 2η

)
, Ea =

(
σ(1 + η)
2ση

)
Some remnant from linear algebra, or a symbolic computation software, tells us that

(I −A)−1 =

(
1−2η

1−6η+2η2
2η

1−6η+2η2

1+η
1−6η+2η2

1−2η
1−6η+2η2

)

If η < 1
2 (3−

√
7) ≈ 0.177 then (I −A)−1 is positive. This is the condition for the

spectral radius of A to be less than 1. The corresponding condition on the utilization
factor ν = 6ρ

C is

ν < 2
8−√7
19

≈ 0.564 (6.9)

Thus, for this specific example, if Equation (6.9) holds, and if the burstiness terms
x and y are finite, then they are bounded as given in Equation (6.8), with (I −A)−1

and Ea given above.

Second Step: time stopping We now prove that there is a finite bound if the
spectral radius of A is less than 1. For any time τ > 0, consider the virtual system
made of the original network, where all sources are stopped at time τ . For this
network the total number of bits in finite, thus we can apply the conclusion of step
1, and the burstiness terms are bounded by Equation (6.8). Since the right-handside
Equation (6.8) is independent of τ , letting τ tend to +∞ shows the following.

6.3. STABILITY AND BOUNDS FOR A NETWORK WITH AGGREGATE SCHEDULING219

Proposition 6.3.1. With the notation in this section, if the spectral radius of A is
less than 1, then the burstiness terms bmi are bounded by the corresponding terms
in Equation (6.8).

Back to the example of Figure 6.1, we find that if the utilization factor ν is less
than 0.564, then the burstiness terms x and y are bounded by{

x ≤ 2σ 18−33ν+16ν2

36−96ν+57ν2

y ≤ 2σ 18−18ν+ν2

36−96ν+57ν2

The aggregate traffic at any of the three nodes is γ6ρ,b-smooth with b = 2(σ+x+y).
Thus a bound on delay is (see also Figure 6.2):

d =
b

C
= 2

σ

C

108− 198ν + 91ν2

36− 96ν + 57ν2

0.2 0.4 0.6 0.8 1

20

40

60

80

100

Figure 6.2: The bound d on delay at any node obtained by the method pre-
sented here for the network of Figure 6.1 (thin line). The graph shows d
normalized by σ

C (namely, dC
σ), plotted as a function of the utilization factor.

The thick line is a delay bound obtained if every flow is re-shaped at every
output.

The critical load factor for this example For the network in this example, where
we impose the constraint that all ρi are equal, we find νcri ≥ ν0 ≈ 0.564, which is
much less than 1. Does it mean that no finite bound exists for ν0 ≤ ν < 1 ? The
answer to this question is not clear.

First, the ν0 found with the method can be improved if we express more arrival
constraints. Consider our particular example: we have not exploited the fact that the
fraction of input traffic to node i that originates from another node has to be λC-
smooth. If we do so, we will obtain better bounds. Second, if we know that nodes
have additional properties, such as FIFO, then we may be able to find better bounds.
However, even so, the value of νcri seems to be unknown.

220 CHAPTER 6. AGGREGATE SCHEDULING

The price for aggregate scheduling Consider again the example on Figure 6.1,
but assume now that every flow is reshaped at every output. This is not possible
with differentiated services, since there is no per-flow information at nodes other
than access nodes. However, we use this scenario as a benchmark that illustrates the
price we pay for aggregate scheduling.

With this assumption, every flow has the same arrival curve at every node. Thus
we can compute a service curve β1 for flow 1 (and thus for any flow) at every node,
using Theorem 6.2.1; we find that β1 is the rate-latency function with rate (C − 5ρ)
and latency 5σ

C−5ρ . Thus a delay bound for flow at any node, including the re-shaper,

is h(α1, α1 ⊗ β1) = h(α1, β1) = 6C
C−5ρ for ρ ≤ C

6 . Figure 6.2 shows this delay
bound, compared to the delay bound we found if no reshaper is used. As we already
know, we see that with per-flow information, we are able to guarantee a delay bound
for any utilization factor≤ 1. However, note also that for relatively small utilization
factors, the bounds are very close.

6.4 Stability Results and Explicit Bounds

In this section we give strong results for two specific case. The former is for a
unidirectional ring of aggregate servers (of any type, not necessarily FIFO or strict
service curve). We show that for all rings, νcri = 1. The latter is for any topology,
but with restrictions on the network type: packets are of fixed size and all links have
the same bit rate.

6.4.1 The Ring is Stable

The result was initially obtained in [73] for the case of a ring of constant rate servers,
with all servers having the same rate. We give here a more general, but simpler form.

Assumption and Notation We take the same assumptions as in Section 6.1 and
assume in addition that the network topology is a unidirectional ring. More pre-
cisely:

• The network is a unidirectional ring of M nodes, labelled 1, ...,M . We use
the notation m ⊕ k = (m + k − 1) mod M + 1 and m * k = (m − k −
1) mod M +1, so that the successor of node m on the ring is node m⊕1 and
its predecessor is node m* 1.

• The route of flow i is (0, i.first, i.first⊕ 1, ..., i.first⊕ (hi − 1)) where 0 is a
virtual node representing the source of flow i, i.first is the first hop of flow i,
and hi is the number of hops of flow i. At its last hop, flow i exits the network.
We assume that a flow does not wrap, namely, hi ≤ M . If hi = M , then the
flow goes around the all ring, exiting at the same node it has entered.

• Let b =
∑

m bm reflect the total latency of the ring.

6.4. STABILITY RESULTS AND EXPLICIT BOUNDS 221

• For any node m let σ(m) =
∑

i�m σi.

Let σmax = maxMm=1 σ(m) and σ =
∑

i σi. Note that σmax ≤ σ ≤ Mσmax.

• Define η = minm(rm − ρ(m)).

• Let ρ
(m)
0 =

∑
i.first=m ρi and µ = maxMm=0

[
Cm − rm + ρ(m)

]+
. µ reflects

the sum of the peak rate of transit links and the rates of fresh sources, minus
the rate guaranteed to the aggregate of microflows. We expect high values of
µ to give higher bounds.

Theorem 6.4.1. If η > 0 (i.e. if the utilization factor is < 1) the backlog at any
node of the unidirectional ring is bounded by

M
µ

η
(Mσmax + b) + σ + b

Proof: The proof relies on the concept of chain of busy periods, combined with
the time stopping method in Section 6.3.2.

For a node m and a flow i, define Rm
i (t) as the cumulative amount of data of

flow i at the output of node m. For m = 0, this defines the input function. Also
define

xm(t) =
∑
i�m

(
R0
i (t)−Rm

i (t)
)

(6.10)

thus xm(t) is the total amount of data that is present in the network at time t and
will go through node m at some time > t.

We also define the backlog at node m by

qm(t) =
∑

i�m,i.first�=m
Rm�1
i (t) +

∑
i.first=m

R0
i (t)−

∑
i�m

Rm
i (t)

Now obviously, for all time t and node m:

qm(t) ≤ xm(t) (6.11)

and

xm(t) ≤
M∑
n=1

qn(t) (6.12)

(Step 1) Assume that a finite bound X exists. Consider a time t and a node m
that achieves the bound: xm(t) = X . We fix m and apply Lemma 6.4.1 to all nodes
n. Call sn the time called s in the lemma. Since xn(sn) ≤ X , it follows from the
first formula in the lemma that

(t− sn)η ≤ Mσmax + b (6.13)

By combining this with the second formula in the lemma we obtain

222 CHAPTER 6. AGGREGATE SCHEDULING

qn(t) ≤ µ
Mσmax + b

η
+ bn + σ

(n)
0

Now we apply Equation (6.12) and note that
∑M

n=1 σ
(n)
0 = σ, from which we derive

X ≤ M
µ

η
(Mσmax + b) + σ + b (6.14)

(Step 2) By applying the same reasoning as in Section 6.3.2, we find that Equa-
tion (6.14) is always true. The theorem follows from Equation (6.11).

Lemma 6.4.1. For any nodes m,n (possibly with m = n), and for any time t there
is some s such that{

xm(t) ≤ xn(s)− (t− s)η +Mσmax + b

qn(t) ≤ (t− s)µ+ bn + σ
(n)
0

with σ
(n)
0 =

∑
i.first=n σi.

Proof: By definition of the service curve property at node m, there is some s1
such that∑

i�m
Rm
i (t) ≥

∑
i�m,i.first�=m

Rm�1
i (s1) +

∑
i.first=m

R0
i (s1) + rm(t− s1)− bm

which we can rewrite as∑
i�m

Rm
i (t) ≥ −A+

∑
i�m

R0
i (s1) + rm(t− s1)− bm

with
A =

∑
i�m,i.first�=m

(
R0
i (s1)−Rm−1

i (s1)
)

Now the condition {i m, i.first �= m} implies that flow i passes through node
m − 1, namely, {i (m− 1)}. Furthermore, each element in the summation that
constitutes A is nonnegative. Thus

A ≤
∑

i�(m−1)

(
R0
i (s1)−Rm−1

i (s1)
)
= xm�1(s1)

Thus ∑
i�m

Rm
i (t) ≥ −xm�1(s1) +

∑
i�m

R0
i (s1) + rm(t− s1)− bm (6.15)

Now combining this with the definition of xm(t) in Equation (6.10) gives:

xm(t) ≤ xm�1(s1) +
∑
i�m

(
R0
i (t)−R0

i (s1)
)− rm(t− s1) + bm

6.4. STABILITY RESULTS AND EXPLICIT BOUNDS 223

From the arrival curve property applied to all micro-flows i in the summation, we
derive:

xm(t) ≤ xm�1(s1)− (rm − ρ(m))(t− s1) + σ(m) + bm

and since rm − ρ(m) ≥ η and σ(m) ≤ σmax by definition of η and σmax, we have

xm(t) ≤ xm�1(s1)− (t− s1)η + σmax + bm

We apply the same reasoning to node m * 1 and time s1, and so on iteratively
until we reach node n backwards from m. We thus build a sequence of times s0 =
t, s1, s2, ..., sj , ..., sk such that

xm�j(sj) ≤ xm�(j+1)(sj+1)− (t− sj+1)η + σmax + bm�j (6.16)

until we have m * k = n. If n = m we reach the same node again by a com-
plete backwards rotation and k = M . In all cases, we have k ≤ M . By summing
Equation (6.16) for j = 0 to k − 1 we find the first part of the lemma.

Now we prove the second part. s = sk is obtained by applying the service curve
property to node n and time sk−1. Apply the service curve property to node n and
time t. Since t ≥ sk−1, we know from Proposition 1.3.2 on Page 24 that we can find
some s′ ≥ s such that∑

i�n
Rn
i (t) ≥

∑
i�n,i.first�=n

Rn−1
i (s′) +

∑
i.first=n

R0
i (s

′) + rn(t− s′)− bn

Thus

qn(t) ≤
∑

i�n,i.first �=n

(
Rn�1
i (t)−Rn�1

i (s′)
)
+

∑
i.first=n

(R0
i (t)−R0

i (s
′))− rn(t− s′) + bn

≤ (Cn − rn + ρ
(n)
0)(t− s′) + bn + σ

(n)
0 ≤ (t− s′)µ+ bn + σ

(n)
0

the second part of the formula follows from s ≤ s′.

Remark: A simpler, but weaker bound, is

M
µ

η
(Mσ + b) + σ + b

or

M
µ

η
(Mσmax + b) +Mσmax + b (6.17)

224 CHAPTER 6. AGGREGATE SCHEDULING

The special case in [73]: Under the assumption that all nodes are constant rate
servers of rate equal to 1 (thus Cm = rm = 1 and bm is the latency of the link m),
the following bound is found in [73]:

B1 =
Mb+M2σmax

η
+ b (6.18)

In that case, we have µ ≤ 1− η. By applying Equation (6.17), we obtain the bound

B2 =
Mµb+

[
M2µ+Mη

]
σmax

η
+ b

since
µ ≤ 1− η (6.19)

and 0 < η ≤ 1, M ≤ M2, we have B2 < B1, namely, our bound is better than
that in [73]. If there is equality in Equation (6.19) (namely, if there is a node that
receives no transit traffic), then both bounds are equivalent when η → 0.

6.4.2 Explicit Bounds for a Homogeneous ATM Network with
Strong Source Rate Conditions

When analyzing a global network, we can use the bounds in Section 6.2.2, using the
same method as in Section 2.4. However, as illustrated in [38], the bounds so ob-
tained are not optimal: indeed, even for a FIFO ring, the method does not find a finite
bound for all utilization factors less than (although we know from Section 6.4.1 that
such finite bounds exist).

In this section we show in Theorem 6.4.2 some partial result that goes beyond
the per-node bounds in Section 6.2.2. The result was originally found in [14, 49, 79].

Consider an ATM network with the assumptions as in Section 6.1, with the
following differences

• Every link has one origin node and one end node. We say that a link f is
incident to link e if the origin node of link e is the destination node of link f .
In general, a link has several incident links.

• All packets have the same size (called cell). All arrivals and departures oc-
cur at integer times (synchronized model). All links have the same bit rate,
equal to 1 cell per time unit. The service time for one cell is 1 time unit. The
propagation times are constant per link and integer.

• All links are FIFO.

Proposition 6.4.1. For a network with the above assumption, the delay for a cell c
arriving at node e over incident link i is bounded by the number of cells arriving on
incident links j �= i during the busy period, and that will depart before c.

6.4. STABILITY RESULTS AND EXPLICIT BOUNDS 225

Proof: Call R′(t) (resp. Rj(t), R(t))the output flow (resp. input arriving on link
j, total input flow). Call d the delay for a tagged cell arriving at time t on link i.
Call Aj the number of cells arriving on link j up to time t that will depart before the
tagged cell, and let A =

∑
j Aj . We have

d = A−R′(t) ≤ A−R(s)− (t− s)

where s is the last time instant before the busy period at t. We can rewrite the
previous equation as

d ≤
∑
j �=i

[Aj −Rj(s)] + [Ai(t)−Ri(s)]− (t− s)

Now the link rates are all equal to 1, thus Ai −Ri(s) ≤ t− s and

d ≤
∑
j �=i

[Aj −Rj(s)]

An “Interference Unit” is defined as a set (e, {j, k}) where e is a link, {j, k} is a
set of two distinct flows that each have e on their paths, and that arrive at e over two
different incident links (Figure 6.3). The Route Interference Number (RIN) of flow
j is the number of interference units that contain j. It is thus the number of other
flows that share a common sub-path, counted with multiplicity if some flows share
several distinct sub-paths along the same path. The RIN is used to define a sufficient
condition, under which we prove a strong bound.

� ' � 7 � 6

$ � � 	 � � $ � � 	 � :

$ � � 	 � +

$ � � 	 � � $ � � 	 � 	

� ' � 7 � � �

� ' � 7 � � �

$ � � 	 � '

Figure 6.3: The network model and definition of an interference unit. Flows j
and i2 have an interference unit at node f . Flows j and i1 have an interfer-
ence unit at node l and one at node g.

Definition 6.4.1 (Source Rate Condition). The fresh arrival curve constraint (at
network boundary) for flow j is the stair function vR+1,R+1, where R is the RIN of
flow j.

226 CHAPTER 6. AGGREGATE SCHEDULING

The source rate condition is equivalent to saying that a flow generates at most
one cell in any time interval of duration RIN + 1.

Theorem 6.4.2. If the source rate condition holds at all sources, then

1. The backlog at any node is bounded by N−maxi Ni, where Ni is the number
of flows entering the node via input link i, and N =

∑
i Ni.

2. The end-to-end queuing delay for a given flow is bounded by its RIN.

3. There is at most one cell per flow present during any busy period.

The proof of item 3 involves a complex analysis of chained busy periods, as
does the proof of Theorem 6.4.1. It is given in a separate section. Item 3 gives
an intuitive explanation of what happens: the source rate condition forces sources
to leave enough spacing between cells, so that two cells of the same flow do not
interfere, in some sense. The precise meaning of this is given in the proof. Items 1
and 2 derive from item 3 by a classical network calculus method (Figure 6.6).

Proof of Theorem 6.4.2 As a simplification, we call “path of a cell“ the path of
the flow of the cell. Similarly, we use the phrase “ interference unit of c” with the
meaning of interference unit of the flow of c.

We define a busy period as a time interval during which the backlog for the flow
at the node is always positive. We now introduce a definition (super-chain) that will
be central in the proof. First we use the following relation:

Definition 6.4.2 (“Delay Chain” [14]). For two cells c and d, and for some link e,
we say that c �e d if c and d are in the same busy period at e and c leaves e before
d.

Figure 6.4 illustrates the definition.

Definition 6.4.3 (Super-Chain [14]). Consider a sequence of cells c = (c0, ...,
ci, ..., ck) and a sequence of nodes f = (f1, ..., fk). We say that (c, f) is a super-
chain if

• f1, ..., fk are all on the path P of cell c0 (but not necessarily consecutive)

• ci−1 �fi
ci for i = 1 to k.

• the path of cell ci from fi to fi+1 is a sub-path of P

We say that the sub-path of c0 that spans from node f1 to node fk is the path of
the super-chain.

Definition 6.4.4 (Segment Interfering with a Super-Chain). For a given super-
chain, we call “ segment” a couple (d, P) where P is a sub-path of the path of the
super-chain, d is a cell whose path also has P as a sub-path, and P is maximal
(namely, we cannot extend P to be a common sub-path of both d and the super-
chain). We say that the segment (d, P) is interfering with super-chain (c, f) if there
is some i on P such that d �fi

ci.

6.4. STABILITY RESULTS AND EXPLICIT BOUNDS 227

� 	 ' ' � �

� 	 ' ' � � �

� 	 ' ' � � �' � :

�

	

� 	 ' ' � � �

� 	 ' ' � � �

� 	 ' ' � �

Figure 6.4: A time-space diagram illustrating the definitions of d �g c1 and
c1 �f c2. Time flows downwards. Rectangles illustrate busy periods.

Lemma 6.4.2. Let (c, f) be a super-chain. Let s0 be the arrival time of cell c0 at
link f1 and s′k the departure time of cell ck from link fk. Then s′k−s0 ≤ R1,k+T1,k,
where R1,k is the total number of segments interfering with (c, f) and T1,k is the
total transmission and propagation time on the path of the super-chain.

Proof: Consider first some node fj on the super-chain. Let sj−1 (resp. tj) be the
arrival time of cell cj−1 (resp. cj) at the node. Let t′j−1 (resp. s′j) be the departure
time of cell cj−1 (resp. cj) (Figure 6.5). Let vj be the last time slot before the busy
period that tj is in. By hypothesis, vj + 1 ≤ sj−1. Also define Bj (resp. B0

j) as the
set of segments (d, P) where d is a cell arriving at the node after time vj on a link
incident to the path of the super-chain (resp. on the path of the super-chain) and that
will depart no later than cell cj , and where P is the maximal common sub-path for
d and the super-chain that fj is in. Also define A0

j as the subset of those segments
in B0

j for which the cell departs after cj−1. Let Bj (resp. B0
j , A

0
j) be the number of

elements in Bj (resp. B0
j ,A0

j), see Figure 6.5.
Since the rate of all incident links is 1, we have

B0
j −A0

j ≤ sj−1 − vj

Also, since the rate of the node is 1, we have:

s′j − vj = Bj +B0
j

Combining the two, we derive

228 CHAPTER 6. AGGREGATE SCHEDULING

� � � 	

2 6

� 6 � �

� 6

� � 6

� � 6 � �

# 	 ' ' � � 6 � �

# 	 ' ' � � 6

0

6

! 6

Figure 6.5: The notation used in the proof of Lemma 6.4.2.

s′j − sj−1 = Bj +B0
j − (sj−1 − vj) ≤ Bj +A0

j (6.20)

By iterative application of Equation (6.20) from j = 1 to k, we obtain

s′k − s0 ≤
k∑

j=1

(Bj +A0
j) + T1,k

Now we show that all sets in the collection {Bj ,A0
j , j = 1 to k} are two-by-two

disjoint. Firstly, if (d, P) ∈ Bj then fj is the first node of P thus (d, P) cannot be in
some other Bj′ with j �= j′. Thus the Bj are two-by-two disjoint. Second, assume
(d, P) ∈ Bj and (d, P) ∈ A0

j′ . It is obvious from their definitions that, for a fixed
j, Bj and A0

j are disjoint; thus j �= j′. Since fj is the first node of P and j′ is on P ,
it follows that j < j′. Now d leaves fj before cj and leaves fj′ after cj′−1, which
contradicts the FIFO assumption. Thus the Bj and A0

j′ are two-by-two disjoint. The
same reasoning shows that it is not possible that (d, P) ∈ Aj

⋂Aj′ with j < j′.
Now, by definition, every segment in either Bj or A0

j is an interfering segment.
Thus

k∑
j=1

(Bj +A0
j) ≤ R1,k

.

Proposition 6.4.2. Assume the source rate condition holds. Let (c, f) be a super-
chain.

1. For every interference unit of c0 there is at most one cell interfering with the
super-chain.

2. ck does not belong to the same flow as c0.

6.4. STABILITY RESULTS AND EXPLICIT BOUNDS 229

Proof: Define the time of a super-chain as the exit time for the last cell ck on the
last node fk. We use a recursion on the time t of the super-chain.

If t = 1, the proposition is true because any flow has at most one cell on a link
in one time slot. Assume now that the proposition holds for any super-chain with
time ≤ t− 1 and consider a super-chain with time t.

First, we associate an interference unit to any segment (d, P) interfering with
the sub-chain, as follows. The paths of d and c0 may share several non contiguous
sub-paths, and P is one of them. Call f the first node of P . To d we associate the
interference unit (f, {j0, j}), where j0 (resp. j) is the flow of c0 (resp. d).

We now show that this mapping is injective. Assume that another segment
(d′, P ′) �= (d, P) is associated with the same interference unit (f, {j0, j}). Without
loss of generality, we can assume that d was emitted before d′. d and d′ belong to
the same flow j, thus, since P and P ′ are maximal, we must have P = P ′. By hy-
pothesis, have an interference with the super-chain at a node on P . Let fl be a node
on the super-chain and on P such that d �fl

cl. If d′ leaves node fl before cl, then
d �fl

d′, and thus ((d, d′), (fl)) is a super-chain. Since d′ is an interfering cell, nec-
essarily, it must leave node fl before t, thus the proposition is true for super-chain
((d, d′), (fl)), which contradicts item 2. Thus d′ must leave node fl after cell cl. But
there is some other index m ≤ k such that d �fm

cm, thus cell d′ leaves node fm
before cell cm. Define l′ as the smallest index with l < l′ ≤ m such that d′ leaves
node fl′ after cell cl′−1 and before cl′ . Then ((d, cl, ..., cl′−1, d

′), (fl, .., fl′)) is a
super-chain with time ≤ t− 1 which would again contradict item 2 in the proposi-
tion. Thus, in all cases we have a contradiction, the mapping is injective, and item 1
is shown for the super-chain.

Second, let us count a bound on the maximum queuing delay of cell c0. Call
u0 its emission time, P0 the sub-path of c0 from its source up to, but excluding,
node f1, and T the total transmission and propagation time for the flow of c0. The
transmission and propagation time along P0 is thus T − T1,k. By Proposition 6.4.1,
the queuing delay of c0 at a node f on P0 is bounded by the number of cells d �f c0
that arrive on a link not on P0. By the same reasoning as in the previous paragraph,
there is at most one such cell d per interference unit of c0 at f . Define R as the
number of interference units of the flow of c0 on P1. We have thus

s0 ≤ u0 +R + T − T1,k (6.21)

Similarly, from Lemma 6.4.2, we have

s′k ≤ s0 +R1,k + T1,k

Call R′ the number of interference units of the flow of c0 on the path of the super-
chain. It follows from the first part of the proof that R1,k ≤ R′, thus

s′k ≤ s0 +R′ + T1,k

Combining with Equation (6.21) gives

s′k ≤ u0 +R +R′ + T (6.22)

230 CHAPTER 6. AGGREGATE SCHEDULING

Now by the source condition, if ck belongs to the flow of c0, its emission time u′

must satisfy
u′ ≥ u0 +R +R′ + 1

and thus
s′k ≥ u0 +R +R′ + 1 + T

which contradicts Equation (6.22). This shows that the second item of the proposi-
tion must hold for the super-chain.

Proof of Theorem 6.4.2: Item 3 follows from Proposition 6.4.2, since if there
would be two cells d, d′ of the same flow in the same busy period, then ((d, d′), (e))
would be a super-chain.

Now we show how items 1 and 2 derive from item 3. Call α∗
i (t) the maximum

number of cells that may ever arrive on incident link i during t time units inside
a busy period. Since λ1 is a service curve for node e, the backlog B at node e is
bounded by

B ≤ sup
t≥0

[
I∑
i=1

α∗
i (t) − t

]
Now by item 3, α∗

i (t) ≤ Ni and thus

α∗
i (t) ≤ αi(t) := min[Ni, t]

Thus

B ≤ sup
t≥0

[
I∑
i=1

αi(t) − t

]
Now define a renumbering of the Ni’s such that N(1) ≤ N(2) ≤ ... ≤ N(I). The
function

∑
i αi(t) − t is continuous and has a derivative at all points except the

N(i)’s (Figure 6.6). The derivative changes its sign at N(I) (=max1≤i≤I(Ni)) thus
the maximum is at N(I) and its value is N −N(I), which shows item 1.

From Item 1, the delay at a node is bounded by the number of interference units
of the flow at this node. This shows item 2.

6.5 Bibliographic Notes

In [49], a stronger property is shown than Theorem 6.4.2: Consider a given link
e and a subset A of m connections that use that link. Let n be a lower bound on
the number of route interferences that any connection in the subset will encounter
after this link. Then over any time interval of duration m + n, the number of cells
belonging to A that leave link e is bounded by m.

It follows from item 1 in Theorem 6.4.2 that a better queuing delay bound for
flow j is:

6.6. EXERCISES 231

; � ; � ? �

; � � � ; � � � ; � ? �

;
� � � �

�

Figure 6.6: Derivation of a backlog bound.

δ(j) =
∑

e such that e∈j

{
min

i such that 1≤i≤I(e)
(N(e)−Ni(e))

}

where I(e) is the number of incident links at node e, Ni(e) is the number of flows
entering node e on link i, and N =

∑
i = 1I(e)Ni(e). In other words, the end-

to-end queuing delay is bounded by the sum of the minimum numbers of route
interference units for all flows at all nodes along the path of a flow. For asymmetric
cases, this is less than the RIN of the flow.

6.6 Exercises

Exercise 6.1. Consider the same assumptions as in Section 6.4.1 but with a linear
network instead of a ring. Thus node m feeds node m+1 for m = 1, ...,M−1; node
1 receives only fresh traffic, whereas all traffic exiting node M leaves the network.
Assume that all service curves are strict. Find a bound which is finite for ν ≤ 1.
Compare to Theorem 6.4.1.

Exercise 6.2. Consider the same assumptions as in Theorem 6.4.2. Show that the
busy period duration is bounded by N .

Exercise 6.3. Consider the example of Figure 6.1. Apply the method of Section 6.3.2
but express now that the fraction of input traffic to node i that originates from an-
other node must have λC as an arrival curve . What is the upper-bound on utilization
factors for which a bound is obtained ?

Exercise 6.4. Can you conclude anything on νcri from Proposition 2.4.1 on Page 110 ?

232 CHAPTER 6. AGGREGATE SCHEDULING

Chapter 7

Adaptive and Packet Scale
Rate Guarantees

7.1 Introduction

In Chapter 1 we defined a number of service curve concepts: minimum service
curve, maximum service curve and strict service curves. In this chapter we go be-
yond and define some concepts that more closely capture the properties of general-
ized processor sharing (GPS).

We start by a motivating section, in which we analyze some features of ser-
vice curves that do not match GPS. Then we provide the theoretical framework of
adaptive guarantees, which was first proposed in Okino’s dissertation in [59] and by
Agrawal, Cruz, Okino and Rajan in [1]. This framework is underlying the concept
of packet scale rate guarantees, which is used in the definition of the Internet Ex-
pedited Forwarding service. We explain the relationship between the two and give
practical applications.

In all of this chapter, we assume that flow functions are left-continuous, unless
stated otherwise.

7.2 Adaptive Guarantee

7.2.1 Limitations of the Service Curve Abstraction

The definition of service curve introduced in Section 1.3 is an abstraction of nodes
such as GPS and its practical implementations, as well as guaranteed delay nodes.
This abstraction is used in many situations, described all along this book. However,
it is not always sufficient.

Firstly, it does not provide a guarantee over any interval. Consider for example
a node offering to a flow R(t) the service curve λC . Assume R(t) = B for t > 0,
so the flow has a very large burst at time 0 and then stops. A possible output is

233

234 CHAPTER 7. ADAPTIVE AND PACKET SCALE RATE GUARANTEES

illustrated on Figure 7.1. It is perfectly possible that there is no output during the
time interval (0, B−ε

C], even though there is a large backlog. This is because the
server gave a higher service than the minimum required during some interval of
time, and the service property allows it to be lazy after that.

!
! � � �

� � � �

� � � � �

�

Figure 7.1: The service curve property is not sufficient.

Secondly, there are case where we would like to deduce a bound on the delay
that a packet will suffer given the backlog that we can measure in the node. This is
used for obtaining bounds in FIFO systems with aggregate scheduling. In Chapter 6
we use such a property for a constant delay server with rate C: given that the backlog
at time t is Q, the last bit present at time t will depart before within a time of Q

C . If
we assume instead that the server has a service curve λC , then we cannot draw such
a conclusion. Consider for example Figure 7.1: at time t > 0, the backlog, ε, can be
made arbitrily small, whereas the delay B−ε

C − t can be made arbitrarily large.
A possible fix is the use of strict service curve, as defined in Definition 1.3.2

on Page 27. Indeed, it follows from the next section (and can easily be shown in-
dependently) that if a FIFO node offers a strict service curve β, then the delay at
time t is bounded by β−1(Q(t)), where Q(t) is the backlog at time t, and β−1 is the
pseudo-inverse (Definition 3.1.7 on Page 129).

We know that the GPS node offers to a flow a strict service curve equal of the
form λR. However, we cannot model delay nodes with a strict service curve. Con-
sider for example a node with input R(t) = εt, which delays all bits by a constant
time d. Any interval [s, t] with s ≥ d is within a busy period, thus if the node offers
a strict service curve β to the flow, we should have β(t − s)ε(t − s), and ε can
be arbitrarily small. Thus, the strict service curve does not make much sense for a
constant delay node.

7.2.2 Definition of Adaptive Guarantee

We know introduce a stronger concept, called adaptive guarantee, that better cap-
tures the properties of GPS [59, 1]. Before giving the formula, we motivate it on
three examples.

7.2. ADAPTIVE GUARANTEE 235

Consider first a node offering a strict service curve β. Consider some fixed, but
arbitrary times s < t. Assume that β is continuous. If [s, t] is within a busy period,
we must have

R∗(t) ≥ R∗(s) + β(t− s)

Else, call u the beginning of the busy period at t. We have

R∗(t) ≥ R(u) + β(t− u)

thus in all cases

R∗(t) ≥ (R∗(s) + β(t− s)) ∧ inf
u∈[s,t]

(R(u) + β(t− u)) (7.1)

Second, consider a node that guarantees a virtual delay ≤ d. If t − s ≤ d then
trivially

R∗(t) ≥ R∗(s) + δd(t− s)

and if t− s > d then the virtual delay property means that

R∗(t) ≥ R(t− d) = inf
u∈[s,t]

(R(u) + δd(t− u))

thus we have the same relation as in Equation (7.1) with β = δd.
Thirdly, consider a greedy shaper with shaping function σ (assumed to be a good

function). Then
R∗(t) = inf

u≤t
[R(u) + σ(t− u)]

Breaking the inf into u < s and u ≥ s gives

R∗(t) = inf
u<s

[R(u) + σ(t− u)] ∧ inf
u∈[s,t]

[R(u) + σ(t− u)] (7.2)

Define σ̃ := σ�σ, namely,

σ̃(u) = inf
t
[σ(t+ u)− σ(u)] (7.3)

For example, for a piecewise linear concave arrival curve (conjunction of leaky
buckets), σ(t) = mini(riu+bi), we have σ̃(u) = mini riu. Back to Equation (7.2),
we have

σ(t− u) ≥ σ(s− u) + σ̃(t− s)

and finally

R∗(t) ≥ (R∗(s) + σ̃(t− s)) ∧ inf
u∈[s,t]

(R(u) + σ(t− u)) (7.4)

We see that these three cases fall under a common model:

236 CHAPTER 7. ADAPTIVE AND PACKET SCALE RATE GUARANTEES

Definition 7.2.1 (Adaptive Service Curve). Let β̃, β be in F . Consider a system
S and a flow through S with input and output functions R and R∗. We say that S
offers the adaptive guarantee (β̃, β) if for any s ≤ t it holds:

R∗(t) ≥
(
R∗(s) + β̃(t− s)

)
∧ inf
u∈[s,t]

[R(u) + β(t− u)]

If β̃ = β we say that the node offers the adaptive guarantee β.

The following proposition summarizes the examples discussed above:

Proposition 7.2.1. • If S offers to a flow a strict service curve β, then it also
offers the adaptive guarantee β.

• If S guarantees a virtual delay bounded by d, then it also offers the adaptive
guarantee δd

• A greedy shaper with shaping curve σ, where σ is a good function, offers the
adaptive guarantee (σ̃, σ), with σ̃ defined in Equation (7.3).

Similar to [59], we use the notation R → (β̃, β) → R∗ to express that Defini-
tion 7.2.1 holds. If β̃ = β we write R → (β)→ R∗.

Assume that R is left-continuous and β is continuous. It follows from Theo-
rem 3.1.8 on Page 139 that the adaptive guarantee is equivalent to saying that for all
s ≤ t, we have either

R∗(t)−R∗(s) ≥ β̃(t− s)

or
R∗(t) ≥ R(u) + β(t− u)

for some u ∈ [s, t].

7.2.3 Properties of Adaptive Guarantees

Theorem 7.2.1. Let R → (β̃, β) → R∗. If β̃ ≤ β then β is a minimum service
curve for the flow.

Proof: Apply Definition 7.2.1 with s = 0 and use the fact that β̃ ≤ β.

Theorem 7.2.2 (Concatenation). If R → (β̃1, β1) → R1 and R1 → (β̃2, β2) →
R∗ then R → (β̃, β)→ R∗ with

β̃ =
(
β̃1 ⊗ β2

)
∧ β̃2

and
β = β1 ⊗ β2

7.2. ADAPTIVE GUARANTEE 237

Proof: Consider some fixed but arbitrary times s ≤ t and let u ∈ [s, t]. We have

R1(u) ≥
[
R1(s) + β̃(u− s)

]
∧ inf
v∈[s,u]

[R(v) + β1(u− v)]

thus

R1(u) + β2(t− u) ≥
[
R1(s) + β̃(u− s) + β2(t− u)

]
∧

infv∈[s,u] [R(v) + β1(u− v) + β2(t− u)]

and

inf
u∈[s,t]

[R1(u) + β2(t− u)] ≥

inf
u∈[s,t]

[
R1(s) + β̃(u− s) + β2(t− u)

]
∧ inf
u∈[s,t],v∈[s,u]

[R(v) + β1(u− v) + β2(t− u)]

After re-arranging the infima, we find

inf
u∈[s,t]

[R1(u) + β2(t− u)] ≥(
R1(s) + inf

u∈[s,t]

[
β̃(u− s) + β2(t− u)

])
∧

inf
v∈[s,t]

(
R(v) + inf

u∈[v,t]
[β1(u− v) + β2(t− u)]

)
which can be rewritten as

inf
u∈[s,t]

[R1(u) + β2(t− u)] ≥(
R1(s) + (β̃1 ⊗ β2)(t− s)

)
∧

inf
v∈[s,t]

[R(v) + β(t− v)]

Now by hypothesis we have

R∗(t) ≥
(
R∗(s) + β̃2(t− s)

)
∧ inf
u∈[s,t]

[R(u) + β2(t− u)]

Combining the two gives

R∗(t) ≥(
R∗(s) + β̃2(t− s)

)
∧
(
R1(s) + (β̃1 ⊗ β2)(t− s)

)
∧ inf
v∈[s,t]

[R(v) + β(t− v)]

Now R1(s) ≥ R∗(s) thus

238 CHAPTER 7. ADAPTIVE AND PACKET SCALE RATE GUARANTEES

R∗(t) ≥(
R∗(s) + β̃2(t− s)

)
∧
(
R∗(s) + (β̃1 ⊗ β2)(t− s)

)
∧ inf
v∈[s,t]

[R(v) + β(t− v)]

Corollary 7.2.1. If Ri−1 → (β̃i, βi)→ Ri for i = 1 to n then R0 → (β̃, β)→ Rn

with

β̃ =
(
β̃1 ⊗ β2 ⊗ ...⊗ βn

)
∧
(
β̃2 ⊗ β3 ⊗ ...⊗ βn

)
∧ ... ∧

(
β̃n−1 ⊗ βn

)
∧ β̃n

and
β = β1 ⊗ ...⊗ βn

Proof: Apply Theorem 7.2.2 iteratively and use Rule 6 in Theorem 3.1.5 on
Page 135.

Theorem 7.2.3 (Delay from Backlog). If R → (β̃, β)→ R∗, then the virtual delay
at time t is bounded by β̃−1(Q(t)), where Q(t) is the backlog at time t, and β̃−1 is
the pseudo-inverse of β̃ (see Definition 3.1.7 on Page 129).

Note that if the node is FIFO, then the virtual delay at time t is the real delay for
a bit arriving at time t.

Proof: If the virtual delay at time t is larger than t + τ for some τ ≥ 0, then we
must have

R∗(t+ τ) < R(t) (7.5)

By hypothesis

R∗(t+ τ) ≥
(
R∗(t) + β̃(τ)

)
∧ inf

[u∈[t,t+τ]
[R(u) + β(t+ τ − u)] (7.6)

now for u ∈ [t, t+ τ]

R(u) + β(t+ τ − u) ≥ R(t) + β(0) ≥ R∗(t+ τ)

thus Equation (7.6) implies that

R∗(t+ τ) ≥ R∗(t) + β̃(τ)

combining with Equation (7.5) gives

Q(t) = R(t)−R∗(t) ≥ β̃(τ)

7.2. ADAPTIVE GUARANTEE 239

thus the virtual delay is bounded by sup{τ : β̃(τ) > Q(t)} which is equal to
β̃−1(Q(t)).

Consider a system (bit-by-bit system) with L-packetized input R and bit-by-bit
output R∗, which is then L-packetized to produce a final packetized output R′. We
call combined system the system that maps R into R′. Assume both systems are
first-in-first-out and lossless. Remember from Theorem 1.7.1 that the per-packet
delay for the combined system is equal the maximum virtual delay for the bit-by-bit
system.

Theorem 7.2.4 (Packetizer and Adaptive Guarantee). If the bit-by-bit system
offers to the flow the adaptive guarantee (β̃, β), then the combined system offers to
the flow the adaptive guarantee (β̃′, β′) with

β̃′(t) = [β̃(t)− lmax]+

and
β′(t) = [β(t)− lmax]+

where lmax is the maximum packet size for the flow.

Proof: Let s ≤ t. By hypothesis we have

R∗(t) ≥
(
R∗(s) + β̃(t− s)

)
∧ inf
u∈[s,t]

[R(u) + β(t− u)]

We do the proof when the inf in the above formula is a minimum, and leave it to the
alert reader to extend it to the general case. Thus assume that for some u0 ∈ [s, t]:

inf
u∈[s,t]

[R(u) + β(t− u)] = R(u0) + β(t− u0)

it follows that either
R∗(t)−R∗(s) ≥ β̃(t− s)

or
R∗(t) ≥ R(u0) + β(t− u0)

Consider the former case. We have R′(t) ≥ R∗(t)− lmax and R′(s) ≤ R∗(s) thus

R′(t) ≥ R∗(t)− lmax ≥ R′(s) + β̃(t− s)− lmax

Now also obviously R′(t) ≥ R′(s), thus finally

R′(t) ≥ R′(s) + max[0, β̃(t− s)− lmax] = R′(s) + β̃′(t− s)

Consider now the latter case. A similar reasoning shows that

R′(t) ≥ R(u0) + β(t− u0)− lmax

but also

240 CHAPTER 7. ADAPTIVE AND PACKET SCALE RATE GUARANTEES

R∗(t) ≥ R(u0)

now the input is L-packetized. Thus

R′(t) = PL(R∗(t)) ≥ PL(R(u0)) = R(u0)

from which we conclude that R′(t) ≥ R(u0) + β′(t− u0).
Combining the two cases provides the required adaptive guarantee.

7.3 Application to the Internet: Packet Scale Rate
Guarantee

In this section we apply the concept of adaptive guarantee to practical schedulers
used in the Internet.

7.3.1 Definition of Packet Scale Rate Guarantee

In Section 2.1.3 on Page 86 we have introduced the definition of guaranteed rate
scheduler, which is the practical application of rate latency service curves. Consider
a node where packets arrive at times A1 ≥ 0, A2, ... and leave at times D1,D2,
A guaranteed rate scheduler, with rate r and latency v requires that Di ≤ T ′

i + v,
where T ′

i is defined iteratively by T ′
0 = 0 and

T ′
i = max{Ai, T

′
i−1}+

li
r

where li is the length of the ith packet.
A packet scale rate guarantee is similar, but, much in the spirit of adaptive guar-

antees, avoids the limitations of the service curve concept discussed in Section 7.2.1.
To that end, we would like that the deadline T ′

i is reduced whenever a packet hap-
pens to be served early. This is done by replacing T ′

i−1 in the previous equation by
min{T ′

i ,Di}. This gives the following definition.

Definition 7.3.1 (Packet Scale Rate Guarantee). Consider a node that serves a
flow of packets numbered i = 1, 2, Call Ai,Di, li the arrival time, departure
time, and length in bits for the ith packet, in order of arrival. Assume A1 ≥ 0.We
say that the node offers to the flow a packet scale rate guarantee with rate r and
latency v if the departure times satisfy

Di ≤ Fi + v

where Fi is defined by:{
F0 = D0 = 0
Fi = max {Ai,min (Di−1, Fi−1)}+ li

r for all i ≥ 1
(7.7)

7.3. PACKET SCALE RATE GUARANTEE 241

We now relate packet scale rate guarantee to an adaptive guarantee. We cannot
expect an exact equivalence, since a packet scale rate guarantee does not specify
what happens to bits at a time other than a packet departure or arrival. However, the
concept of packetizer allows us to establish an equivalence.

Theorem 7.3.1 (Equivalence with adaptive guarantee). Consider a node S with
L-packetized input R and with output R∗.

1. If R → (β) → R∗, where β = βr,v is the rate-latency function with rate r
and latency v, and if S is FIFO, then S offers to the flow the packet scale rate
guarantee with rate r and latency v.

2. Conversely, if S offers to the flow the packet scale rate guarantee with rate
r and latency v and if R∗ is L-packetized, then S is the concatenation of a
node S ′ offering the adaptive guarantee βr,v and the L-packetizer. If S is
FIFO, then so is S ′.

The proof is long and is given in a separate section (Section 7.3.3). Note that the
packet scale rate guarantee does not mandate that the node be FIFO; it is possible
that Di < Di−1 in some cases. However, part 1 of the theorem requires the FIFO
assumption in order for a condition on R,R∗ to be translated into a condition on
delays.

A special case of interest is when v = 0.

Corollary 7.3.1. Consider a node with L-packetized input. Call Ai,Di the arrival
and departure times for packet i, with i = 1, 2, ... and A1 ≥ 0. Let li be the size of
packet i.

1. If the node guarantees a strict service curve λr and is FIFO then{
D0 = 0
Di ≤ max {Ai,Di−1}+ li

r for all i ≥ 1
(7.8)

2. Conversely if Equation (7.8) holds for all i, and if the output is L-packetized,
then the node is the concatenation of a node guaranteeing a strict service
curve λr and an L-packetizer.

Proof: Apply Theorem 7.3.1 with v = 0 and note that Di−1 ≤ Fi−1 in Equa-
tion (7.7).

Definition 7.3.2. We call minimum rate server, with rate r, a node for which Equa-
tion (7.8) holds for all i

Thus, roughly speaking, a minimum rate server guarantees that during any busy
period, the instantaneous output rate is at least r. A GPS node with total rate C and
weight wi for flow i is a minimum rate server for flow i, with rate ri = φiC∑

j φj
.

Since a packetizer does not add to the per-packet delay, we can immediately
derive the following property from Theorem 7.2.3 and Theorem 7.3.1:

242 CHAPTER 7. ADAPTIVE AND PACKET SCALE RATE GUARANTEES

Proposition 7.3.1 (Backlog from Delay). For a FIFO node offering the packet
scale rate guarantee with rate r and latency v, the delay for a packet present in the
system at time t is bounded by Q(t)

r + v, where Q(t) is the backlog at time t.

Lastly, we have a concatenation result for FIFO systems:

Proposition 7.3.2. Consider a concatenation of FIFO systems numbered 1 to n.
The output of system i− 1 is the input of system i, for i > 1. Assume system i offers
the packet scale rate guarantee with rate Ri and latency Ei. The global system
offers the packet scale rate guarantee with rate R = mini=1,...,n Ri and latency
E =

∑
i=1,...,n Ei +

∑
i=1,...,n−1

Lmax
Ri

.

Proof: By Theorem 7.3.1–(2), we can decompose system i into a concatenation
Si,Pi, where Si offers the adaptive guarantee βRi,Ei

and Pi is a packetizer.
Call S the concatenation

S1,P1,S2,P2, ...,Sn−1,Pn−1,Sn
By Theorem 7.3.1–(2), S is FIFO. By Theorem 7.2.4, it provides the adaptive guar-
antee βR,E . By Theorem 7.3.1–(1), it also provides the packet scale rate guarantee
with rate R and latency E. Now Pn does not affect the finish time of the last bit of
every packet.

7.3.2 Practical Realization of Packet Scale Rate Guarantee

We show in this section that a wide variety of schedulers provide the packet scale
rate guarantee. More schedulers can be obtained by using the concatenation theorem
in the previous section.

A simple but important realization is the priority scheduler.

Proposition 7.3.3. Consider a non-preemptive priority scheduler in which all pack-
ets share a single FIFO queue with total output rate C. The high priority flow re-
ceives a packet scale rate guarantee with rate C and latency v = lmax

C , where lmax

is the maximum packet size of all low priority packets.

Proof: By Proposition 1.3.7, the high priority traffic receives a strict service curve
βr,c.

We have already introduced in Section 2.1.3 a large number of schedulers that
can be thought of as derived from GPS and we have modeled their behaviour with
a rate-latency service curve. In order to give an adaptive guarantee for such sched-
ulers, we need to define more.

Definition 7.3.3 (Accuracy of a scheduler with respect to rate r). Consider a
scheduler S and call Di the time of the i-th departure. We say that the accuracy of
S with respect to rate r is (v1, v2) if there is a minimum rate server with rate r and
departure times Gi such that for all i

7.3. PACKET SCALE RATE GUARANTEE 243

Gi − v1 ≤ Di ≤ Gi + v2 (7.9)

We interpret this definition as a comparison to a hypothetical GPS reference
scheduler that would serve the same flows. The term v2 determines the maximum
per-hop delay bound, whereas v1 has an effect on the jitter at the output of the
scheduler. For example, it is shown in [6] that WF2Q satisfies v1(WF2Q) = lmax/r,
v2(WF2Q) = lmax/C, where lmax is maximum packet size and C is the total
output rate. In contrast, for PGPS [61] v2(PGPS) = v2(WF2Q), while v1(PGPS) is
linear in the number of queues in the scheduler. This illustrates that, while WF2Q
and PGPS have the same delay bounds, PGPS may result in substantially burstier
departure patterns.

Theorem 7.3.2. If a scheduler satisfies Equation (7.9), then it offers the packet scale
rate guarantee with rate r and latency v = v1 + v2.

Proof: We first prove that for all i ≥ 0

Fi ≥ Gi − v1 (7.10)

where Fi is defined by Equation (7.7). Indeed, if Equation (7.10) holds, then by
Equation (7.9)):

Di ≤ Gi + v2 ≤ Fi + v1 + v2

which means that the scheduler offers the packet scale rate guarantee with rate r and
latency v = v1 + v2.

Now we prove Equation (7.10) by induction. Equation (7.10) trivially holds for
i = 0.

Suppose now that it holds for i− 1, namely,

Fi−1 ≥ Gi−1 − v1

By hypothesis, Equation (7.9) holds:

Di−1 ≥ Gi−1 − v1

thus
min[Fi−1,Di−1] ≥ Gi−1 − v1 (7.11)

Combining this with Equation (7.7), we obtain

Fi ≥ Gi−1 − v1 +
L(i)
R

(7.12)

Again from Equation (7.7) we have

Fi ≥ Ai + li
r

≥ Ai − v1 +
li)
r

(7.13)

Now by Equation (7.8)

244 CHAPTER 7. ADAPTIVE AND PACKET SCALE RATE GUARANTEES

Gi ≤ max[Ai, Gi−1] +
li
r

(7.14)

Combining Equation (7.12)), Equation (7.13)) and (7.14) gives

Fi ≥ Gi − v1

7.3.3 Proof of Theorem 7.3.1

The first part of Theorem 7.3.1 is based on a max-plus representation of the packet
scale rate guarantee, which maps the (min-plus) definition of an adaptive guarantee.
The second part relies on the reduction to the minimum rate server.

We use the same notation as in Definition 7.3.1. L(i) =
∑i

j=1 lj is the cumula-
tive packet length.

Part 1: Define the sequence of times Fk by Equation (7.7). Consider now some
fixed but arbitrary packet index i ≥ 1. By the FIFO assumption, it is sufficient to
show that

R∗(t) ≥ L(i) (7.15)

with t = Fi + v. Define

j = max {k ∈ {1, ..., i} : Ak ≥ Dk−1 or Ak < Dk−1 ≤ Fk−1}

Note that the set above is non-empty and 1 ≤ j ≤ i. The definition of j implies

Aj ≥ Dj−1 or Aj < Dj−1 ≤ Fj−1 (7.16)

and
Ak < Dk−1 and Fk−1 < Dk−1 for j + 1 ≤ k ≤ i (7.17)

Note that the set of indices k to which the previous equation applies may be empty
(in that case, j = i).

By Equation (7.16) and the definition of Fj , we have

Fj = s+
lj
r

(7.18)

with
s = Aj ∨Dj−1

Similarly, we derive from Equation (7.17) that for j + 1 ≤ k ≤ i:

Fk = (Ak ∨ Fk−1) +
lk
r

which can be re-written as

7.3. PACKET SCALE RATE GUARANTEE 245

Fk =
(

Ak +
lk
r

)
∨
(

Fk−1 +
lk
r

)
(7.19)

Now we obtain a max-plus expansion of Fi as follows. We substitute Fi−1 from
Equation (7.19) at k = i− 1 into Equation (7.19) at k = i and obtain

Fi =
(

Ai +
li
r

)
∨
(

Ai−1 +
li + li−1

r

)
∨
(

Fi−2 +
li + li−1

r

)
We apply this iteratively until k = j at which step we use Equation (7.18) instead
of Equation (7.19). We obtain finally:

Fi =
(

s+
L(i)− L(j − 1)

r

)∨ i
max
k=j+1

(
Ak +

L(i)− L(k − 1)
r

)
(7.20)

Let us apply the definition of an adaptive guarantee to the time interval [s, t]:

R∗(t) ≥ A ∧B

with

A := R∗(s) + r(t− s− v)+ and B := inf
u∈[s,t]

B(u)

where

B(u) :=
(
R(u) + r(t− u− v)+

)
Firstly, since s ≥ Dj−1, we have R∗(s) ≥ L(j − 1). By Equation (7.20), Fi ≥
s+ L(i)−L(j−1)

r thus t ≥ s+ L(i)−L(j−1)
r + v. It follows that

t− s− v ≥ L(i)− L(j − 1)
r

and thus A ≥ L(i).
Secondly, we show that B ≥ L(i) as well. Consider some u ∈ [s, t]. If u ≥ Ai

then R(u) ≥ L(i) thus B(u) ≥ L(i). Otherwise, u < Ai; since s ≥ Aj , it follows
that Ak−1 ≤ u < Ak for some k ∈ {j + 1, ..., i} and R(u) = L(k − 1). By
Equation (7.20),

Fi ≥ Ak +
L(i)− L(k − 1)

r

thus

t− u− v ≥ L(i)− L(k − 1)
r

It follows that B(u) ≥ L(i) also in that case. Thus we have shown that B ≥ L(i).
Combining the two shows that R∗(t) ≥ L(i) as required.

246 CHAPTER 7. ADAPTIVE AND PACKET SCALE RATE GUARANTEES

Part 2: We use a reduction to a minimum rate server as follows. Let D′
i :=

min(Di, Fi) for i ≥ 0. By Equation (7.7) we have

Ai ≤ D′
i ≤ max(Ai,D

′
i−1) +

li
r

(7.21)

and
D′
i ≤ Di ≤ D′

i + v (7.22)

The idea of the proof is now to interpret D′
i as the output time for packet i out of a

virtual minimum rate server. Of course, we cannot use Corollary 7.3.1.
Construct a virtual node R as follows. The input is the original input R(t). The

output is defined as follows. The number of bits of packet i that are output up to
time t is ψi(t), defined by

if t > d′(i) then ψi(t) = L(i)
else if a(i) < t ≤ d′(i) then ψi(t) = [L(i)− r(d′(i)− t)]+

else ψi(t) = 0

so that the total output of R is R1(t) =
∑

i≥1 ψi(t).
The start time for packet i is thus max[Ai,D

′
i − li

r] and the finish time is D′
i.

Thus R is causal (but not necessarily FIFO, even if the original system would be
FIFO). We now show that during any busy period,R has an output rate at least equal
to r.

Let t be during a busy period. Consider now some time t during a busy period.
There must exist some i such that Ai ≤ t ≤ D′

i. Let i be the smallest index such that
this is true. If Ai ≥ D′

i−1 then by Equation (7.21) D′
i − t ≤ li

r and thus ψ′
r(t) = r

where ψ′
r is the derivative of ψi to the right. Thus the service rate at time t is at least

r.
Otherwise, Ai < D′i− 1. Necessarily (because we number packets in order of

increasing Ai’s – this is not a FIFO assumption) Ai−1 ≤ Ai; since i is the smallest
index such that Ai ≤ t < D′

i, we must have t ≥ D′
i−1. But then D′

i − t ≤ li
r and

the service rate at time t is at least r. Thus, node R offers the strict service curve λr
and

R → (λr)→ R1 (7.23)

Now define node D. Let δ(i) := Di −D′
i, so that 0 ≤ δ(i) ≤ E. The input of

D is the output of R. The output is as follows; let a bit of packet i arrive at time t;
we have t ≤ D′

i ≤ Di. The bit is output at time t′ = max[min[Di−1,Di], t + δi].
Thus all bits of packet i are delayed in D by at most δ(i), and if Di−1 < Di they
depart after Di. It follows that the last bit of packet i leaves D at time Di. Also,
since t′ ≥ t, D is causal. Lastly, if the original system is FIFO, then Di−1 < Di, all
bits of packet i depart after Di−1 and thus the concatenation of R and D is FIFO.
Note that R is not necessarily FIFO, even if the original system is FIFO.

The aggregate output of D is

R2(t) ≥
∑
i≥1

ψi(t− δ(i)) ≥ R1(t− v)

7.4. BIBLIOGRAPHIC NOTES 247

thus the virtual delay for D is bounded by v and

R1 → (δv)→ R2 (7.24)

Now we plug the output of D into an L-packetizer. Since the last bit of packet i
leaves D at time Di, the final output is R∗. Now it follows from Equation (7.23),
Equation (7.24) and Theorem 7.2.2 that

R → (λr ⊗ δv)→ R2

7.4 Bibliographic Notes

The concept of adaptive service curve was introduced in Okino’s dissertation in [59]
and was published by Agrawal, Cruz, Okino and Rajan in [1], which contains most
results in Section 7.2.3, as well as an application to a window flow control problem
that extends Section 4.3.2 on Page 178. They call β̃ an “adaptive service curve” and
β a “partial service curve” .

The packet scale rate guarantee was first defined in a framework dependent of
adaptive service guarantees in [4]. It serves as a basis for the definition of the Expe-
dited Forwarding capability defined for the Internet.

7.5 Exercises

Exercise 7.1. Assume that R → (β̃, β)→ R∗.

1. Show that the node offers to the flow a strict service curve equal to β̃ ⊗ β,
where β is the sub-additive closure of β.

2. If β̃ = β is a rate-latency function, what is the value obtained for the strict
service curve ?

Exercise 7.2. Consider a system with input R and output R∗. We call “ input flow
restarted at time t” the flow Rt defined for u ≥ 0 by

Rt(u) = R(t+ u)−R∗(t) = R(t, u] +Q(t)

where Q(t) := R(t)−R∗(t) is the backlog at time t. Similarly, let the“ output flow
restarted at time t” be the flow R∗

t defined for u ≥ 0 by

R∗
t (u) = R∗(t+ u)−R∗(t)

Assume that the node guarantees a service curve β to all couples of input, output
flows (Rt, R

∗
t). Show that R → (β)→ R∗.

248 CHAPTER 7. ADAPTIVE AND PACKET SCALE RATE GUARANTEES

Chapter 8

Time Varying Shapers

8.1 Introduction

Throughout the book we usually assume that systems are idle at time 0. This is not a
limitation for systems that have a renewal property, namely, which visit the idle state
infinitely often – for such systems we choose the time origin as one such instant.

There are cases however where we are interested in the effect at time t of non
zero initial conditions. This occurs for example for re-negotiable services, where the
traffic contract is changed at periodic renegotiation moments. An example for this
service is the Integrated Service of the IETF with the Resource reSerVation Protocol
(RSVP), where the negotiated contract may be modified periodically [30]. A similar
service is the ATM Available Bit Rate service (ABR). With a renegotiable service,
the shaper employed by the source is time-varying. With ATM, this corresponds
to the concept of Dynamic Generic Cell Rate Algorithm (DGCRA).. At renegoti-
ation moments, the system cannot generally be assumed to be idle. This motivates
the need for explicit formulae that describe the transient effect of non-zero initial
condition.

In Section 8.2 we define time varying shapers. In general, there is not much we
can say apart from a direct application of the fundamental min-plus theorems in
Section 4.3. In contrast, for shapers made of a conjunction of leaky buckets, we can
find some explicit formulas. In Section 8.3.1 we derive the equations describing a
shaper with non-zero initial buffer. In Section 8.3.2 we add the constraint that the
shaper has some history. Lastly, in Section 8.4, we apply this to analyze the case
where the parameters of a shaper are periodically modified.

This chapter also provides an example of the use of time shifting.

8.2 Time Varying Shapers

We define a time varying shaper as follows.

249

250 CHAPTER 8. TIME VARYING SHAPERS

Definition 8.2.1. Consider a flow R(t). Given a function of two time variables
H(t, s), a time varying shaper forces the output R∗(t) to satisfy the condition

R∗(t) ≤ H(t, s) +R∗(s)

for all s ≤ t, possibly at the expense of buffering some data. An optimal time varying
shaper, or greedy time varying shaper, is one that maximizes its output among all
possible shapers.

The existence of a greedy time varying shaper follows from the following propo-
sition.

Proposition 8.2.1. For an input flow R(t) and a function of two time variables
H(t, s), among all flows R∗ ≤ R satisfying

R∗(t) ≤ H(t, s) +R∗(s)

there is one flow that upper bounds all. It is given by

R∗(t) = inf
s≥0

[
H(t, s) +R(s)

]
(8.1)

where H is the min-plus closure of H , defined in Equation (4.10) on Page 172.

Proof: The condition defining a shaper can be expressed as{
R∗ ≤ LH(R∗)
R∗ ≤ R

where LH is the min-plus linear operator whose impulse response is H (Theo-
rem 4.1.1). The existence of a maximum solution follows from Theorem 4.3.1 and
from the fact that, being min-plus linear, LH is upper-semi-continuous. The rest of
the proposition follows from Theorem 4.2.1 and Theorem 4.3.1.

The output of the greedy shaper is given by Equation (8.1). A time invariant
shaper is a special case; it corresponds to H(s, t) = σ(t−s), where σ is the shaping
curve. In that case we find the well-known result in Theorem 1.5.1.

In general, Proposition 8.2.1 does not help much. In the rest of this chapter, we
specialize to the class of concave piecewise linear time varying shapers.

Proposition 8.2.2. Consider a set of J leaky buckets with time varying rates rj(t)
and bucket sizes bj(t). At time 0, all buckets are empty. A flow R(t) satisfies the
conjunction of the J leaky bucket constraints if and only if for all 0 ≤ s ≤ t:

R(t) ≤ H(t, s) +R(s)

with

H(t, s) = min
1≤j≤J

{bj(t) +
∫ t

s

rj(u)du} (8.2)

8.3. TIME INVARIANT SHAPER WITH INITIAL CONDITIONS 251

Proof: Consider the level of the jth bucket. It is the backlog of the variable ca-
pacity node (Section 1.3.2) with cumulative function

Mj(t) =
∫ t

0

rj(u)du

We know from Chapter 4 that the output of the variable capacity node is given by

R′
j(t) = inf

0≤s≤t
{Mj(t)−Mj(s) +R(s)}

The jth leaky bucket constraint is

R(t)−R′
j(t) ≤ bj(t)

Combining the two expresses the jth constraint as

R(t)−R(s) ≤ Mj(t)−Mj(s) + bj(t)

for all 0 ≤ s ≤ t. The conjunction of all these constraints gives Equation (8.2).
In the rest of this chapter, we give a practical and explicit computation of H

for H given in Equation (8.2), when the functions rj(t) and bj(t) are piecewise
constant.

8.3 Time Invariant Shaper with Non-zero Initial Con-
ditions

We consider in this section some time invariant shapers. We start with a general
shaper with shaping curve σ, whose buffer is not assumed to be initially empty. Then
we will apply this to analyze leaky bucket shapers with non-empty initial buckets.

8.3.1 Shaper with Non-empty Initial Buffer

Proposition 8.3.1 (Shaper with non-zero initial buffer). Consider a shaper sys-
tem with shaping curve σ. Assume that σ is a good function. Assume that the initial
buffer content is w0. Then the output R∗ for a given input R is

R∗(t) = σ(t) ∧ inf
0≤s≤t

{R(s) + w0 + σ(t− s)} for all t ≥ 0 (8.3)

Proof: First we derive the constraints on the output of the shaper. σ is the shaping
function thus, for all t ≥ s ≥ 0

R∗(t) ≤ R∗(s) + σ(t− s)

and given that the bucket at time zero is not empty, for any t ≥ 0, we have that

R∗(t) ≤ R(t) + w0

252 CHAPTER 8. TIME VARYING SHAPERS

At time s = 0, no data has left the system; this is expressed with

R∗(t) ≤ δ0(t)

The output is thus constrained by

R∗ ≤ (σ ⊗R∗) ∧ (R + w0) ∧ δ0

where⊗ is the min-plus convolution operation, defined by (f⊗g)(t) = infs f(s)+
g(t− s). Since the shaper is an optimal shaper, the output is the maximum function
satisfying this inequality. We know from Lemma 1.5.1 that

R∗ = σ ⊗ [(R + w0) ∧ δ0]
= [σ ⊗ (R + w0)] ∧ [σ ⊗ δ0]
= [σ ⊗ (R + w0)] ∧ σ

which after some expansion gives the formula in the proposition. .
Another way to look at the proposition consists in saying that the initial buffer

content is represented by an instantaneous burst at time 0.
The following is an immediate consequence.

Corollary 8.3.1 (Backlog for a shaper with non-zero initial buffer). The backlog
of the shaper buffer with the initial buffer content w0 is given by

w(t) = (R(t)− σ(t) + w0) ∨ sup
0<s≤t

{R(t)−R(s)− σ(t− s)} (8.4)

8.3.2 Leaky Bucket Shapers with Non-zero Initial Bucket Level

Now we characterize a leaky-bucket shaper system with non-zero initial bucket lev-
els.

Proposition 8.3.2 (Compliance with J leaky buckets with non-zero initial bucket
levels). A flow S(t) is compliant with J leaky buckets with leaky bucket specifica-
tions (rj , bj), j = 1, 2 . . . J and initial bucket level q0j if and only if

S(t)− S(s) ≤ min
1≤j≤J

[rj · (t− s) + bj] for all 0 < s ≤ t

S(t) ≤ min
1≤j≤J

[rj · t+ bj − q0j] for all t ≥ 0

Proof: Apply Section 8.3.1 to each of the buckets.

Proposition 8.3.3 (Leaky-Bucket Shaper with non-zero initial bucket levels).
Consider a greedy shaper system defined by the conjunction of J leaky buckets
(rj , bj), with j = 1, 2 . . . J . Assume that the initial bucket level of the j-th bucket is
q0j . The initial level of the shaping buffer is zero. The output R∗ for a given input R
is

R∗(t) = min[σ0(t), (σ ⊗R)(t)] for all t ≥ 0 (8.5)

8.3. TIME INVARIANT SHAPER WITH INITIAL CONDITIONS 253

where σ is the shaping function

σ(u) = min
1≤j≤J

{σj(u)} = min
1≤j≤J

{rj · u+ bj}

and σ0 is defined as

σ0(u) = min
1≤j≤J

{rj · u+ bj − q0j }

Proof: By Corollary 8.3.2 applied to S = R∗, the condition that the output is
compliant with the J leaky buckets is

R∗(t)−R∗(s) ≤ σ(t− s) for all 0 < s ≤ t
R∗(t) ≤ σ0(t) for all t ≥ 0

Since σ0(u) ≤ σ(u) we can extend the validity of the first equation to s = 0. Thus
we have the following constraint:

R∗(t) ≤ [(σ ⊗R∗) ∧ (R ∧ σ0)](t)

Given that the system is a greedy shaper, R∗(·) is the maximal solution satisfying
those constraints. Using the same min-plus result as in Proposition 8.3.1, we obtain:

R∗ = σ ⊗ (R ∧ σ0) = (σ ⊗R) ∧ (σ ⊗ σ0)

As σ0 ≤ σ, we obtain
R∗ = (σ ⊗R) ∧ σ0

We can now obtain the characterization of a leaky-bucket shaper with non-zero
initial conditions.

Theorem 8.3.1 (Leaky-Bucket Shaper with non-zero initial conditions). Con-
sider a shaper defined by J leaky buckets (rj , bj), with j = 1, 2 . . . J (leaky-bucket
shaper). Assume that the initial buffer level of is w0 and the initial level of the jth
bucket is q0j . The output R∗ for a given input R is

R∗(t) = min{σ0(t), w0 + inf
u>0

{R(u) + σ(t− u)}} for all t ≥ 0 (8.6)

with
σ0(u) = min

1≤j≤J
(rj · u+ bj − q0j)

Proof: Apply Proposition 8.3.3 to the input R′ = (R+w0)∧ δ0 and observe that
σ0 ≤ σ.

An interpretation of Equation (8.6) is that the output of the shaper with non-zero
initial conditions is either the output of the ordinary leaky-bucket shaper, taking into
account the initial level of the buffer, or, if smaller, the output imposed by the initial
conditions, independent of the input.

254 CHAPTER 8. TIME VARYING SHAPERS

8.4 Time Varying Leaky-Bucket Shaper

We consider now time varying leaky-bucket shapers that are piecewise constant. The
shaper is defined by a fixed number J of leaky buckets, whose parameters change
at times ti. For t ∈ [ti, ti+1) := Ii, we have thus

rj(t) = rij and bj(t) = bij

At times ti, where the leaky bucket parameters are changed, we keep the leaky
bucket level qj(ti) unchanged.

We say that σi(u) := min1≤jJ{riju + bij} is the value of the time varying
shaping curve during interval Ii. With the notation in Section 8.2, we have

H(t, ti) = σi(t− ti) if t ∈ Ii

We can now use the results in the previous section.

Proposition 8.4.1 (Bucket Level). Consider a piecewise constant time varying
leaky-bucket shaper with output R∗. The bucket level qj(t) of the j-th bucket is,
for t ∈ Ii:

qj(t) =
[
R∗(t)−R∗(ti)− rij · (t− ti) + qj(ti)

]∨
supti<s≤t{R∗(t)−R∗(s)− rij · (t− s)} (8.7)

Proof: We use a time shift, defined as follows. Consider a fixed interval Ii and
define

x∗(τ) := R∗(ti + τ)−R∗(ti)

Observe that qj(ti + τ) is the backlog at time τ (call it w(τ) at the shaper with
shaping curve σ(τ) = rij · t, fed with flow x∗, and with an initial buffer level qj(ti).
By Chapter 8.3.1 we have

w(τ) =
[
x∗(τ)− rij · τ + qj(ti)

] ∨ sup
0<s′≤τ

{x∗(τ)− x∗(s′)− rij · (τ − s′)}

which after re-introducing R∗ gives Equation (8.7)

Theorem 8.4.1 (Time Varying Leaky-Bucket Shapers). Consider a piecewise
constant time varying leaky-bucket shaper with time varying shaping curve σi in
the interval Ii. The output R∗ for a given input R is

R∗(t) = min
[
σ0
i (t− ti) +R∗(ti), inf

ti<s≤t
{σi(t− s) +R(s)}

]
(8.8)

with σ0
i is defined by

σ0
i (u) = min

1≤j≤J

[
rij · u+ bji − qj(ti)

]

8.5. BIBLIOGRAPHIC NOTES 255

and qj(ti) is defined recursively by Equation (8.7). The backlog at time t is defined
recursively by

w(t) = max

[
sup

ti<s≤t
{R(t)−R(s)− σi(t− s)},

R(t)−R(ti)− σ0
i (t− ti) + w(ti)

]
t ∈ Ii (8.9)

Proof: Use the same notation as in the proof of Proposition 8.4.1 and define in
addition

x(τ) := R(ti + τ)−R(ti)

We can now apply Theorem 8.3.1, with initial bucket levels equal to qj(ti) as
given in Equation (8.7) and with an initial buffer level equal to w(ti). The input-
output characterization of this system is given by Equation (8.6), thus

x∗(τ) = σ0
i (τ) ∧ [σi ⊗ x′](τ)

where

x′(τ) =
{

x(τ) + w(ti) τ > 0
x(τ) τ ≤ 0

Hence, re-introducing the original notation, we obtain

R∗(t)−R∗(ti) =
[
σ0
i (t− ti) ∧ inf

ti<s≤t
{σi(t− s) +R(s)−R(ti) + w(ti)}

]
which gives Equation (8.8).

The backlog at time t follows immediately.
Note that Theorem 8.4.1 provides a representation of H . However, the represen-

tation is recursive: in order to compute R∗(t), we need to compute R∗(ti) for all
ti < t.

8.5 Bibliographic Notes

[67] illustrates how the formulas in Section 8.4 form the basis for defining a rene-
gotiable VBR service. It also illustrates that, if some inconsistency exists between
network and user sides whether leaky buckets should be reset or not at every rene-
gotiation step, then this may result in inacceptable losses (or service degradation)
due to policing.

[12] analyzes the general concept of time varying shapers.

256 CHAPTER 8. TIME VARYING SHAPERS

Chapter 9

Systems with Losses

All chapters have dealt up to now with lossless systems. This chapter shows that
network calculus can also be applied to lossy systems, if we model them as a lossless
system preceded by a ‘clipper’ [16, 17], which is a controller dropping some data
when a buffer is full, or when a delay constraint would otherwise be violated. By
applying once again Theorem 4.3.1, we obtain a representation formula for losses.
We use this formula to compute various bounds. The first one is a bound on the loss
rate in an element when both an arrival curve of the incoming traffic and a minimum
service curve of the element are known. We use it next to bound losses in a complex
with a complex service curve (e.g., VBR shapers) by means of losses with simpler
service curves (e.g., CBR shapers). Finally, we extend the clipper, which models
data drops due to buffer overflow, to a ‘compensator’ , which models data accrual
to prevent buffer underflow, and use it to compute explicit solutions to Skorokhod
reflection mapping problem with two boundaries.

9.1 A Representation Formula for Losses

9.1.1 Losses in a Finite Storage Element

We consider a network element offering a service curve β, and having a finite stor-
age capacity (buffer) X . We denote by a the incoming traffic.

We suppose that the buffer is not large enough to avoid losses for all possible
input traffic patterns, and we would like to compute the amount of data lost at time
t, with the convention that the system is empty at time t = 0. We model losses as
shown in Figure 9.1, where x(t) is the data that has actually entered the system in
the time interval [0, t]. The amount of data lost during the same period is therefore
L(t) = a(t)− x(t).

The model of Figure 9.1 replaces the original lossy element, by an equivalent
concatenation a controller or regulator that separates the incoming flow a in two
separate flows, x and L, and that we call clipper, following the denomination in-

257

258 CHAPTER 9. SYSTEMS WITH LOSSES

troduced in [17], together with the original system, which is now lossless for flow
x.

Clipp er

a(t)

L(t)

x(t)
X y(t)

Figure 9.1: System with losses

The amount of data (x(t) − x(s)) that actually entered the system in any time
interval (s, t] is always bounded above by the total amount of data (a(t) − a(s))
that has arrived in the system during the same period. Therefore, for any 0 ≤ s ≤ t,
x(t) ≤ x(s) + a(t) − a(s) or equivalently, using the linear idempotent operator
introduced by Definition 4.1.5,

x(t) ≤ inf
0≤s≤t

{a(t)− a(s) + x(s)} = ha(x)(t). (9.1)

On the other hand, x is the part of a that does actually enter the system. If y
denotes its output, there is no loss for x if x(t) − y(t) ≤ X for any t. We do not
know the exact mapping y = Π(x) realized by the system, but we assume that Π is
isotone. So at any time t

x(t) ≤ y(t) +X = Π(x)(t) +X (9.2)

The data x that actually enters the system is therefore the maximum solution to
(9.1) and (9.2), which we can recast as

x ≤ a ∧ {Π(x) +X} ∧ ha(x), (9.3)

and which is precisely the same equation as (4.33) with W = X and M = a. Its
maximal solution is given by

x = ({Π+X} ∧ ha)(a),

or equivalently, after applying Corollary 4.2.1, by

x =
(
(ha ◦ (Π +X)) ◦ ha

)
(a) =

(
(ha ◦ (Π +X))

)
(a) (9.4)

where the last equality follows from ha(a) = a.
We do not know the exact mapping Π, but we know that Π ≥ Cβ . We have thus

that

9.1. A REPRESENTATION FORMULA FOR LOSSES 259

x ≥ (ha ◦ Cβ+X)(a). (9.5)

The amount of lost data in the interval [0, t] is therefore given by

L(t) = a(t)− x(t)

= a(t)− ha ◦ {Cβ+X}(a)(t) = a(t)− inf
n∈N

{
(ha ◦ Cβ+X)(n)

}
(a)(t)

= sup
n∈N

{
a(t)− (ha ◦ Cβ+X)(n) (a)(t)

}
= sup

n≥0
{a(t)− inf

0≤s2n≤...≤s2≤s1≤t
{a(t)− a(s1) + β(s1 − s2) +X

+a(s2)− . . .+ a(s2n)}}
= sup

n∈N

{ sup
0≤s2n≤...≤s2≤s1≤t

{a(s1)− β(s1 − s2)− a(s2)

+ . . .− a(s2n)− nX}}.
Consequently, the loss process can be represented by the following formula:

L(t) ≤

sup
n∈N

{
sup

0≤s2n≤...≤s2≤s1≤t

{
n∑
i=1

[a(s2i−1)− a(s2i)− β(s2i−1 − s2i)−X]

}}
(9.6)

If the network element is a greedy shaper, with shaping curve β, then Π(x) = Cβ ,
and the inequalities in (9.5) and (9.6) become equalities.

What the formula says is that losses up to time t are obtained by summing the
losses over all intervals [s2i−1, s2i], where s2i marks the end of an overflow period,
and where s2i−1 is the last time before s2i when the buffer was empty. These inter-
vals are therefore larger then the congestion intervals, and their number n is smaller
or eqaul to the number of congestion intervals. Figure 9.2 shows an example where
n = 2 and where there are three congestion periods.

We will see in the next sections how the losses representation formula (9.6), can
help us to obtain deterministic bounds on the loss process in some systems.

9.1.2 Losses in a Bounded Delay Element

Before moving to these applications, we first derive a representation formula for a
similar problem, where data are discarded not because of a finite buffer limit, but
because of a delay constraint: any entering data must have exited the system after at
most d unit of time, otherwise it is discarded. Such discarded data are called losses
due to a delay constraint of d time units.

As above, let x be the part of a that does actually enter the system, and let y be
its output. All the data x(t) that has entered the system during [0, t] must therefore
have left at time t+ d at the latest, so that x(t)− y(t+ d) ≤ 0 for any t. Thus

x(t) ≤ y(t+ d) = Π(x)(t+ d) = (S−d ◦Π)(x)(t), (9.7)

260 CHAPTER 9. SYSTEMS WITH LOSSES

β(t) = Ct

t

x(t)

X

a(t)

y(t)

X

1s 2s 3s 4s

Figure 9.2: Losses in a constant rate shaper (β = λC). Fresh traffic a is
represented with a thin, solid line; accepted traffic x is represented by a
bold, solid line; the output process y is represented by a bold, dashed line.

where S−d is the shift operator (with forward shift of d time units) given by Defini-
tion 4.1.7.

On the other hand, as in the previous example, the amount of data (x(t)−x(s))
that actually entered the system in any time interval (s, t] is always bounded above
by the total amount of data (a(t) − a(s)) that has arrived in the system during the
same period. Therefore the data x that actually enters the system is therefore the
maximum solution to

x ≤ a ∧ (S−d ◦Π)(x) ∧ ha(x), (9.8)

which is
x = ({S−d ◦Π} ∧ ha)(a),

or equivalently, after applying Corollary 4.2.1, by

x =
(
ha ◦ ({S−d ◦Π}) ◦ ha

)
(a) =

(
ha ◦ S−d ◦Π

)
(a). (9.9)

Since Π ≥ Cβ , we also have,

x ≥ (
ha ◦ S−d ◦ Cβ

)
(a). (9.10)

The amount of lost data in the interval [0, t] is therefore given by

L(t) ≤ sup
n∈N

{
a(t)− (ha ◦ S−d ◦ Cβ)(n) (a)(t)

}

9.2. APPLICATION 1: BOUND ON LOSS RATE 261

which can be developed as
L(t) ≤

sup
n∈N

{
sup

0≤s2n≤...≤s2≤s1≤t

{
n∑
i=1

[a(s2i−1)− a(s2i)− β(s2i−1 + d− s2i)]

}}
(9.11)

Once again, if Π = Cβ , then (9.11) becomes an equality.
We can also combine a delay constraint with a buffer constraint, and repeat the

same reasoning, starting from

x ≤ a ∧ {Π(x) +X} ∧ (S−d ◦Π)(x) ∧ ha(x). (9.12)

to obtain

L(t) ≤ sup
n∈N

{ sup
0≤s2n≤...≤s2≤s1≤t

{
n∑
i=1

[a(s2i−1)− a(s2i)

−(β(s2i−1 + d− s2i) ∧ {β(s2i−1 − s2i) +X})]}}. (9.13)

This can be recast as a recursion on time if t ∈ N, following the time method to
solve (9.12) instead of the space method. This recurstion is established in [16].

9.2 Application 1: Bound on Loss Rate

Let us return to the case of losses due to buffer overflow, and suppose that in this
section fresh traffic a is constrained by an arrival curve α.

The following theorem provide a bound on the loss rate l(t) = L(t)/a(t), and
is a direct consequence of the loss representation (9.6).

Theorem 9.2.1 (Bound on loss rate). Consider a system with storage capacity X ,
offering a service curve β to a flow constrained by an arrival curve α. Then the loss
rate l(t) = L(t)/a(t) is bounded above by

l̂(t) = 1− inf
0<s≤t

β(s) +X

α(s)
. (9.14)

Proof: With l̂(t) defined by (9.14), we have that for any 0 ≤ u < v ≤ t,

1− l̂(t) = inf
0<s≤t

β(s) +X

α(s)
≤ β(v − u) +X

α(v − u)
≤ β(v − u) +X

a(v)− a(u)

because a(v) − a(u) ≤ α(v − u) by definition of an arrival curve. Therefore, for
any 0 ≤ u ≤ v ≤ t,

a(v)− a(u)− β(v − u)−X ≤ l̂(t) · [a(v)− a(u)].

262 CHAPTER 9. SYSTEMS WITH LOSSES

For any n ∈ N0 = {1, 2, 3, ...}, and any sequence {sk}1≤k≤2n, with 0 ≤ s2n ≤
. . . ≤ s1 ≤ t, setting v = s2i−1 and u = s2i in the previous equation, and summing
over i, we obtain

n∑
i=1

[a(s2i−1)− a(s2i)− β(s2i−1 − s2i)−X] ≤ l̂(t) ·
n∑
i=1

[a(s2i−1)− a(s2i)] .

Because the sk are increasing with k, the right hand side of this inequality is always
less than, or equal to, l̂(t) · a(t). Therefore we have

L(t) ≤ sup
n∈N

{
sup

0≤s2n≤...≤s1≤t

{
n∑
i=1

[a(s2i−1)− a(s2i)− β(s2i−1 − s2i)−X]

}}
≤ l̂(t) · a(t),

which shows that l̂(t) ≥ l(t) = L(t)/a(t).
To have a bound independent of time t, we take the sup over all t of (9.14), to

get

l̂ = sup
t≥0

l̂(t) = 1− inf
t>0

β(t) +X

α(t)
, (9.15)

and retrieve the result of Chuang and Chang [15].
A similar result for losses due to delay constraint d, instead of finite buffer X ,

can be easily obtained, too:

l̂(t) = 1− inf
0<s≤t

β(s+ d)
α(s)

(9.16)

l̂ = 1− inf
t>0

β(t+ d)
α(t)

. (9.17)

9.3 Application 2: Bound on Losses in Complex Sys-
tems

As a particular application of the loss representation formula (9.6), we show how
it is possible to bound the losses in a system offering a somewhat complex service
curve β, by losses in simpler systems. The first application is the bound on the losses
in a shaper by a system that segregates the resources (buffer, bandwidth) between
a storage system and a policer. The second application deals with a VBR shaper,
which is compared with two CBR shapers. For both applications, the losses in the
original system are bounded along every sample path by the losses in the simpler
systems. For congestion times however, the same conclusion does not always hold.

9.3.1 Bound on Losses by Segregation between Buffer and Po-
licer

We will first compare the losses in two systems, having the same input flow a(t).

9.3. APPLICATION 2: BOUND ON LOSSES IN COMPLEX SYSTEMS 263

The first system is the one of Figure 9.1 with service curve β and buffer X ,
whose losses L(t) are therefore given by (9.6).

The second system is made of two parts, as shown in Figure 9.3(a). The first
part is a system with storage capacity X , that realizes some mapping Π′ of the input
that is not explicitly given, but that is assumed to be isotone, and not smaller than
Π (Π′ ≥ Π). We also know that a first clipper discards data as soon as the total
backlogged data in this system exceeds X . This operation is called buffer discard.
The amount of buffer discarded data in [0, t] is denoted by LBuf(t). The second
part is a policer without buffer, whose output is the min-plus convolution of the
accepted input traffic by the policer by β. A second clipper discards data as soon as
the total output flow of the storage system exceeds the maximum input allowed by
the policer. This operation is called policing discard. The amount of discarded data
by policing in [0, t] is denoted by LPol(t).

LPol(t)

σ
a(t) y(t)

LBuf(t)

x(t)

Buffer
Cli pper

Policer
Cli pper

LPol(t)

C

a2(t) y2(t)C2
v

X2
v

LBuf(t)

x2(t)

a1(t)

y1(t)
C1
v

X1
v

x1(t)

Buffer
Cli pper

Policer
Cli pper

(a)

(b)

Virtual segregated system

System with
buffer X

Figure 9.3: A storage/policer system with separation between losses due to
buffer discard and to policing discard (a) A virtual segregated system for
2 classes of traffic, with buffer discard and policing discard, as used by Lo
Presti et al [53] (b)

Theorem 9.3.1. Let L(t) be the amount of lost data in the original system, with
service curve β and buffer X .

264 CHAPTER 9. SYSTEMS WITH LOSSES

Let LBuf(t) (resp. LPol(t)) be the amount of data lost in the time interval [0, t]
by buffer (resp. policing) discard, as defined above.

Then L(t) ≤ LBuf(t) + LPol(t).

Proof: Let x and y denote respectively the admitted and output flows of the
buffered part of the second system. Then the policer implies that y = β ⊗ x, and
any time s we have

a(s)− LBuf(s)−X = x(s)−X ≤ y(s) ≤ x(s) = a(s)− LBuf(s).

which implies that for any 0 ≤ u ≤ v ≤ t,

y(v)− y(u)− β(v − u)
≥ (a(v)− LBuf(v)−X)− (a(u)− LBuf(u))− β(v − u)
= a(v)− a(u)− β(v − u)−X − (LBuf(v)− LBuf(u)).

We use the same reasoning as in the proof of Theorem 9.2.1: we pick any n ∈ N0

and any increasing sequence {sk}1≤k≤2n, with 0 ≤ s2n ≤ . . . ≤ s1 ≤ t. Then we
set v = s2i−1 and u = s2i in the previous inequality, and we sum over i, to obtain

n∑
i=1

[y(s2i−1)− y(s2i)− β(s2i−1 − s2i)] ≥
n∑
i=1

[a(s2i−1)− a(s2i)− β(s2i−1 − s2i)−X]

−
n∑
i=1

[(LBuf(s2i−1)− LBuf(s2i))] .

By taking the supremum over all n and all sequences {sk}1≤k≤2n, the left hand side
is equal to LPol(t), because of (9.6) (we can replace the inequality in (9.6) by an
equality, because the output of the policer is y = β⊗x). Since {sk} is a wide-sense
increasing sequence, and since LBuf is a wide-sense increasing function, we obtain
therefore

LPol(t) ≥
sup
n∈N

{
sup

0≤s2n≤...≤s1≤t
[a(s2i−1)− a(s2i)− β(s2i−1 − s2i)−X]

}
− LBuf(t)

= L(t)− LBuf(t),

which completes the proof.
Such a separation of resources between the “buffered system” and “policing

system” is used in the estimation of loss probability for devising statistical CAC
(Call Acceptance Control) algorithms as proposed by Elwalid et al [25], Lo Presti
et al. [53]. The incoming traffic is separated in two classes. All variables relating

9.3. APPLICATION 2: BOUND ON LOSSES IN COMPLEX SYSTEMS 265

to the first (resp. second) class are marked with an index 1 (resp. 2), so that a(t) =
a1(t)+a2(t). The original system is a CBR shaper (β = λC) and the storage system
is a virtually segregated system as in Figure 9.3(b), made of 2 shapers with rates Cv

1

and Cv
2 and buffers Xv

1 and Xv
2 . The virtual shapers are large enough to ensure that

no loss occurs for all possible arrival functions a1(t) and a2(t). The total buffer
space (resp. bandwidth) is larger than the original buffer space (resp. bandwidth):
Xv

1 + Xv
2 ≥ X (Cv

1 + Cv
2 ≥ C). However, the buffer controller discards data as

soon as the total backlogged data in the virtual system exceeds X and the policer
controller discards data as soon as the total output rate of the virtual system exceeds
C.

9.3.2 Bound on Losses in a VBR Shaper

In this second example, we consider of a “buffered leaky bucket” shaper [46] with
buffer X , whose output must conform to a VBR shaping curve with peak rate P ,
sustainable rate M and burst tolerance B so that here the mapping of the element is
Π = Cβ with β = λP ∧ γM,B . We will consider two systems to bound these losses:
first two CBR shapers in parallel (Figure 9.4(a)) and second two CBR shapers in
tandem (Figure 9.4(b)). Similar results also holds for losses due to a delay constraint
[50].

(a)

(b)

LCBR’(t)

xCBR’(t) X

Clipper

P

a(t)

LCBR’(t)

xCBR’(t)
X

Clipper

P

LCBR’’’(t)

B
yCBR’(t)

Clipper

M

a(t)

LCBR’’(t)

xCBR’’(t)
X+B

Clipper

Ma(t)

Figure 9.4: Two CBR shapers in parallel (a) and in tandem (b).

266 CHAPTER 9. SYSTEMS WITH LOSSES

We will first show that the amount of losses during [0, t] in this system is
bounded by the sum of losses in two CBR shapers in parallel, as shown in Fig-
ure 9.4(a): the first one has buffer of size X and rate P , whereas the second one has
buffer of size X + B and rate M . Both receive the same arriving traffic a as the
original VBR shaper.

Theorem 9.3.2. Let LVBR(t) be the amount of lost data in the time interval [0, t] in a
VBR shaper with buffer X and shaping curve β = λP ∧ γM,B , when the data that
has arrived in [0, t] is a(t).

Let LCBR′(t) (resp. LCBR′′(t)) be the amount of lost data during [0, t] in a CBR
shaper with buffer X (resp. (X + B)) and shaping curve λP (resp. λM) with the
same incoming traffic a(t).

Then LVBR(t) ≤ LCBR′(t) + LCBR′′(t).

Proof: The proof is again a direct application of (9.6). Pick any 0 ≤ u ≤ v ≤ t.
Since β = λP ∧ γM,B ,

a(v)− a(u)− β(v − u)−X =
{a(v)− a(u)− P (v − u)−X} ∨ {a(v)− a(u)−M(v − u)−B −X}

Pick any n ∈ N0 and any increasing sequence {sk}1≤k≤2n, with 0 ≤ s2n ≤ . . . ≤
s1 ≤ t. Set v = s2i−1 and u = s2i in the previous equation, and sum over i, to
obtain

n∑
i=1

[a(s2i−1)− a(s2i)− β(s2i−1 − s2i)−X]

=
n∑
i=1

[{a(s2i−1)− a(s2i)− P (s2i−1 − s2i)−X}

∨{a(s2i−1)− a(s2i)−M(s2i−1 − s2i)−B −X}

≤
n∑
i=1

[a(s2i−1)− a(s2i)− P (s2i−1 − s2i)−X]

+
n∑
i=1

[a(s2i−1)− a(s2i)−M(s2i−1 − s2i)−B −X]

≤ LCBR′(t) + LCBR′′(t),

because of (9.6). By taking the supremum over all n and all sequences {sk}1≤k≤2n

in the previous inequality, we get the desired result.
A similar exercise shows that the amount of losses during [0, t] in the VBR

system is also bounded above by the sum of losses in two CBR shapers in cascade
as shown in Figure 9.4(b): the first one has buffer of size X and rate P , and receives
the same arriving traffic a as the original VBR shaper, whereas its output is fed into
the second one with buffer of size B and rate M .

9.4. SKOHORKHOD’S REFLECTION PROBLEM 267

Theorem 9.3.3. Let LVBR(t) be the amount of lost data in the time interval [0, t] in a
VBR shaper with buffer X and shaping curve β = λP ∧ γM,B , when the data that
has arrived in [0, t] is a(t).

Let LCBR′(t) (resp. LCBR′′(t)) be the amount of lost data during [0, t] in a CBR
shaper with buffer X (resp. B) and shaping curve λP (resp. λM) with the same
incoming traffic a(t) (resp. the output traffic of the first CBR shaper).

Then LVBR(t) ≤ LCBR′(t) + LCBR′′(t).

The proof is left as an exercise.
Neither of the two systems in Figure 9.4 gives the better bound for any arbitrary

traffic pattern. For example, suppose that the VBR system parameters are P = 4,
M = 1, B = 12 and X = 4, and that the traffic is a single burst of data sent at rate
R during four time units, so that

a(t) =
{

R · t if 0 ≤ t ≤ 4
4R if t ≥ 4

If R = 5, both the VBR system and the parallel set of the two CBR′ and CBR′′

systems are lossless, whereas the amount of lost data after five units of time in the
tandem of the two CBR′ and CBR′′′ systems is equal to three.

On the other hand, if R = 6, the amount of lost data after five units of time in the
VBR system, the parallel system (CBR′ and CBR′′) and the tandem system (CBR′

and CBR′′′) are respectively equal to four, eight and seven.
Interestingly enough, whereas both systems of Figure 9.4 will bound the amount

of losses in the original system, it is no longer so for the congestion periods, i.e. the
time intervals during which losses occur. The tandem system does not offer a bound
on the congestion periods, contrary to the parallel system [50].

9.4 Solution to Skohorkhod’s Reflection Problem with
Two Boundaries

To obtain the model of Figure 9.1, we have added a regulator – called clipper –
before the system itself, whose input x is the maximal input ensuring a lossless
service, given a finite storage capacity X . The clipper eliminates the fraction of
fresh traffic a that exceeds x. We now generalize this model by adding a second
regulator after the lossless system, whose output is denoted with y, as shown on
Figure 9.5. This regulator complements y, so that the output of the full process is
now a given function b ∈ F . The resulting process N = y − b is the amount of
traffic that needs to be fed to prevent the storage system to enter in starvation. N
compensates for possible buffer underflows, hence we name this second regulator
compensator.

We can explicitly compute the loss process L and the “compensation” process
N , from the arrival process a and the departure process b, using, once again, Theo-
rem 4.3.1. We are looking for the maximal solution

268 CHAPTER 9. SYSTEMS WITH LOSSES

a(t) Storage
system

y(t)

L(t)

x(t)
Cl ipper

N(t)

b(t)

Compensator

Figure 9.5: A storage system representing the variables used to solve Sko-
rokhod’s reflection problem with two boundaries

Ex(t) = [x(t) y(t)]T ,

where T denotes transposition, to the set of inequalities

x(t) ≤ inf
0≤s≤t

{a(t)− a(s) + x(s)} (9.18)

x(t) ≤ y(t) +X (9.19)

y(t) ≤ x(t) (9.20)

y(t) ≤ inf
0≤s≤t

{b(t)− b(s) + y(s)}. (9.21)

The two first inequalities are identical to (9.1) and to (9.2). The two last inequalities
are the dual constraints on y. We can therefore recast this system as

x ≤ a ∧ ha(x) ∧ {y +X} (9.22)

y ≤ b ∧ x ∧ hb(x). (9.23)

This is a system of min-plus linear inequalities, whose solution is

Ex = LH(Ea) = LH(Ea),

where H and Ea are defined as

Ea(t) = [a(t) b(t)]T

H(t, s) =
[

a(t)− a(s) δ0(t− s) +X
δ0(t− s) b(t)− b(s)

]
.

for all 0 ≤ s ≤ t. Instead of computing H , we go faster by first computing the
maximal solution of (9.23). Using properties of the linear idempotent operator, we
get

y = hb(x ∧ b) = hb(x ∧ b) = hb(x) ∧ hb(b) = hb(x).

Next we replace y by hb(x) in (9.22), and we compute its maximal solution, which
is

x = ha ∧ {hb +X}(a).

9.4. SKOHORKHOD’S REFLECTION PROBLEM 269

We work out the sub-additive closure using Corollary 4.2.1, and we obtain

x = (ha ◦ {hb +X})(a) (9.24)

and thus
y =

(
hb ◦ ha ◦ {hb +X}

)
(a). (9.25)

After some manipulations, we get

N(t) = b(t)− y(t) =

sup
n∈N

{
sup

0≤s2n+1≤...≤s2≤s1≤t

{
2n+1∑
i=1

(−1)i(a(si)− b(si))

}
− nX

}
(9.26)

L(t) = a(t)− x(t) =

sup
n∈N

{
sup

0≤s2n≤...≤s2≤s1≤t

{
2n∑
i=1

(−1)i+1(a(si)− b(si))

}
− nX

}
. (9.27)

Interestingly enough, these two functions are the solution of the so-called Sko-
rokhod reflection problem with two fixed boundaries [70, 35].

Let us describe this reflection mapping problem following the exposition of [42].
We are given a lower boundary that will be taken here as the origin, an upper bound-
ary X > 0, and a free process z(t) ∈ R such that 0 ≤ z(0−) ≤ X . Skorokhod’s
reflection problem looks for functions N(t) (lower boundary process) and L(t) (up-
per boundary process) such that

1. The reflected process

W (t) = z(t) +N(t)− L(t) (9.28)

is in [0,X] for all t ≥ 0.

2. Both N(t) and L(t) are non decreasing with N(0−) = L(0−) = 0, and N(t)
(resp. L(t)) increases only when W (t) = 0 (resp. W (t) = X), i.e., with 1A
denoting the indicator function of A∫ ∞

0

1{W (t)>0}dN(t) = 0 (9.29)∫ ∞

0

1{W (t)<X}dL(t) = 0 (9.30)

The solution to this problem exists and is unique [35]. When only one boundary
is present, explicit formulas are available. For instance, if X → ∞, then there is
only one lower boundary, and the solution is easily found to be

N(t) = − inf
0≤s≤t

{z(s)}
L(t) = 0.

270 CHAPTER 9. SYSTEMS WITH LOSSES

If X < ∞, then the solution can be constructed by successive approximations but,
to our knowledge, no solution has been explicitly obtained. The following theorem
gives such explicit solutions for a continuous VF function z(t). A VF function (VF
standing for Variation Finie [35, 66]) z(t) on R+ is a function such that for all t > 0

sup
n∈N0

sup
0=sn<sn−1<...<s1<s0=t

{
n−1∑
i=0

|z(si)− z(si+1)|
}

< ∞.

VF functions have the following property [66]: z(t) is a VF function on R+ if and
only if it can be written as the difference of two wide-sense increasing functions on
R+.

Theorem 9.4.1 (Skorokhod’s reflection mapping). Let the free process z(t) be a
continuous VF function on R+. Then the solution to Skorokhod’s reflection problem
on [0,X] is

N(t) = sup
n∈N

{
sup

0≤s2n+1≤...≤s2≤s1≤t

{
2n+1∑
i=1

(−1)iz(si)
}
− nX

}
(9.31)

L(t) = sup
n∈N

{
sup

0≤s2n≤...≤s2≤s1≤t

{
2n∑
i=1

(−1)i+1z(si)

}
− nX

}
. (9.32)

Proof: As z(t) is a VF function on [0,∞), there exist two increasing functions
a(t) and b(t) such that z(t) = a(t) − b(t) for all t ≥ 0. As z(0) ≥ 0, we can take
b(0) = 0 and a(0) = z(0). Note that a, b ∈ F .

We will show now that L = a−x and N = b−y, where x and y are the maximal
solutions of (9.22) and (9.23), are the solutions of Skorokhod’s reflection problem.

First note that

W (t) = z(t)+N(t)−L(t) = (a(t)−b(t))+(b(t)−y(t))−(a(t)−x(t)) = x(t)−y(t)

is in [0,X] for all t ≥ 0 because of (9.19) and (9.20).
Second, because of (9.21), note that N(0) = b(0) − y(0) = 0 and that for any

t > 0 and 0 ≤ s < t, N(t) − N(s) = b(t) − b(s) + y(s) − y(t) ≥ 0, which
shows that N(t) is non decreasing. The same properties can be deduced for L(t)
from (9.18).

Finally, if W (t) = x(t) − y(t) > 0, there is some s� ∈ [0, t] such that y(t) =
y(s�) + b(t)− b(s�) because y is the maximal solution satisfying (9.20) and (9.21).
Therefore for all s ∈ [s�, t],

0 ≤ N(t)−N(s) ≤ N(t)−N(s�) = b(t)− b(s�) + y(s�)− y(t) = 0

which shows that N(t)−N(s) = 0 and so that N(t) is non increasing if W (t) > 0.
A similar reasoning shows that L(t) is non increasing if W (t) < X .

Consequently, N(t) and L(t) are the lower and upper reflected processes that
we are looking for. We have already computed them: they are given by (9.26) and
(9.27). Replacing a(si)−b(si) in these two expressions by z(si), we establish (9.31)
and (9.32).

9.5. BIBLIOGRAPHIC NOTES 271

9.5 Bibliographic Notes

The clipper was introduced by Cruz and Tenaja, and was extended to get the loss
representation formula presented in this chapter in [16, 50]. Explicit expressions
when operatorΠ is a general, time-varying operator, can be found in [16]. We expect
results of this chapter to form a starting point for obtaining bounds on probabilities
of loss or congestion for lossy shapers with complex shaping functions; the method
would consist in applying known bounds to virtual systems and take the minimum
over a set of virtual systems.

272 CHAPTER 9. SYSTEMS WITH LOSSES

Bibliography

[1] R. Agrawal, R. L. Cruz, C. Okino, and R. Rajan. A framework for adapa-
tive service guarantees. In Proc. Allerton Conf on Comm, Control and Comp,
Monticello, IL, Sept 1998.

[2] R. Agrawal, R. L. Cruz, C. Okino, and R. Rajan. Performance bounds for
flow control protocols. IEEE/ACM Transactions on Networking (7) 3, pages
310–323, June 1999.

[3] M. Andrews. Instability of fifo in session-oriented networks. In Eleventh
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2000), January
2000.

[4] J. C. R. Bennett, Benson K., Charny A., Courtney W. F., and J.-Y. Le Boudec.
Delay jitter bounds and packet scale rate guarantee for expedited forwarding.
In Proceedings of Infocom, April 2001.

[5] J. C. R. Bennett, Benson K., Charny A., Courtney W. F., and J.-Y. Le Boudec.
Delay jitter bounds and packet scale rate guarantee for expedited forwarding.
ACM/IEEE Transactions on Networking, to appear, 2002.

[6] J.C.R. Bennett and H. Zhang. Wf2q: Worst-case fair weighted fair queuing. In
Proceedings of Infocom, Mar 1996.

[7] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An archi-
tecture for differentiated services, December 1998. RFC 2475, IETF.

[8] C. S. Chang. Stability, queue length and delay, part i: Deterministic queuing
networks. Technical Report Technical Report RC 17708, IBM, 1992.

[9] C.-S. Chang, W.-J. Chen, and H.-Y. Hunag. On service guarantees for input
buffered crossbar switches: A capacity decomposition approach by birkhoff
and von neumann. In Proc of IWQOS 99, March 1999.

[10] C.S. Chang. On deterministic traffic regulation and service guarantee: A sys-
tematic approach by filtering. IEEE Transactions on Information Theory,
44:1096–1107, August 1998.

273

274 BIBLIOGRAPHY

[11] C.S. Chang. Performance Guarantees in Communication Networks. Springer-
Verlag, New York, 2000.

[12] C.S. Chang and R. L. Cruz. A time varying filtering theory for constrained
traffic regulation and dynamic service guarantees. In Preprint, July 1998.

[13] A. Charny and J.-Y. Le Boudec. Delay bounds in a network with aggregate
scheduling. In First International Workshop on Quality of future Internet Ser-
vices, Berlin, Germany, September 2000.

[14] I. Chlamtac, A. Faragó, H. Zhang, and A. Fumagalli. A deterministic approach
to the end-to-end analysis of packet flows in connection oriented networks.
IEEE/ACM transactions on networking, (6)4:422–431, 08 1998.

[15] J.-F. Chuang, C.-M.and Chang. Deterministic loss ratio quality of service guar-
antees for high speed networks. IEEE Communications Letters, 4:236–238,
July 2000.

[16] R. Cruz, C.-S. Chang, J.-Y. Le Boudec, and P. Thiran. A min-plus system the-
ory for constrained traffic regulation and dynamic service guarantees. Techni-
cal Report SSC/1999/024, EPFL, July 1999.

[17] R. Cruz and M. Taneja. An analysis of traffic clipping. In Proc 1998 Conf on
Information Science & Systems, Princeton University, 1998.

[18] R. L. Cruz. Sced+ : Efficient management of quality of service guarantees. In
IEEE Infocom’98, San Francisco, March 1998.

[19] R.L. Cruz. A calculus for network delay, part i: Network elements in isolation.
IEEE Trans. Inform. Theory, vol 37-1, pages 114–131, January 1991.

[20] R.L. Cruz. A calculus for network delay, part ii: Network analysis. IEEE
Trans. Inform. Theory, vol 37-1, pages 132–141, January 1991.

[21] B. Davie, A. Charny, F. Baker, J. Bennett, K. Benson, J.-Y. Le Boudec,
A. Chiu, W. Courtney, S. Davari, V. Firoiu, C. Kalmanek, K. K. Ramakr-
ishnam, and D. Stiliadis. An expedited forwarding phb, April 2001. Work
in Progress, Internet Draft, ftp://ds.internic.net/internet-
drafts/draft-ietf-diffserv-rfc2598bis-02.txt.

[22] G. De Veciana, July 1996. Private Communication.

[23] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a fair queu-
ing algorithm. Journal of Internetworking Research and Experience, pages
3–26, Oct 1990.

[24] N. G. Duffield, K. K. Ramakrishan, and A. R. Reibman. Save: An algorithm
for smoothed adaptative video over explicit rate networks. IEEE/ACM Trans-
actions on Networking, 6:717–728, Dec 1998.

BIBLIOGRAPHY 275

[25] A. Elwalid, Mitra D., and R. Wenworth. A new approach for allocating buffers
and bandwidth to heterogeneous, regulated traffic in ATM node. IEEE Journal
of Selected Areas in Communications, 13:1048–1056, August 1995.

[26] Baccelli F., Cohen G., Olsder G. J., , and Quadrat J.-P. Synchronization and
Linearity, An Algebra for Discrete Event Systems. John Wiley and Sons, 1992.

[27] W.-C. Feng and J. Rexford. Performance evaluation of smoothing algorithms
for transmitting variable-bit-rate video. IEEE Transactions on Multimedia,
1:302–312, Sept 1999.

[28] L. Georgiadis, R. Guérin, V. Peris, and R. Rajan. Efficient support of delay and
rate guarantees in an internet. In Proceedings of Sigcomm’96, pages 106–116,
August 1996.

[29] P. Goyal, S. S. Lam, and H. Vin. Determining end-to-end delay bounds in
heterogeneous networks. In 5th Int Workshop on Network and Op. Sys support
for Digital Audio and Video, Durham NH, April 1995.

[30] R. Guérin and V. Peris. Quality-of-service in packet networks - basic mecha-
nisms and directions. Computer Networks and ISDN, Special issue on multi-
media communications over packet-based networks, 1998.

[31] R. Guérin and V. Pla. Aggregation and conformance in differentiated
service networks – a case study. Technical Report Research Report, U
Penn, http://www.seas.upenn.edu:8080/ guerin/publications/aggreg.pdf, Au-
gust 2000.

[32] Jeremy Gunawardena. From max-plus algebra to nonexpansive mappings: a
nonlinear theory for discrete event systems. pre-print, 1999.

[33] Sariowan H., Cruz R. L., and Polyzos G. C. Scheduling for quality of service
guarantees via service curves. In Proceedings ICCCN’95, pages 512–520,
Sept 1995.

[34] B. Hajek. Large bursts do not cause instability. IEEE Trans on Aut Control,
45:116–118, Jan 2000.

[35] J. M. Harrison. Brownian Motion and Stochastic Flow Systems. Wiley, New-
York, 1985.

[36] J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski. Assured forwarding phb
group, June 1999. RFC 2597, IETF.

[37] Golestani S. J. A self clocked fair queuing scheme for high speed applications.
In Proceedings of Infocom ’94, 1994.

[38] F. Farkas J. Y. Le Boudec. A delay bound for a network with aggregate
scheduling. In Proceedings of the Sixteenth UK Teletraffic Symposium on Man-
agement of Quality of Service, page 5, Harlow, UK, May 2000.

276 BIBLIOGRAPHY

[39] Y. Jiang. Delay bounds for a network of guaranteed rate servers with fifo
aggregation. Pre-print, National University of Singapore, 2001.

[40] C Kalmanek, H. Kanakia, and R. Restrick. Rate controlled servers for very
high speed networks. In IEEE Globecom’90, vol 1, pages 12–20, 1990.

[41] Keshav. Computer Networking: An Engineering Approach. Prentice Hall,
Englewood Cliffs, New Jersey 07632, 1996.

[42] T. Konstantopoulos and V. Anantharam. Optimal flow control schemes that
regulate the burstiness of traffic. IEEE/ACM Transactions on Networking,
3:423–432, August 1995.

[43] Cruz R. L. and Okino C. M. Service guarantees for window flow control. In
34th Allerton Conf of Comm., Cont., and Comp. Monticello, IL, Oct 1996.

[44] Gun L. and R. Guérin. Bandwidth management and congestion control frame-
work of the broadband network architecture. Bandwidth management and
congestion control framework of the broadband network architecture, vol 26,
pages 61–78, 1993.

[45] Zhang L. A new traffic control algorithm for packet switching networks. In
Proceedings of ACM Sigcomm ’90, 1990.

[46] J.-Y. Le Boudec. Application of network calculus to guaranteed service net-
works. IEEE Transactions on Information Theory, 44:1087–1096, May 1998.

[47] J.-Y. Le Boudec. Some properties of variable length packet shapers. In Proc
ACM Sigmetrics / Performance ’01, 2001.

[48] J.-Y. Le Boudec and A. Charny. Packet scale rate guarantee
for non-fifo nodes. Technical Report DSC200138, EPFL-DSC,
http://dscwww.epfl.ch./EN/publications/documents/tr01 038.pdf, July 2001.

[49] J.-Y. Le Boudec and G. Hebuterne. Comment on a deterministic approach
to the end-to-end analysis of packet flows in connection oriented network.
IEEE/ACM Transactions on Networking, February 2000.

[50] J.-Y. Le Boudec and P. Thiran. Network calculus viewed as a min-plus system
theory applied to communication networks. Technical Report SSC/1998/016,
EPFL, April 1998.

[51] J.-Y. Le Boudec and O. Verscheure. Optimal smoothing for guaranteed service.
Technical Report DSC2000/014, EPFL, March 2000.

[52] J. Liebeherr, D.E. Wrege, and Ferrari D. Exact admission control for networks
with bounded delay services. ACM/IEEE transactions on networking, 4:885–
901, 1996.

BIBLIOGRAPHY 277

[53] F. Lo Presti, Z.-L. Zhang, D. Towsley, and J. Kurose. Source time scale
and optimal buffer/bandwidth trade-off for regulated traffic in a traffic node.
IEEE/ACM Transactions on Networking, 7:490–501, August 1999.

[54] S. H. Low and P. P. Varaiya. A simple theory of traffic and resource allocation
in atm. In Globecom’91, pages 1633–1637, December 1991.

[55] J. Y. Le Boudec M. Vojnovic. Stochastic analysis of some expedited forward-
ing networks. In Proceedings of Infocom 2002, New-York, June 2002.

[56] J. M. McManus and K.W. Ross. Video-on-demand over ATM: Constant-rate
transmission and transport. IEEE Journal on Selected Areas in Communica-
tions, 7:1087–1098, Aug 1996.

[57] J. Naudts. A Scheme for Multiplexing ATM Sources. Chapman Hill, 1996.

[58] J. Naudts. Towards real-time measurement of traffic control parameters. Com-
puter networks, 34:157–167, 2000.

[59] Clayton M. Okino. A framework for performance guarantees in communica-
tion networks, 1998. Ph.D. Dissertation, UCSD.

[60] A. K. Parekh and R. G. Gallager. A generalized processor sharing approach to
flow control in integrated services networks: The single node case. IEEE/ACM
Trans. Networking, vol 1-3, pages 344–357, June 1993.

[61] A. K. Parekh and R. G. Gallager. A generalized processor sharing ap-
proach to flow control in integrated services networks: The multiple node case.
IEEE/ACM Trans. Networking, vol 2-2, pages 137–150, April 1994.

[62] Vinod Peris. Architecture for guaranteed delay service in high
speed networks, 1997. Ph.D. Dissertation, University of Maryland,
http://www.isr.umd.edu.

[63] Fabrice P. Guillemin Pierre E. Boyer, Michel J. Servel. The spacer-controller:
an efficient upc/npc for atm networks. In ISS ’92, Session A9.3, volume 2,
October 1992.

[64] Agrawal R. and Rajan R. Performance bounds for guaranteed and adaptive
services, December 1996. IBM Technical Report RC 20649.

[65] J. Rexford and D. Towsley. Smoothing variable-bit-rate video in an internet-
work. IEEE/ACM Transactions on Networking, 7:202–215, April 1999.

[66] H. L. Royden. Real Analysis. Mc-Millan, New-York, 2 edition, 1968.

[67] J. Y. Le Boudec S. Giordano. On a class of time varying shapers with ap-
plication to the renegotiable variable bit rate service. Journal on High Speed
Networks, 9(2):101–138, June 2000.

278 BIBLIOGRAPHY

[68] J. D. Salehi, Z.-L. Zhang, J. F. Kurose, and D. Towsley. Supporting stored
video: Reducing rate variability and end-to-end resource requirements through
optimal smoothing. IEEE/ACM Transactions on Networking, 6:397–410, Dec
1998.

[69] H. Sariowan. A service curve approach to performance guarantees in inte-
grated service networks, 1996. Ph.D. Dissertation, UCSD.

[70] A. Skorokhod. Stochastic equations for diffusion processes in a bounded re-
gion. Theory of Probability and its Applications, 6:264–274, 1961.

[71] D. Stiliadis and A. Varma. Rate latency servers: a general model for analysis
of traffic scheduling algorithms. In IEEE Infocom ’96, pages 647–654, 1991.

[72] Rockafellar R. T. Convex Analysis. Princeton University Press, Princeton,
1970.

[73] L. Tassiulas and L. Georgiadis. Any work conserving policy stabilizes the ring
with spatial reuse. IEEE/ACM Transactions on Networking, pages 205–208,
April 1996.

[74] Lothar Thiele, Samarjit Chakraborty, and Martin Naedele. Real-time calculus
for scheduling hard real-time systems. In ISCAS, Geneva, May 2000.

[75] P. Thiran, J.-Y. Le Boudec, and F. Worm. Network calculus applied to optimal
multimedia smoothing. In Proc of Infocom 2001, April 2001.

[76] D Verma, H. Zhang, and D. Ferrari. Guaranteeing delay jitter bounds in packet
switching networks. In Proceedings of Tricomm ’91, Chapel Hill, pages 35–
46, April 1991.

[77] H. Zhang. Service disciplines for guaranteed performance service in packet
switching networks. Proceedings of the IEEE, 1996.

[78] H. Zhang and D. Ferrari. Rate controlled service disciplines. Journal of High
Speed Networks, 3 No 4:389–412, August 1994.

[79] Hongbiao Zhang. A note on deterministic end-to-end delay analysis in connec-
tion oriented networks. In Proc of IEEE ICC’99, Vancouver, pp 1223–1227,
1999.

[80] Z.-L. Zhang and Duan Z. Fundamental trade-offs in aggregate packet schedul-
ing. In SPIE Vol. 4526, August 2001.

Index

CA (Vector min-plus convolution), 160
Cσ (Min-plus convolution), 160
Dσ (Min-plus deconvolution), 160
PL (Packetization), 160
LH (Min-plus linear operator), 163
N, 4
N0, 260
Π (Max-plus operator), 159
Π (Min-plus operator), 159
R+, 4
βR,T (rate-latency function), 126
F (set of wide-sense increasing func-

tions that are zero for nega-
tive arguments), 126

G (set of wide-sense increasing func-
tions), 126

δT (burst delay function), 126
γr,b (affine function), 126
h (horizontal deviation), 152
hσ (Linear idempotent operator), 160
λR (peak rate function), 126
νcri, 214
� (min-plus deconvolution), 145
� (min-plus deconvolution), 153
⊗ (min-plus convolution), 131
⊗ (max-plus convolution), 153
f (sub-additive closure of f), 141
F̃ (Set of wide-sense increasing bi-

variate functions), 159
uT,τ (staircase function), 127
vT (step function), 127
v (vertical deviation), 152
∨ (max or sup), 145
∧ (min or inf), 123

1{expr}(Indicator function), 49

ABR, 247
adaptive guarantee, 234
AF, 105
affine function, 126
arrival curve, 8
Assured Forwarding, 105
Available Bit Rate, 247

bivariate function, 159
burst delay function, 126

caching, 199
causal, 167
CDVT (cell delay variation tolerance),

16
concave function, 130
controlled load service, 90
convex function, 130
convex set, 130
Critical Load Factor, 214
Cumulative Packet Length, 50

damper, 113
damping tolerance, 113
Delay Based Scheduler, 97
DGCRA, 247
dioid, 125

Earliest Deadline First (EDF) sched-
uler, 96

EDF see Earliest Deadline First, 96
EF, 105
epigraph, 131
Expedited Forwarding, 105

Finite lifetime, 149

279

280 INDEX

GCRA (Generic Cell Rate Algorithm
definition, 14

Good function, 18
GPS (generalized processor sharing,

22
GR, 87
greedy shaper, 37
greedy source, 19
guaranteed delay node, 25
Guaranteed Rate node, 87
guaranteed service, 90

horizontal deviation, 152

idempotent, 169
impulse response, 163, 166
infimum, 123
Intserv, 3
isotone, 162

limit to the left, 11
limit to the right, 7
linear idempotent operator, 160
look ahead delay, 183
lower semi-continuous, 162

max-plus convolution, 153
max-plus deconvolution, 153
maximum, 153
min-plus convolution, 131
min-plus deconvolution, 145
Min-plus linear, 163, 166
minimum, 123
minimum rate server, 239

Packet Scale Rate Guarantee, 238
Packetizer, 51
peak rate function, 126
PGPS: packet generalized processor

sharing, 85
PL, 50
playback buffer, 183
playback delay, 183
policer, 37
Priority Node, 25, 207
pseudo-inverse function, 127

rate-latency function, 126
Re-negotiable service, 247
RSVP, 91

SCED, 96
shaper, 37
shaping curve, 37
shift invariant, 168
Shift matrix, 163
smooth (α-smooth for some function

α(t), 8
smoothing, 183
staircase function, 127
star-shaped function, 131
step function, 127
strict service curve, 27
sub-additive closure, 141
sub-additive fucntion, 138
supremum, 153

T-SPEC (traffic specification), 17
time varying shaper, 248

upper semi-continuous, 161

variable capacity node, 27
vertical deviation, 152
Very good function, 20

