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Introduction

What this Book is About

Network Calculus is a set of recent developments that provide deep insights into
flow problems encountered in networking. The foundation of network calculus
lies in the mathematical theory of dioids, and in particular, the Min-Plus dioid
(also called Min-Plus algebra). With network calculus, we are able to understand
some fundamental properties of integrated services networks, window flow control,
scheduling and buffer or delay dimensioning.

This book is organized in three parts. Part I (Chapters 1 and 2) is a self con-
tained, first course on network calculus. It can be used at the undergraduate level
or as an entry course at the graduate level. The prerequisite is a first undergraduate
course on linear algebra and one on calculus. Chapter 1 provides the main set of re-
sults for a first course: arrival curves, service curves and the powerful concatenation
results are introduced, explained and illustrated. Practical definitions such as leaky
bucket and generic cell rate algorithms are cast in their appropriate framework, and
their fundamental properties are derived. The physical properties of shapers are de-
rived. Chapter 2 shows how the fundamental results of Chapter 1 are applied to
the Internet. We explain, for example, why the Internet integrated services internet
can abstract any router by a rate-latency service curve. We also give a theoretical
foundation to some bounds used for differentiated services.

Part II contains reference material that is used in various parts of the book. Chap-
ter 3 contains all first level mathematical background. Concepts such as min-plus
convolution and sub-additive closure are exposed in a simple way. Part I makes a
number of references to Chapter 3, but is still self-contained. The role of Chapter 3 is
to serve as a convenient reference for future use. Chapter 4 gives advanced min-plus
algebraic results, which concern fixed point equations that are not used in Part I.

Part III contains advanced material; it is appropriate for a graduate course. Chap-
ter 5 shows the application of network calculus to the determination of optimal play-
back delays in guaranteed service networks; it explains how fundamental bounds for
multimedia streaming can be determined. Chapter 6 considers systems with aggre-
gate scheduling. While the bulk of network calculus in this book applies to systems
where schedulers are used to separate flows, there are still some interesting results
that can be derived for such systems. Chapter 7 goes beyond the service curve defini-

xiii



xiv INTRODUCTION

tion of Chapter 1 and analyzes adaptive guarantees, as they are used by the Internet
differentiated services. Chapter 8 analyzes time varying shapers; it is an extension
of the fundamental results in Chapter 1 that considers the effect of changes in sys-
tem parameters due to adaptive methods. An application is to renegotiable reserved
services. Lastly, Chapter 9 tackles systems with losses. The fundamental result is a
novel representation of losses in flow systems. This can be used to bound loss or
congestion probabilities in complex systems.

Network calculus belongs to what is sometimes called “exotic algebras” or “top-
ical algebras”. This is a set of mathematical results, often with high description
complexity, that give insights into man-made systems such as concurrent programs,
digital circuits and, of course, communication networks. Petri nets fall into this fam-
ily as well. For a general discussion of this promising area, see the overview paper
[32] and the book [26].

We hope to convince many readers that there is a whole set of largely unex-
plored, fundamental relations that can be obtained with the methods used in this
book. Results such as “shapers keep arrival constraints” or “pay bursts only once”,
derived in Chapter 1 have physical interpretations and are of practical importance to
network engineers.

All results here are deterministic. Beyond this book, an advanced book on net-
work calculus would explore the many relations between stochastic systems and the
deterministic relations derived in this book. The interested reader will certainly en-
joy the pioneering work in [26] and [11]. The appendix contains an index of the
terms defined in this book.

Network Calculus, a System Theory for Computer Net-
works

In the rest of this introduction we highlight the analogy between network calculus
and what is called “system theory”. You may safely skip it if you are not familiar
with system theory.

Network calculus is a theory ofdeterministic queuingsystems found in com-
puter networks. It can also be viewed as thesystem theorythat applies to computer
networks. The main difference with traditional system theory, as the one that was so
successfully applied to design electronic circuits, is that here we consider another al-
gebra, where the operations are changed as follows: addition becomes computation
of the minimum, multiplication becomes addition.

Before entering the subject of the book itself, let us briefly illustrate some of the
analogies and differences between min-plus system theory, as applied in this book
to communication networks, and traditional system theory, applied to electronic cir-
cuits.

Let us begin with a very simple circuit, such as the RC cell represented in Fig-
ure 1. If the input signal is the voltagex(t) ∈ R, then the outputy(t) ∈ R of this
simple circuit is the convolution ofx by the impulse response of this circuit, which
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is hereh(t) = exp(−t/RC)/RC for t ≥ 0:

y(t) = (h⊗ x)(t) =
∫ t

0

h(t− s)x(s)ds.

Consider now a node of a communication network, which is idealized as a
(greedy) shaper. A (greedy) shaper is a device that forces an input flowx(t) to have
an outputy(t) that conforms to a given set of rates according to a traffic envelopeσ
(the shaping curve), at the expense of possibly delaying bits in the buffer. Here the
input and output ‘signals’ are cumulative flow, defined as the number of bits seen on
the data flow in time interval[0, t]. These functions are non-decreasing with timet.
Parametert can be continuous or discrete. We will see in this book thatx andy are
linked by the relation

y(t) = (σ ⊗ x)(t) = inf
s∈R such that 0≤s≤t

{σ(t− s) + x(s)} .

This relation defines the min-plus convolution betweenσ andx.

���� ����

σ

� �

��

�

�

��������

(a)

(b)

Figure 1: An RC circuit (a) and a greedy shaper (b), which are two elementary
linear systems in their respective algebraic structures.

Convolution in traditional system theory is both commutative and associative,
and this property allows to easily extend the analysis from small to large scale cir-
cuits. For example, the impulse response of the circuit of Figure 2(a) is the convo-
lution of the impulse responses of each of the elementary cells:

h(t) = (h1 ⊗ h2)(t) =
∫ t

0

h1(t− s)h2(s)ds.

The same property applies to greedy shapers, as we will see in Chapter 1. The
output of the second shaper of Figure 2(b) is indeed equal to y(t) = (σ ⊗ x)(t),
where
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σ(t) = (σ1 ⊗ σ2)(t) = inf
s∈R such that 0≤s≤t

{σ1(t− s) + σ2(s)} .

This will lead us to understand the phenomenon known as “pay burst only once”
already mentioned earlier in this introduction.

���� ����

σ2

� �

��

��

��������

(a)

(b)

σ1

��

Figure 2: The impulse response of the concatenation of two linear circuit is
the convolution of the individual impulse responses (a), the shaping curve of
the concatenation of two shapers is the convolution of the individual shaping
curves (b).

There are thus clear analogies between “conventional” circuit and system theory,
and network calculus. There are however important differences too.

A first one is the response of a linear system to the sum of the inputs. This is
a very common situation, in both electronic circuits (take the example of a linear
low-pass filter used to clean a signal x(t) from additive noise n(t), as shown in
Figure 3(a)), and in computer networks (take the example a link of a buffered node
with output link capacity C, where one flow of interest x(t) is multiplexed with
other background traffic n(t), as shown in Figure 3(b)).

Since the electronic circuit of Figure 3(a) is a linear system, the response to the
sum of two inputs is the sum of the individual responses to each signal. Call y(t)
the response of the system to the pure signal x(t), yn(t) the response to the noise
n(t), and ytot(t) the response to the input signal corrupted by noise x(t) + n(t).
Then ytot(t) = y(t) + yn(t). This useful property is indeed exploited to design the
optimal linear system that will filter out noise as much as possible.

If traffic is served on the outgoing link as soon as possible in the FIFO order, the
node of Figure 3(b) is equivalent to a greedy shaper, with shaping curve σ(t) = Ct
for t ≥ 0. It is therefore also a linear system, but this time in min-plus algebra.
This means that the response to the minimum of two inputs is the minimum of the
responses of the system to each input taken separately. However, this also mean
that the response to the sum of two inputs is no longer the sum of the responses of
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Figure 3: The response ytot(t) of a linear circuit to the sum of two inputs
x + n is the sum of the individual responses (a), but the response ytot(t) of
a greedy shaper to the aggregate of two input flows x + n is not the sum of
the individual responses (b).

the system to each input taken separately, because now x(t) + n(t) is a nonlinear
operation between the two inputs x(t) and n(t): it plays the role of a multiplication
in conventional system theory. Therefore the linearity property does unfortunately
not apply to the aggregate x(t) + n(t). As a result, little is known on the aggregate
of multiplexed flows. Chapter 6 will learn us some new results and problems that
appear simple but are still open today.

In both electronics and computer networks, nonlinear systems are also fre-
quently encountered. They are however handled quite differently in circuit theory
and in network calculus.

Consider an elementary nonlinear circuit, such as the BJT amplifier circuit with
only one transistor, shown in Figure 4(a). Electronics engineers will analyze this
nonlinear circuit by first computing a static operating point y� for the circuit, when
the input x� is a fixed constant voltage (this is the DC analysis). Next they will
linearize the nonlinear element (i.e the transistor) around the operating point, to
obtain a so-called small signal model, which a linear model of impulse response h(t)
(this is the AC analysis). Now xlin(t) = x(t)−x� is a time varying function of time
within a small range around x�, so that ylin(t) = y(t)− y� is indeed approximately
given by ylin(t) ≈ (h ⊗ xlin)(t). Such a model is shown on Figure 4(b). The
difficulty of a thorough nonlinear analysis is thus bypassed by restricting the input
signal in a small range around the operating point. This allows to use a linearized
model whose accuracy is sufficient to evaluate performance measures of interest,
such as the gain of the amplifier.

In network calculus, we do not decompose inputs in a small range time-varying
part and another large constant part. We do however replace nonlinear elements by
linear systems, but the latter ones are now a lower bound of the nonlinear system. We
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Figure 4: An elementary nonlinear circuit (a) replaced by a (simplified) linear
model for small signals (b), and a nonlinear network with window flow control
(c) replaced by a (worst-case) linear system (d).

will see such an example with the notion of service curve, in Chapter 1: a nonlinear
system y(t) = Π(x)(t) is replaced by a linear system ylin(t) = (β⊗x)(t), where β
denotes this service curve. This model is such that ylin(t) ≤ y(t) for all t ≥ 0, and
all possible inputs x(t). This will also allow us to compute performance measures,
such as delays and backlogs in nonlinear systems. An example is the window flow
controller illustrated in Figure 4(c), which we will analyze in Chapter 4. A flow x is
fed via a window flow controller in a network that realizes some mapping y = Π(x).
The window flow controller limits the amount of data admitted in the network in
such a way that the total amount of data in transit in the network is always less than
some positive number (the window size). We do not know the exact mapping Π,
we assume that we know one service curve β for this flow, so that we can replace
the nonlinear system of Figure 4(c) by the linear system of Figure 4(d), to obtain
deterministic bounds on the end-to-end delay or the amount of data in transit.

The reader familiar with traditional circuit and system theory will discover many
other analogies and differences between the two system theories, while reading this
book. We should insist however that no prerequisite in system theory is needed to
discover network calculus as it is exposed in this book.
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Chapter 1

Network Calculus

In this chapter we introduce the basic network calculus concepts of arrival, ser-
vice curves and shapers. The application given in this chapter concerns primarily
networks with reservation services such as ATM or the Internet integrated services
(“ Intserv” ). Applications to other settings are given in the following chapters.

We begin the chapter by defining cumulative functions, which can handle both
continuous and discrete time models. We show how their use can give a first insight
into playout buffer issues, which will be revisited with more detail in Chapter 5.
Then the concepts of Leaky Buckets and Generic Cell Rate algorithms are described
in the appropriate framework, of arrival curves. We address in detail the most im-
portant arrival curves: piecewise linear functions and stair functions. Using the stair
functions, we clarify the relation between spacing and arrival curve.

We introduce the concept of service curve as a common model for a variety
of network nodes. We show that all schedulers generally proposed for ATM or the
Internet integrated services can be modeled by a family of simple service curves
called the rate-latency service curves. Then we discover physical properties of net-
works, such as “pay bursts only once” or “greedy shapers keep arrival constraints” .
We also discover that greedy shapers are min-plus, time invariant systems. Then we
introduce the concept of maximum service curve, which can be used to account for
constant delays or for maximum rates. We illustrate all along the chapter how the
results can be used for practical buffer dimensioning. We give practical guidelines
for handling fixed delays such as propagation delays. We also address the distortions
due to variability in packet size.

3



4 CHAPTER 1. NETWORK CALCULUS

1.1 Models for Data Flows

1.1.1 Cumulative Functions, Discrete Time versus Continuous
Time Models

It is convenient to describe data flows by means of the cumulative function R(t),
defined as the number of bits seen on the flow in time interval [0, t]. By convention,
we take R(0) = 0, unless otherwise specified. Function R is always wide-sense
increasing, that is, it belongs to the space F defined in Section 3.1.3 on Page 128.
We can use a discrete or continuous time model. In real systems, there is always a
minimum granularity (bit, word, cell or packet), therefore discrete time with a finite
set of values for R(t) could always be assumed. However, it is often computationally
simpler to consider continuous time, with a function R that may be continuous or
not. If R(t) is a continuous function, we say that we have a fluid model. Otherwise,
we take the convention that the function is either right or left-continuous (this makes
little difference in practice).1 Figure 1.1.1 illustrates these definitions.

Convention: A flow is described by a wide-sense increasing function R(t); un-
less otherwise specified, in this book, we consider the following types of models:

• discrete time: t ∈ N = {0, 1, 2, 3, ...}
• fluid model: t ∈ R+ = [0,+∞) and R is a continuous function

• general, continuous time model: t ∈ R+ and R is a left- or right-continuous
function

If we assume that R(t) has a derivative dR
dt = r(t) such that R(t) =

∫ t
0

r(s)ds
(thus we have a fluid model), then r is called the rate function. Here, however, we
will see that it is much simpler to consider cumulative functions such as R rather
than rate functions. Contrary to standard algebra, with min-plus algebra we do not
need functions to have “nice” properties such as having a derivative.

It is always possible to map a continuous time model R(t) to a discrete time
model S(n), n ∈ N by choosing a time slot δ and sampling by

S(n) = R(nδ) (1.1)

In general, this results in a loss of information. For the reverse mapping, we use the
following convention. A continuous time model can be derived from S(n), n ∈ N

by letting2

R′(t) = S(� t

δ
�) (1.2)

1It would be nice to stick to either left- or right-continuous functions. However, depending on the
model, there is no best choice: see Section 1.2.1 and Section 1.7

2�x� (“ceiling of x” ) is defined as the smallest integer ≥ x; for example �2.3� = 3 and �2� = 2



1.1. MODELS FOR DATA FLOWS 5

� � � � � � � � 	 � 
 � � � � � � � �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� � � � � � � � 	 � 
 � � � � � � � �

� 
 � �

� 
 � �

� � � � � � � � 	 � 
 � � � � � � � �

� �

� �

� �

� �

� �

� � � �

� �

� � � � � �

� � �

� � � �
� � � �

Figure 1.1: Examples of Input and Output functions, illustrating our terminol-
ogy and convention. R1 and R∗

1 show a continuous function of continuous
time (fluid model); we assume that packets arrive bit by bit, for a duration
of one time unit per packet arrival. R2 and R∗

2 show continuous time with
discontinuities at packet arrival times (times 1, 4, 8, 8.6 and 14); we assume
here that packet arrivals are observed only when the packet has been fully
received; the dots represent the value at the point of discontinuity; by con-
vention, we assume that the function is left- or right-continuous. R3 and R∗

3

show a discrete time model; the system is observed only at times 0, 1, 2...
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The resulting function R′ is always left-continuous, as we already required. Fig-
ure 1.1.1 illustrates this mapping with δ = 1, S = R3 and R′ = R2.

Thanks to the mapping in Equation (1.1), any result for a continuous time model
also applies to discrete time. Unless otherwise stated, all results in this book apply
to both continuous and discrete time. Discrete time models are generally used in
the context of ATM; in contrast, handling variable size packets is usually done with
a continuous time model (not necessarily fluid). Note that handling variable size
packets requires some specific mechanisms, described in Section 1.7.

Consider now a system S, which we view as a blackbox; S receives input data,
described by its cumulative function R(t), and delivers the data after a variable
delay. Call R∗(t) the output function, namely, the cumulative function at the output
of system S. System S might be, for example, a single buffer served at a constant
rate, a complex communication node, or even a complete network. Figure 1.1.1
shows input and output functions for a single server queue, where every packet
takes exactly 3 time units to be served. With output function R∗

1 (fluid model) the
assumption is that a packet can be served as soon as a first bit has arrived (cut-
through assumption), and that a packet departure can be observed bit by bit, at a
constant rate. For example, the first packet arrives between times 1 and 2, and leaves
between times 1 and 4. With output function R∗

2 the assumption is that a packet is
served as soon as it has been fully received and is considered out of the system only
when it is fully transmitted (store and forward assumption). Here, the first packet
arrives immediately after time 1, and leaves immediately after time 4. With output
function R∗

3 (discrete time model), the first packet arrives at time 2 and leaves at
time 5.

1.1.2 Backlog and Virtual Delay

From the input and output functions, we derive the two following quantities of in-
terest.

Definition 1.1.1 (Backlog and Delay). For a lossless system:

• Thebacklog at timet is R(t)−R∗(t).

• Thevirtual delay at timet is

d(t) = inf {τ ≥ 0 : R(t) ≤ R∗(t+ τ)}

The backlog is the amount of bits that are held inside the system; if the system
is a single buffer, it is the queue length. In contrast, if the system is more complex,
then the backlog is the number of bits “ in transit” , assuming that we can observe
input and output simultaneously. The virtual delay at time t is the delay that would
be experienced by a bit arriving at time t if all bits received before it are served
before it. In Figure 1.1.1, the backlog, called x(t), is shown as the vertical deviation
between input and output functions. The virtual delay is the horizontal deviation. If
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the input and output function are continuous (fluid model), then it is easy to see that
R∗ (t+ d(t)) = R(t), and that d(t) is the smallest value satisfying this equation.

In Figure 1.1.1, we see that the values of backlog and virtual delay slightly differ
for the three models. Thus the delay experienced by the last bit of the first packet is
d(2) = 2 time units for the first subfigure; in contrast, it is equal to d(1) = 3 time
units on the second subfigure. This is of course in accordance with the different
assumptions made for each of the models. Similarly, the delay for the fourth packet
on subfigure 2 is d(8.6) = 5.4 time units, which corresponds to 2.4 units of waiting
time and 3 units of service time. In contrast, on the third subfigure, it is equal to
d(9) = 6 units; the difference is the loss of accuracy resulting from discretization.

1.1.3 Example: The Playout Buffer

Cumulative functions are a powerful tool for studying delays and buffers. In order
to illustrate this, consider the simple playout buffer problem that we describe now.
Consider a packet switched network that carries bits of information from a source
with a constant bit rate r (Figure 1.2) as is the case for example, with circuit em-
ulation. We take a fluid model, as illustrated in Figure 1.2. We have a first system
S, the network, with input function R(t) = rt. The network imposes some variable
delay, because of queuing points, therefore the output R∗ does not have a constant
rate r. What can be done to recreate a constant bit stream ? A standard mechanism
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Figure 1.2: A Simple Playout Buffer Example

is to smooth the delay variation in a playout buffer. It operates as follows. When the
first bit of data arrives, at time dr(0), where dr(0) = limt→0,t>0 d(t) is the limit to
the right of function d3, it is stored in the buffer until a fixed time ∆ has elapsed.
Then the buffer is served at a constant rate r whenever it is not empty. This gives us
a second system S ′, with input R∗ and output S.

Let us assume that the network delay variation is bounded by ∆. This implies
that for every time t, the virtual delay (which is the real delay in that case) satisfies

3It is the virtual delay for a hypothetical bit that would arrive just after time 0. Other authors often
use the notation d(0+)
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−∆ ≤ d(t)− dr(0) ≤ ∆

Thus, since we have a fluid model, we have

r(t− dr(0)−∆) ≤ R∗(t) ≤ r(t− dr(0) + ∆)

which is illustrated in the figure by the two lines (D1) and (D2) parallel to R(t). The
figure suggests that, for the playout buffer S ′ the input function R∗ is always above
the straight line (D2), which means that the playout buffer never underflows. This
suggests in turn that the output function S(t) is given by S(t) = r(t− dr(0)−∆).

Formally, the proof is as follows. We proceed by contradiction. Assume the
buffer starves at some time, and let t1 be the first time at which this happens. Clearly
the playout buffer is empty at time t1, thus R∗(t1) = S(t1). There is a time interval
[t1, t1+ ε] during which the number of bits arriving at the playout buffer is less than
rε (see Figure 1.2. Thus, d(t1 + ε) > dr(0) + ∆ which is not possible. Secondly,
the backlog in the buffer at time t is equal to R∗(t)−S(t), which is bounded by the
vertical deviation between (D1) and (D2), namely, 2r∆.

We have thus shown that the playout buffer is able to remove the delay variation
imposed by the network. We summarize this as follows.

Proposition 1.1.1. Consider a constant bit rate stream of rater, modified by a
network that imposes a variable delay variation and no loss. The resulting flow
is put into a playout buffer, which operates by delaying the first bit of the flow by
∆, and reading the flow at rater. Assume that the delay variation imposed by the
network is bounded by∆, then

1. the playout buffer never starves and produces a constant output at rater;

2. a buffer size of2∆r is sufficient to avoid overflow.

We study playout buffers in more details in Chapter 5, using the network calcu-
lus concepts further introduced in this chapter.

1.2 Arrival Curves

1.2.1 Definition of an Arrival Curve

Assume that we want to provide guarantees to data flows. This requires some spe-
cific support in the network, as explained in Section 1.3; as a counterpart, we need to
limit the traffic sent by sources. With integrated services networks (ATM or the in-
tegrated services internet), this is done by using the concept of arrival curve, defined
below.

Definition 1.2.1 (Arrival Curve). Given a wide-sense increasing functionα de-
fined fort ≥ 0 (namely,α ∈ F), we say that a flowR is constrained byα if and
only if for all s ≤ t:

R(t)−R(s) ≤ α(t− s)

We say thatR hasα as an arrival curve, or also thatR is α-smooth.
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Note that the condition is over a set of overlapping intervals, as Figure 1.3 illus-
trates.
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Figure 1.3: Example of Constraint by arrival curve, showing a cumulative
function R(t) constrained by the arrival curve α(t).

Affine Arrival Curves: For example, if α(t) = rt, then the constraint means
that, on any time window of width τ , the number of bits for the flow is limited by
rτ . We say in that case that the flow is peak rate limited. This occurs if we know
that the flow is arriving on a link whose physical bit rate is limited by r b/s. A flow
where the only constraint is a limit on the peak rate is often (improperly) called a
“constant bit rate” (CBR) flow, or “deterministic bit rate” (DBR) flow.

Having α(t) = b, with b a constant, as an arrival curve means that the maximum
number of bits that may ever be sent on the flow is at most b.

More generally, because of their relationship with leaky buckets, we will often
use affinearrival curves γr,b, defined by: γr,b(t) = rt+ b for t > 0 and 0 otherwise
(see Section 3.1.3 for an illustration). Having γr,b as an arrival curve allows a source
to send b bits at once, but not more than r b/s over the long run. Parameters b and r
are called the burst tolerance (in units of data) and the rate (in units of data per time
unit). Figure 1.3 illustrates such a constraint.

Stair Functions as Arrival Curves: In the context of ATM, we also use arrival
curves of the form kvT,τ , where vT,τ is the stair functions defined by vT,τ (t) =
� t+τT � for t > 0 and 0 otherwise (see Section 3.1.3 for an illustration). Note that
vT,τ (t) = vT,0(t+ τ), thus vT,τ results from vT,0 by a time shift to the left. Param-
eter T (the “ interval” ) and τ (the “ tolerance” ) are expressed in time units. In order to
understand the use of vT,τ , consider a flow that sends packets of a fixed size, equal
to k unit of data (for example, an ATM flow). Assume that the packets are spaced by
at least T time units. An example is a constant bit rate voice encoder, which gener-
ates packets periodically during talk spurts, and is silent otherwise. Such a flow has
kvT,0 as an arrival curve.
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Assume now that the flow is multiplexed with some others. A simple way to
think of this scenario is to assume that the packets are put into a queue, together
with other flows. This is typically what occurs at a workstation, in the operating
system or at the ATM adapter. The queue imposes a variable delay; assume it can
be bounded by some value equal to τ time units. We will see in the rest of this
chapter and in Chapter 2 how we can provide such bounds. Call R(t) the input
function for the flow at the multiplexer, and R∗(t) the output function. We have
R∗(s) ≤ R(s− τ), from which we derive:

R∗(t)−R∗(s) ≤ R(t)−R(s− τ) ≤ kvT,0(t− s+ τ) = kvT,τ (t− s)

Thus R∗ has kvT,τ as an arrival curve. We have shown that a periodic flow, with
period T , and packets of constant sizek, that suffers a variable delay≤ τ , has
kvT,τ as an arrival curve. The parameter τ is often called the “one-point cell delay
variation” , as it corresponds to a deviation from a periodic flow that can be observed
at one point.

In general, function vT,τ can be used to express minimum spacingbetween pack-
ets, as the following proposition shows.

Proposition 1.2.1 (Spacing as an arrival constraint). Consider a flow, with cumu-
lative functionR(t), that generates packets of constant size equal tok data units,
with instantaneous packet arrivals. Assume time is discrete or time is continuous
andR is left-continuous. Calltn the arrival time for thenth packet. The following
two properties are equivalent:

1. for all m,n, tm+n − tm ≥ nT − τ

2. the flow haskvT,τ as an arrival curve

The conditions on packet size and packet generation mean that R(t) has the form
nk, with n ∈ N. The spacing condition implies that the time interval between two
consecutive packets is ≥ T − τ , between a packet and the next but one is ≥ 2T − τ ,
etc.

Proof: Assume that property 1 holds. Consider an arbitrary interval ]s, t], and call
n the number of packet arrivals in the interval. Say that these packets are numbered
m+ 1, . . . ,m+ n, so that s < tm+1 ≤ . . . ≤ tm+n ≤ t, from which we have

t− s > tm+n − tm+1

Combining with property 1, we get

t− s > (n− 1)T − τ

From the definition of vT,τ it follows that vT,τ (t − s) ≥ n. Thus R(t) − R(s) ≤
kvT,τ (t− s), which shows the first part of the proof.

Conversely, assume now that property 2 holds. If time is discrete, we convert the
model to continuous time using the mapping in Equation 1.2, thus we can consider



1.2. ARRIVAL CURVES 11

that we are in the continuous time case. Consider some arbitrary integers m,n; for
all ε > 0, we have, under the assumption in the proposition:

R(tm+n + ε)−R(tm) ≥ (n+ 1)k

thus, from the definition of vT,τ ,

tm+n − tm + ε > nT − τ

This is true for all ε > 0, thus tm+n − tm ≥ nT − τ .
In the rest of this section we clarify the relationship between arrival curve con-

straints defined by affine and by stair functions. First we need a technical lemma,
which amounts to saying that we can always change an arrival curve to be left-
continuous.

Lemma 1.2.1 (Reduction to left-continuous arrival curves). Consider a flow
R(t) and a wide sense increasing functionα(t), defined fort ≥ 0. Assume that
R is either left-continuous, or right-continuous. Denote withαl(t) the limit to the
left ofα at t (this limit exists at every point becauseα is wide sense increasing); we
haveαl(t) = sups<t α(s). If α is an arrival curve forR, then so isαl.

Proof: Assume first that R is left-continuous. For some s < t, let tn be a sequence
of increasing times converging towards t, with s < tn ≤ t. We have R(tn)−R(s) ≤
α(tn − s) ≤ αl(t − s). Now limn→+∞ R(tn) = R(t) since we assumed that R is
left-continuous. Thus R(t)−R(s) ≤ αl(t− s).

If in contrast R is right-continuous, consider a sequence sn converging towards
s from above. We have similarly R(t) − R(sn) ≤ α(t − sn) ≤ αl(t − s) and
limn→+∞ R(sn) = R(s), thus R(t)−R(s) ≤ αl(t− s) as well.

Based on this lemma, we can always reduce an arrival curve to be left-continuous4.
Note that γr,b and vT,τ are left-continuous. Also remember that, in this book, we use
the convention that cumulative functions such as R(t) are left continuous; this is a
pure convention, we might as well have chosen to consider only right-continuous
cumulative functions. In contrast, an arrival curve can always be assumed to be left-
continuous, but not right-continuous.

In some cases, there is equivalence between a constraint defined by γr,b and
vT,τ . For example, for an ATM flow (namely, a flow where every packet has a fixed
size equal to one unit of data) a constraint γr,b with r = 1

T and b = 1 is equivalent
to sending one packet every T time units, thus is equivalent to a constraint by the
arrival curve vT,0. In general, we have the following result.

Proposition 1.2.2. Consider either a left- or right- continuous flowR(t), t ∈ R+,
or a discrete time flowR(t), t ∈ N, that generates packets of constant size equal to
k data units, with instantaneous packet arrivals. For someT andτ , let r = k

T and
b = k( τT + 1). It is equivalent to say thatR is constrained byγr,b or bykvT,τ .

4If we consider αr(t), the limit to the right of α at t, then α ≤ αr thus αr is always an arrival curve,
however it is not better than α.
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Proof: Since we can map any discrete time flow to a left-continuous, continuous
time flow, it is sufficient to consider a left-continuous flow R(t), t ∈ R+. Also, by
changing the unit of data to the size of one packet, we can assume without loss of
generality that k = 1. Note first, that with the parameter mapping in the proposition,
we have vT,τ ≤ γr,b, which shows that if vT,τ is an arrival curve for R, then so is
γr,b.

Conversely, assume now that R has γr,b as an arrival curve. Then for all s ≤ t,
we have R(t) − R(s) ≤ rt + b, and since R(t) − R(s) ∈ N, this implies R(t) −
R(s) ≤ �rt + b�, Call α(t) the right handside in the above equation and apply
Lemma 1.2.1. We have αl(t) = �rt+ b− 1� = vT,τ (t).

Note that the equivalence holds if we can assume that the packet size is constant
and equal to the step size in the constraint kvT,τ . In general, the two families of
arrival curve do not provide identical constraints. For example, consider an ATM
flow, with packets of size 1 data unit, that is constrained by an arrival curve of the
form kvT,τ , for some k > 1. This flow might result from the superposition of several
ATM flows. You can convince yourself that this constraint cannot be mapped to a
constraint of the form γr,b. We will come back to this example in Section 1.4.1.

1.2.2 Leaky Bucket and Generic Cell Rate Algorithm

Arrival curve constraints find their origins in the concept of leaky bucket and generic
cell rate algorithms, which we describe now. We show that leaky buckets correspond
to affine arrival curves γr,b, while the generic cell rate algorithm corresponds to stair
functions vT,τ . For flows of fixed size packets, such as ATM cells, the two are thus
equivalent.

Definition 1.2.2 (Leaky Bucket Controller). A Leaky Bucket Controller is a device
that analyzes the data on a flowR(t) as follows. There is a pool (bucket) of fluid of
sizeb. The bucket is initially empty. The bucket has a hole and leaks at a rate ofr
units of fluid per second when it is not empty.

Data from the flowR(t) has to pour into the bucket an amount of fluid equal
to the amount of data. Data that would cause the bucket to overflow is declared
non-conformant, otherwise the data is declared conformant.

Figure 1.2.2 illustrates the definition. Fluid in the leaky bucket does not represent
data, however, it is counted in the same unit as data.

Data that is not able to pour fluid into the bucket is said to be “non-conformant”
data. In ATM systems, non-conformant data is either discarded, tagged with a low
priority for loss (“ red” cells), or can be put in a buffer (buffered leaky bucket con-
troller). With the Integrated Services Internet, non-conformant data is in principle
not marked, but simply passed as best effort traffic (namely, normal IP traffic).

We want now to show that a leaky bucket controller enforces an arrival curve
constraint equal to γr,b. We need the following lemma.

Lemma 1.2.2. Consider a buffer served at a constant rater. Assume that the buffer
is empty at time0. The input is described by the cumulative functionR(t). If there
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Figure 1.4: A Leaky Bucket Controller. The second part of the figure shows
(in grey) the level of the bucket x(t) for a sample input, with r = 0.4 kbits
per time unit and b = 1.5 kbits. The packet arriving at time t = 8.6 is not
conformant, and no fluid is added to the bucket. If b would be equal to 2
kbits, then all packets would be conformant.

is no overflow during[0, t], the buffer content at timet is given by

x(t) = sup
s:s≤t

{R(t)−R(s)− r(t− s)}

Proof: The lemma can be obtained as a special case of Corollary 1.5.2 on page 40,
however we give here a direct proof. First note that for all s such that s ≤ t, (t−s)r
is an upper bound on the number of bits output in ]s, t], therefore:

R(t)−R(s)− x(t) + x(s) ≤ (t− s)r

Thus

x(t) ≥ R(t)−R(s) + x(s)− (t− s)r ≥ R(t)−R(s)− (t− s)r

which proves that x(t) ≥ sups:s≤t{R(t)−R(s)− r(t− s)}.
Conversely, call t0 the latest time at which the buffer was empty before time t:

t0 = sup{s : s ≤ t, x(s) = 0}

(If x(t) > 0 then t0 is the beginning of the busy period at time t). During ]t0, t], the
queue is never empty, therefore it outputs bit at rate r, and thus

x(t) = x(t0) +R(t)−R(t0)− (t− t0)r (1.3)

We assume that R is left-continuous (otherwise the proof is a little more com-
plex); thus x(t0) = 0 and thus x(t) ≤ sups:s≤t{R(t)−R(s)− r(t− s)}

Now the content of a leaky bucket behaves exactly like a buffer served at rate
r, and with capacity b. Thus, a flow R(t) is conformant if and only if the bucket
content x(t) never exceeds b. From Lemma 1.2.2, this means that
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sup
s:s≤t

{R(t)−R(s)− r(t− s)} ≤ b

which is equivalent to
R(t)−R(s) ≤ r(t− s) + b

for all s ≤ t. We have thus shown the following.

Proposition 1.2.3. A leaky bucket controller with leak rater and bucket sizeb forces
a flow to be constrained by the arrival curveγr,b, namely:

1. the flow of conformant data hasγr,b as an arrival curve;

2. if the input already hasγr,b as an arrival curve, then all data is conformant.

We will see in Section 1.4.1 a simple interpretation of the leaky bucket param-
eters, namely: r is the minimum rate required to serve the flow, and b is the buffer
required to serve the flow at a constant rate.

Parallel to the concept of leaky bucket is the Generic Cell Rate Algorithm
(GCRA), used with ATM.

Definition 1.2.3 (GCRA (T, τ )). The Generic Cell Rate Algorithm (GCRA) with
parameters (T, τ ) is used with fixed size packets, called cells, and defines confor-
mant cells as follows. It takes as input a cell arrival timet and returnsresult. It
has an internal (static) variabletat (theoretical arrival time).

• initially, tat = 0

• when a cell arrives at timet, then

if (t < tat - tau)
result = NON-CONFORMANT;

else {
tat = max (t, tat) + T;
result = CONFORMANT;
}

Table 1.1 illustrate the definition of GCRA. It illustrates that 1
T is the long term

rate that can be sustained by the flow (in cells per time unit); while τ is a tolerance
that quantifies how early cells may arrive with respect to an ideal spacing of T
between cells. We see on the first example that cells may be early by 2 time units
(cells arriving at times 18 to 48), however this may not be cumultated, otherwise the
rate of 1

T would be exceeded (cell arriving at time 57).
In general, we have the following result, which establishes the relationship be-

tween GCRA and the stair functions vT,τ .

Proposition 1.2.4. Consider a flow, with cumulative functionR(t), that generates
packets of constant size equal tok data units, with instantaneous packet arrivals.
Assume time is discrete or time is continuous andR is left-continuous. The following
two properties are equivalent:
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arrival time 0 10 18 28 38 48 57
tat before arrival 0 10 20 30 40 50 60

result c c c c c c non-c

arrival time 0 10 15 25 35
tat before arrival 0 10 20 20 30

result c c non-c c c

Table 1.1: Examples for GCRA(10,2). The table gives the cell arrival times,
the value of the tat internal variable just before the cell arrival, and the
result for the cell (c = conformant, non-c = non-conformant).

1. the flow is conformant to GCRA(T, τ )

2. the flow has(k vT,τ ) as an arrival curve

Proof: The proof uses max-plus algebra. Assume that property 1 holds. Denote
with θn the value of tat just after the arrival of the nth packet (or cell), and by
convention θ0 = 0. Also call tn the arrival time of the nth packet. From the defini-
tion of the GCRA we have θn = max(tn, θn−1) + T . We write this equation for all
m ≤ n, using the notation ∨ for max. The distributivity of addition with respect to
∨ gives: 

θn = (θn−1 + T ) ∨ (tn + T )
θn−1 + T = (θn−2 + 2T ) ∨ (tn−1 + 2T )
. . .
θ1 + (n− 1)T = (θ0 + nT ) ∨ (t1 + nT )

Note that (θ0 + nT ) ∨ (t1 + nT ) = t1 + nT because θ0 = 0 and t1 ≥ 0, thus
the last equation can be simplified to θ1 + (n − 1)T = t1 + nT . Now the iterative
substitution of one equation into the previous one, starting from the last one, gives

θn = (tn + T ) ∨ (tn−1 + 2T ) ∨ . . . ∨ (t1 + nT ) (1.4)

Now consider the (m + n)th arrival, for some m,n ∈ N, with m ≥ 1. By property
1, the packet is conformant, thus

tm+n ≥ θm+n−1 − τ (1.5)

Now from Equation (1.4), θm+n−1 ≥ tj+(m+n−j)T for all 1 ≤ j ≤ m+n−1.
For j = m, we obtain θm+n−1 ≥ tm + nT . Combining this with Equation (1.5),
we have tm+n ≥ tm + nT − τ . With proposition 1.2.1, this shows property 2.

Conversely, assume now that property 2 holds. We show by induction on n that
the nth packet is conformant. This is always true for n = 1. Assume it is true for
all m ≤ n. Then, with the same reasoning as above, Equation (1.4) holds for n. We
rewrite it as θn = max1≤j≤n{tj + (n − j + 1)T}. Now from proposition 1.2.1,
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tn+1 ≥ tj+(n− j+1)T − τ for all 1 ≤ j ≤ n, thus tn+1 ≥ max1≤j≤n{tj+(n−
j + 1)T} − τ . Combining the two, we find that tn+1 ≥ θn − τ , thus the (n + 1)th
packet is conformant.

Note the analogy between Equation (1.4) and Lemma 1.2.2. Indeed, from propo-
sition 1.2.2, for packets of constant size, there is equivalence between arrival con-
straints by affine functions γr,b and by stair functions vT,τ . This shows the following
result.

Corollary 1.2.1. For a flow with packets of constant size, satisfying the GCRA(T, τ )
is equivalent to satisfying a leaky bucket controller, with rater and burst tolerance
b given by:

b = (
τ

T
+ 1)δ

r =
δ

T

In the formulas,δ is the packet size in units of data.

The corollary can also be shown by a direct equivalence of the GCRA algorithm
to a leaky bucket controller.

Take the ATM cell as unit of data. The results above show that for an ATM cell
flow, being conformant to GCRA(T, τ ) is equivalent to having vT,τ as an arrival
curve. It is also equivalent to having γr,b as an arrival curve, with r = 1

T and b =
τ
T + 1.

Consider a family of I leaky bucket controllers (or GCRAs), with parameters
ri, bi, for 1 ≤ i ≤ I . If we apply all of them in parallel to the same flow, then the
conformant data is data that is conformant for each of the controllers in isolation.
The flow of conformant data has as an arrival curve

α(t) = min
1≤i≤I

(γri,bi
(t)) = min

1≤i≤I
(rit+ bi)

It can easily be shown that the family of arrival curves that can be obtained in
this way is the set of concave, piecewise linear functions, with a finite number of
pieces. We will see in Section 1.5 some examples of functions that do not belong to
this family.

Application to ATM and the Internet Leaky buckets and GCRA are used by
standard bodies to define conformant flows in Integrated Services Networks. With
ATM, a constant bit rate connection (CBR) is defined by one GCRA (or equiva-
lently, one leaky bucket), with parameters (T, τ). T is called the ideal cell interval,
and τ is called the Cell Delay Variation Tolerance (CDVT). Still with ATM, a vari-
able bit rate (VBR) connection is defined as one connection with an arrival curve
that corresponds to 2 leaky buckets or GCRA controllers. The Integrated services
framework of the Internet (Intserv) uses the same family of arrival curves, such as

α(t) = min(M + pt, rt+ b) (1.6)
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where M is interpreted as the maximum packet size, p as the peak rate, b as the burst
tolearance, and r as the sustainable rate (Figure 1.5). In Intserv jargon, the 4-uple
(p,M, r, b) is also called a T-SPEC (traffic specification).

� � � � � �

� � � � � �

�

�

Figure 1.5: Arrival curve for ATM VBR and for Intserv flows

1.2.3 Sub-additivity and Arrival Curves

In this Section we discover the fundamental relationship between min-plus algebra
and arrival curves. Let us start with a motivating example.

Consider a flow R(t) ∈ N with t ∈ N; for example the flow is an ATM cell flow,
counted in cells. Time is discrete to simplify the discussion. Assume that we know
that the flow is constrained by the arrival curve 3v10,0; for example, the flow is the
superposition of 3 CBR connections of peak rate 0.1 cell per time unit each. Assume
in addition that we know that the flow arrives at the point of observation over a link
with a physical characteristic of 1 cell per time unit. We can conclude that the flow
is also constrained by the arrival curve v1,0. Thus, obviously, it is constrained by
α1 = min(3v10,0, v1,0). Figure 1.6 shows the function α1.
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Figure 1.6: The arrival curve α1 = min(3v10,0, v1,0) on the left, and its sub-
additive closure (“good” function) ᾱ1 on the right. Time is discrete, lines are
put for ease of reading.

Now the arrival curve α1 tells us that R(10) ≤ 3 and R(11) ≤ 6. However,
since there can arrive at most 1 cell per time unit , we can also conclude that
R(11) ≤ R(10) + [R(11) − R(10)] ≤ α1(10) + α1(1) = 4. In other words,
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the sheer knowledge that R is constrained by α1 allows us to derive a better bound
than α1 itself. This is because α1 is not a “good” function, in a sense that we define
now.

Definition 1.2.4. Consider a functionα in calF . We say thatα is a “good” function
if any one of the following equivalent properties is satisfied

1. α is sub-additive andα(0) = 0

2. α = α⊗ α

3. α� α = α

4. α = ᾱ (sub-additive closure ofα).

The definition uses the concepts of sub-additivity, min-plus convolution, min-
plus deconvolution and sub-additive closure, which are defined in Chapter 3. The
equivalence between the four items comes from Corollaries 3.1.1 on page 144
and 3.1.13 on page 151. Sub-additivity (item 1) means that α(s+ t) ≤ α(s)+α(t).
If α is not sub-additive, then α(s) +α(t) may be a better bound than α(s+ t), as is
the case with α1 in the example above. Item 2, 3 and 4 use the concepts of min-plus
convolution, min-plus deconvolution and sub-additive closure, defined in Chapter 3.
We know in particular (Theorem 3.1.10) that the sub-additive closure of a function
α is the largest “good” function ᾱ such that ᾱ ≤ α. We also know that ᾱ ∈ F if
α ∈ F .

The main result about arrival curves is that anyarrival curve can be replaced by
its sub-additive closure, which is a “good” arrival curve. Figure 1.6 shows ᾱ1 for
our example above.

Theorem 1.2.1 (Reduction of Arrival Curve to a Sub-Additive One). Saying that
a flow is constrained by a wide-sense increasing functionα is equivalent to saying
that it is constrained by the sub-additive closureᾱ.

The proof of the theorem leads us to the heart of the concept of arrival curve,
namely, its correspondence with a fundamental, linear relationships in min-plus al-
gebra, which we will now derive.

Lemma 1.2.3. A flowR is constrained by arrival curveα if and only ifR ≤ R⊗α

Proof: Remember that an equation such as R ≤ R ⊗ α means that for all times
t, R(t) ≤ (R ⊗ α)(t). The min-plus convolution R ⊗ α is defined in Chapter 3,
page 134; since R(s) and α(s) are defined only for s ≥ 0, the definition of R ⊗ α
is: (R ⊗ α)(t) = inf0≤s≤t(R(s) + α(t − s)). Thus R ≤ R ⊗ α is equivalent to
R(t) ≤ R(s) + α(t− s) for all 0 ≤ s ≤ t.

Lemma 1.2.4. If α1 andα2 are arrival curves for a flowR, then so isα1 ⊗ α2
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Proof: We know from Chapter 3 that α1 ⊗ α2 is wide-sense increasing if α1

and α2 are. The rest of the proof follows immediately from Lemma 1.2.3 and the
associativity of ⊗.

Proof of Theorem Since α is an arrival curve, so is α ⊗ α, and by iteration, so
is α(n) for all n ≥ 1. By the definition of δ0, it is also an arrival curve. Thus so is
ᾱ = infn≥0 α(n).

Conversely, α ≤ ᾱ; thus, if ᾱ is an arrival curve, then so is α.

Examples We should thus restrict our choice of arrival curves to sub-additive
functions. As we can expect, the functions γr,b and vT,τ introduced in Section 1.2.1
are sub-additive and since their value is 0 for t = 0, they are “good” functions, as
we now show. Indeed, we know from Chapter 1 that any concave function α such
that α(0) = 0 is sub-additive. This explains why the functions γr,b are sub-additive.

Functions vT,τ are not concave, but they still are sub-additive. This is because,
from its very definition, the ceiling function is sub-additive, thus

vT,τ (s+t) = �s+ t+ τ

T
� ≤ �s+ τ

T
�+� t

T
� ≤ �s+ τ

T
�+� t+ τ

T
� = vT,τ (s)+vT,τ (t)

Let us return to our introductory example with α1 = min(3v10,0, v1,0). As we dis-
cussed, α1 is not sub-additive. From Theorem 1.2.1, we should thus replace α1 by
its sub-additive closure ᾱ1, which can be computed by Equation (3.13). The com-
putation is simplified by the following remark, which follows immediately from
Theorem 3.1.11:

Lemma 1.2.5. Letγ1 andγ2 be two “good” functions. The sub-additive closure of
min(γ1, γ2) is γ1 ⊗ γ2.

We can apply the lemma to α1 = 3v10,0 ∧ v1,0, since vT,τ is a “good” function.
Thus ᾱ1 = 3v10,0 ⊗ v1,0, which the alert reader will enjoy computing. The result is
plotted in Figure 1.6.

Finally, let us mention the following equivalence, the proof of which is easy and
left to the reader.

Proposition 1.2.5. For a given wide-sense increasing functionα, with α(0) = 0,
consider a source defined byR(t) = α(t) (greedy source). The source hasα as an
arrival curve if and only ifα is a “good” function.

VBR arrival curve Now let us examine the family of arrival curves obtained by
combinations of leaky buckets or GCRAs (concave piecewise linear functions). We
know from Chapter 3 that if γ1 and γ2 are concave, with γ1(0) = γ2(0) = 0,
then γ1 ⊗ γ2 = γ1 ∧ γ2. Thus any concave piecewise linear function α such that
α(0) = 0 is a “good” function. In particular, if we define the arrival curve for VBR
connections or Intserv flows by
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{
α(t) = min(pt+M, rt+ b) if t > 0
α(0) = 0

(see Figure 1.5) then α is a “good” function.
We have seen in Lemma 1.2.1 that an arrival curve α can always be replaced by

its limit to the left αl. We might wonder how this combines with the sub-additive
closure, and in particular, whether these two operations commute (in other words, do
we have (ᾱ)l = αl ?). In general, if α is left-continuous, then we cannot guarantee
that ᾱ is also left-continuous, thus we cannot guarantee that the operations commute.
However, it can be shown that (ᾱ)l is always a “good” function, thus (ᾱ)l = (ᾱ)l.
Starting from an arrival curve α we can therefore improve by taking the sub-additive
closure first, then the limit to the left. The resulting arrival curve (ᾱ)l is a “good”
function that is also left-continuous (a “very good” function), and the constraint by
α is equivalent to the constraint by (ᾱ)l

Lastly, let us mention that it can easily be shown, using an argument of uniform
continuity, that if α takes only a finite set of values over any bounded time interval,
and if α is left-continuous, then so is ᾱ and then we do have (ᾱ)l = αl. This
assumption is always true in discrete time, and in most cases in practice.

1.2.4 Minimum Arrival Curve

Consider now a given flow R(t), for which we would like to determine a minimal
arrival curve. This problem arises, for example, when R is known from measure-
ments. The following theorem says that there is indeed one minimal arrival curve.

Theorem 1.2.2 (Minimum Arrival Curve). Consider a flowR(t)t≥0. Then

• functionR�R is an arrival curve for the flow

• for any arrival curveα that constrains the flow, we have:(R�R) ≤ α

• R�R is a “good” function

FunctionR�R is called theminimum arrival curve for flowR.

The minimum arrival curve uses min-plus deconvolution, defined in Chapter 3.
Figure 1.2.4 shows an example of R�R for a measured function R.

Proof: By definition of �, we have (R�R)(t) = supv≥0{R(t+ v)−R(v)}, it
follows that (R�R) is an arrival curve.

Now assume that some α is also an arrival curve for R. From Lemma 1.2.3, we
have R ≤ R ⊗ α). From Rule 14 in Theorem 3.1.12 in Chapter 3, it follows that
R � R ≤ α, which shows that R � R is the minimal arrival curve for R. Lastly,
R�R is a “good” function from Rule 15 in Theorem 3.1.12.

Consider a greedy source, with R(t) = α(t), where α is a “good” function.
What is the minimum arrival curve ?5 Lastly, the curious reader might wonder

5Answer: from the equivalence in Definition 1.2.4, the minimum arrival curve is α itself.
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Figure 1.7: Example of minimum arrival curve. Time is discrete, one time unit
is 40 ms. The top figures shows, for two similar traces, the number of packet
arrivals at every time slot. Every packet is of constant size (416 bytes). The
bottom figure shows the minimum arrival curve for the first trace (top curve)
and the second trace (bottom curve). The large burst in the first trace comes
earlier, therefore its minimum arrival curve is slightly larger.
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whether R�R is left-continuous. The answer is as follows. Assume that R is either
right or left-continuous. By lemma 1.2.1, the limit to the left (R � R)l is also an
arrival curve, and is bounded from above by R � R. Since R � R is the minimum
arrival curve, it follows that (R�R)l = R�R, thus R�R is left-continuous (and
is thus a “very good” function).

In many cases, one is interested not in the absolute minimum arrival curve as
presented here, but in a minimum arrival curve within a family of arrival curves, for
example, among all γr,b functions. For a development along this line, see [58].

1.3 Service Curves

1.3.1 Definition of Service Curve

We have seen that one first principle in integrated services networks is to put arrival
curve constraints on flows. In order to provide reservations, network nodes in return
need to offer some guarantees to flows. This is done by packet schedulers [41]. The
details of packet scheduling are abstracted using the concept of service curve, which
we introduce and study in this section. Since the concept of service curve is more
abstract than that of arrival curve, we introduce it on some examples.

A first, simple example of a scheduler is a Generalized Processor Sharing (GPS)
node [60]. We define now a simple view of GPS; more details are given in Chapter 2.
A GPS node serves several flows in parallel, and we can consider that every flow is
allocated a given rate. The guarantee is that during a period of duration t, for which
a flow has some backlog in the node, it receives an amount of service at least equal
to rt, where r is its allocated rate. A GPS node is a theoretical concept, which is
not really implementable, because it relies on a fluid model, while real networks use
packets. We will see in Section 2.1 on page 83 how to account for the difference
between a real implementation and GPS. Consider a input flow R, with output R∗,
that is served in a GPS node, with allocated rate r. Let us also assume that the node
buffer is large enough so that overflow is not possible. We will see in this section how
to compute the buffer size required to satisfy this assumption. Lossy systems are the
object of Chapter 9. Under these assumptions, for all time t, call t0 the beginning of
the last busy period for the flow up to time t. From the GPS assumption, we have

R∗(t)−R∗(t0) ≥ r(t− t0)

Assume as usual that R is left-continuous; at time t0 the backlog for the flow is
0, which is expressed by R(t0) − R∗(t0) = 0. Combining this with the previous
equation, we obtain:

R∗(t)−R(t0) ≥ r(t− t0)

We have thus shown that, for all time t: R∗(t) ≥ inf0≤s≤t[R(s) + r(t− s)], which
can be written as

R∗ ≥ R⊗ γr,0 (1.7)
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Note that a limiting case of GPS node is the constant bit rate server with rate r,
dedicated to serving a single flow. We will study GPS in more details in Chapter 2.

Consider now a second example. Assume that the only information we have
about a network node is that the maximum delay for the bits of a given flow R is
bounded by some fixed value T , and that the bits of the flow are served in first in,
first out order. We will see in Section 1.5 that this is used with a family of schedulers
called “earliest deadline first” (EDF). We can translate the assumption on the delay
bound to d(t) ≤ T for all t. Now since R∗ is always wide-sense increasing, it
follows from the definition of d(t) that R∗(t + T ) ≥ R(t). Conversely, if R∗(t +
T ) ≥ R(t), then d(t) ≤ T . In other words, our condition that the maximum delay
is bounded by T is equivalent to R∗(t + T ) ≥ R(t) for all t. This in turn can be
re-written as

R∗(s) ≥ R(s− T )

for all s ≥ T . We have introduced in Chapter 3 the “ impulse” function δT defined
by δT (t) = 0 if 0 ≤ t ≤ T and δT (t) = +∞ if t > T . It has the property that, for
any wide-sense increasing function x(t), defined for t ≤ 0, (x⊗ δT )(t) = x(t−T )
if t ≥ T and (x ⊗ δT )(t) = x(0) otherwise. Our condition on the maximum delay
can thus be written as

R∗ ≥ R⊗ δT (1.8)

For the two examples above, there is an input-output relationship of the same
form (Equations (1.7) and (1.8)). This suggests the definition of service curve,
which, as we see in the rest of this section, is indeed able to provide useful results.
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Figure 1.8: Definition of service curve. The output R∗ must be above R ⊗ β,
which is the lower envelope of all curves t �→ R(t0) + β(t− t0).

Definition 1.3.1 (Service Curve). Consider a systemS and a flow throughS with
input and output functionR andR∗. We say thatS offers to the flow aservice curve
β if and only ifβ ∈ F andR∗ ≥ R⊗ β

Figure 1.8 illustrates the definition.



24 CHAPTER 1. NETWORK CALCULUS

The definition means that β is a wide sense increasing function, with β(0) = 0,
and that for all t ≥ 0,

R∗(t) ≥ inf
s≤t

(R(s) + β(t− s))

In practice, we can avoid the use of an infimum if β is continuous. The following
proposition is an immediate consequence of Theorem 3.1.8 on Page 139.

Proposition 1.3.1. If β is continuous, the service curve property means that for all
t we can findt0 ≤ t such that

R∗(t) ≥ Rl(t0) + β(t− t0) (1.9)

whereRl(t0) = sup{s<t0} R(s) is the limit to the left ofR at t0. If R is left-
continuous, thenRl(t0) = R(t0).

For a constant rate server (and also for any strict service curve), the number t0
in Equation (1.9) is the beginning of the busy period. For other cases, there is not
such a simple definition. However, in some cases we can make sure that t0 increases
with t:

Proposition 1.3.2. If the service curveβ is convex, then we can find some wide
sense increasing functionτ(t) such that we can chooset0 = τ(t) in Equation (1.9).

Note that since a service curve is assumed to be wide-sense increasing, β, being
convex, is necessarily continuous; thus we can apply Proposition 1.3.1.

Proof: We give the proof when R is left-continuous. The proof for the general
case is essentially the same but involves some ε cutting. Consider some t1 < t2 and
call τ1 a value of t0 as in Equation (1.9)) at t = t1. Also consider any t′ ≤ τ1. From
the definition of τ1, we have

R∗(t′) + β(t1 − t′) ≥ R∗(τ1) + β(t1 − τ1)

and thus

R∗(t′) + β(t2 − t′) ≥ R∗(τ1) + β(t1 − τ1)− β(t1 − t′) + β(t2 − t′)

Now β is convex, thus for any four numbers a, b, c, d such that a ≤ c ≤ b, a ≤ d ≤ b
and a+ b = c+ d, we have

β(a) + β(b) ≥ β(c) + β(d)

(the interested reader will be convinced by drawing a small figure). Applying this to
a = t1 − τ1, b = t2 − t′, c = t1 − t′, d = t2 − τ1 gives

R∗(t′) + β(t2 − t′) ≥ R∗(τ1) + β(t2 − τ1)
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and the above equation holds for all t′ ≤ τ1. Consider now the minimum, for a
fixed t2, of R∗(t′) + β(t2 − t′) over all t′ ≤ t2. The above equation shows that the
minimum is reached for some t′ ≥ τ1.

We will see in Section 1.4 that the combination of a service curve guarantee
with an arrival curve constraint forms the basis for deterministic bounds used in
integrated services networks. Before that, we give the fundamental service curve
examples that are used in practice.

1.3.2 Classical Service Curve Examples

Guaranteed Delay Node The analysis of the second example in Section 1.3.1 can
be rephrased as follows.

Proposition 1.3.3. For a lossless bit processing system, saying that the delay for
any bit is bounded by some fixedT is equivalent to saying that the system offers to
the flow a service curve equal toδT .

Non Premptive Priority Node Consider a node that serves two flows, RH(t) and
RL(t). The first flow has non-preemptive priority over the second one (Figure 1.9).
This example explains the general framework used when some traffic classes have
priority over some others, such as with the Internet differentiated services [7]. The
rate of the server is constant, equal to C. Call R∗

H(t) and R∗
L(t) the outputs for

the two flows. Consider first the high priority flow. Fix some time t and call s the
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Figure 1.9: Two priority flows (H and L) served with a preemptive head of the
line (HOL) service discipline. The high priority flow is constrained by arrival
curve α.

beginning of the backlog period for high priority traffic. The service for high priority
can be delayed by a low priority packet that arrived shortly before s′, but as soon as
this packet is served, the server is dedicated to high priority as long as there is some
high priority traffic to serve. Over the interval (s, t], the output is C(t− s)Thus

R∗
H(t)−R∗

H(s) ≥ C(t− s)− lHmax

where lLmax is the maximum size of a low priority packet. Now by definition of s:
R∗
H(s) = RH(s) thus
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R∗
H(t) ≥ RH(s) + C(t− s)− lLmax

Now we have also

R∗
H(t)−RH(s) = R∗

H(t)−R∗
H(s) ≥ 0

from which we derive

R∗
H(t) ≥ RH(s) + [C(t− s)− lLmax]

+

The function u → [Cu− lLmax]
+ is called the rate-latency function with rate C and

latency lLmax
C [71] (in this book we note it β

C,
lLmax

C

, see also Figure 3.1 on page 130).

Thus the high priority traffic receives this function as a service curve.
Now let us examine low priority traffic. In order to assure that it does not starve,

we assume in such situations that the high priority flow is constrained by an arrival
curve αH . Consider again some arbitrary time t. Call s′ the beginning of the server
busy period (note that s′ ≤ s). At time s′, the backlogs for both flows are empty,
namely, R∗

H(s
′) = RH(s′) and R∗

L(s
′) = RL(s′). Over the interval (s′, t], the

output is C(t− s′). Thus

R∗
L(t)−R∗

L(s
′) = C(t− s′)− [R∗

H(t)−R∗
H(s

′)]

Now

R∗
H(t)−R∗

H(s
′) = R∗

H(t)−RH(s′) ≤ RH(t)−RH(s′) ≤ αH(t− s′)

and obviously R∗
H(t)−R∗

H(s
′) ≥ 0 thus

R∗
L(t)−RL(s′) = R∗

L(t)−R∗
L(s

′) ≥ S(t− s′)

with S(u) = (Cu− αH(u))
+. Thus, if S is wide-sense increasing, the low-priority

flow receives a service curve equal to function S. Assume further that αH = γr,b,
namely, the high priority flow is constrained by one single leaky bucket or GCRA.
In that case, the service curve S(t) offered to the low-priority flow is equal to the
rate-latency function βR,T (t), with R = C − r and T = b

C−r .
We have thus shown the following.

Proposition 1.3.4. Consider a constant bit rate server, with rateC, serving two
flows,H andL, with non-preemptive priority given to flowH. Then the high priority

flow is guaranteed a rate-latency service curve with rateC and latencyl
L
max
C where

lLmax is the maximum packet size for the low priority flow.
If in addition the high priority flow isγr,b-smooth, withr < C, then the low

priority flow is guaranteed a rate-latency service curve with rateC − r and latency
b

C−r .

This example justifies the importance of the rate-latency service curve. We will
also see in Chapter 2 (Theorem 2.1.1 on page 87) that all practical implementations
of GPS offer a service curve of the rate-latency type.
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Strict service curve An important class of network nodes fits in the following
framework.

Definition 1.3.2 (Strict Service Curve). We say that systemS offers a strict service
curveβ to a flow if, during any backlogged period of durationu, the output of the
flow is at least equal toβ(u).

A GPS node is an example of node that offers a strict service curve of the form
β(t) = rt. Using the same busy-period analysis as with the GPS example in the
previous section, we can easily prove the following.

Proposition 1.3.5. If a node offersβ as a strict service curve to a flow, then it also
offersβ as a service curve to the flow.

The strict service curve property offers a convenient way of visualizing the ser-
vice curve concept: in that case, β(u) is the minimum amount of service guaranteed
during a busy period. Note however that the concept of service curve, as defined in
Definition 1.3.1 is more general. A greedy shaper (Section 1.5.2) is an example of
system that offers its shaping curve as a service curve, without satisfying the strict
service curve property. In contrast, we will find later in the book some properties that
hold only if a strict service curve applies. The framework for a general discussion
of strict service curves is given in Chapter 7.

Variable Capacity Node Consider a network node that offers a variable service
capacity to a flow. In some cases, it is possible to model the capacity by a cumu-
lative function M(t), where M(t) is the total service capacity available to the flow
between times 0 and t. For example, for an ATM system, think of M(t) as the num-
ber of time slots between times 0 and t that are available for sending cells of the
flow. Let us also assume that the node buffer is large enough so that overflow is not
possible. The following proposition is obvious but important in practice

Proposition 1.3.6. If the variable capacity satisfies a minimum guarantee of the
form

M(t)−M(s) ≥ β(t− s) (1.10)

for some fixed functionβ and for all0 ≤ s ≤ t, thenβ is a strict service curve,

Thus β is also a service curve for that particular flow. The concept of variable
capacity node is also a convenient way to establish service curve properties. For an
application to real time systems (rather than communication networks) see [74].

We will show in Chapter 4 that the output of the variable capacity node is given
by

R∗(t) = inf
0≤s≤t

{M(t)−M(s) +R(s)}
Lastly, coming back to the priority node, we have:

Proposition 1.3.7. The service curve properties in Proposition 1.3.4 are strict.

The proof is left to the reader. It relies on the fact that constant rate server is a
shaper.
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1.4 Network Calculus Basics

In this section we see the main simple network calculus results. They are all bounds
for lossless systems with service guarantees.

1.4.1 Three Bounds

The first theorem says that the backlog is bounded by the vertical deviation between
the arrival and service curves:

Theorem 1.4.1 (Backlog Bound). Assume a flow, constrained by arrival curveα,
traverses a system that offers a service curveβ. The backlogR(t)−R∗(t) for all t
satisfies:

R(t)−R∗(t) ≤ sup
s≥0

{α(s)− β(s)}

Proof: The proof is a straightforward application of the definitions of service and
arrival curves:

R(t)−R∗(t) ≤ R(t)− inf
0≤s≤t

[R(t− s) + β(s)]

Thus

R(t)−R∗(t) ≤ sup
0≤s≤t

[R(t)−R(t− s) + β(s)] ≤ sup
0≤s≤t

[α(s) + β(t− s)]

We now use the concept of horizontal deviation, defined in Chapter 3, Equa-
tion (3.21). The definition is a little complex, but is supported by the following
intuition. Call

δ(s) = inf {τ ≥ 0 : α(s) ≤ β(s+ τ)}
From Definition 1.1.1, δ(s) is the virtual delay for a hypothetical system that would
have α as input and β as output, assuming that such a system exists (in other words,
assuming that (α ≤ β). Then, h(α, β) is the supremum of all values of δ(s). The
second theorem gives a bound on delay for the general case.

Theorem 1.4.2 (Delay Bound). Assume a flow, constrained by arrival curveα,
traverses a system that offers a service curve ofβ. The virtual delayd(t) for all t
satisfies:d(t) ≤ h(α, β).

Proof: Consider some fixed t ≥ 0; for all τ < d(t), we have, from the definition
of virtual delay, R(t) > R∗(t + τ). Now the service curve property at time t + τ
implies that there is some s0 such that

R(t) > R(t+ τ − s0) + β(s0)



1.4. NETWORK CALCULUS BASICS 29

It follows from this latter equation that t+ τ − s0 < t. Thus

α(τ − s0) ≥ [R(t)−R(t+ τ − s0)] > β(s0)

Thus τ ≤ δ(τ−s0) ≤ h(α, β). This is true for all τ < d(t) thus d(t) ≤ h(α, β).

Theorem 1.4.3 (Output Flow). Assume a flow, constrained by arrival curveα,
traverses a system that offers a service curve ofβ. The output flow is constrained by
the arrival curveα∗ = α� β.

The theorem uses min-plus deconvolution, introduced in Chapter 3, which we
have already used in Theorem 1.2.2.

Proof: With the same notation as above, consider R∗(t) − R∗(t − s), for 0 ≤
t−s ≤ t. Consider the definition of the service curve, applied at time t−s. Assume
for a second that the inf in the definition of R ⊗ β is a min, that is to say, there is
some u ≥ 0 such that 0 ≤ t− s− u and

(R⊗ β)(t− s) = R(t− s− u) + β(u)

Thus
R∗(t− s)−R(t− s− u) ≥ β(u)

and thus
R∗(t)−R∗(t− s) ≤ R∗(t)− β(u)−R(t− s− u)

Now R∗(t) ≤ R(t), therefore

R∗(t)−R∗(t− s) ≤ R(t)−R(t− s− u)− β(u) ≤ α(s+ u)− β(u)

and the latter term is bounded by (α� β)(s) by definition of the � operator.
Now relax the assumption that the the inf in the definition of R⊗ β is a min. In

this case, the proof is essentially the same with a minor complication. For all ε > 0
there is some u ≥ 0 such that 0 ≤ t− s− u and

(R⊗ β)(t− s) ≥ R(t− s− u) + β(u)− ε

and the proof continues along the same line, leading to:

R∗(t)−R∗(t− s) ≤ (α� β)(s) + ε

This is true for all ε > 0, which proves the result.

A simple Example and Interpretation of Leaky Bucket Consider a flow con-
strained by one leaky bucket, thus with an arrival curve of the form α = γr,b, served
in a node with the service curve guarantee βR,T . The alert reader will enjoy applying
the three bounds and finding the results shown in Figure 1.10.

Consider in particular the case T = 0, thus a flow constrained by one leaky
bucket served at a constant rate R. If R ≥ r then the buffer required to serve the
flow is b, otherwise, it is infinite. This gives us a common interpretation of the leaky
bucket parameters r and b: r is the minimum rate required to serve the flow, and b is
the buffer required to serve the flow at any constant rate ≥ r.
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Figure 1.10: Computation of buffer, delay and output bounds for an input flow
constrained by one leaky bucket, served in one node offered a rate-latency
service curve. If r ≤ R, then the buffer bound is x = b+ rT , the delay bound
is d = T + b

R and the burstiness of the flow is increased by rT . If r > R, the
bounds are infinite.

Example: VBR flow with rate-latency service curve Consider a VBR flow, de-
fined by T-SPEC (M,p, r, b). This means that the flow has α(t) = min(M+pt, rt+
b) as an arrival curve (Section 1.2). Assume that the flow is served in one node that
guarantees a service curve equal to the rate-latency function β = βR,T . This exam-
ple is the standard model used in Intserv. Let us apply Theorems 1.4.1 and 1.4.2.
Assume that R ≥ r, that is, the reserved rate is as large as the sustainable rate of the
flow.

From the convexity of the region between α and β (Figure 1.4.1), we see that
the vertical deviation v = sups≥0[α(s)− β(s)] is reached for at an angular point of
either α or β. Thus

v = max[α(T ), α(θ)− β(θ)]

with θ = b−M
p−r . Similarly, the horizontal distance is reached an angular point. In the

figure, it is either the distance marked as AA′ or BB′. Thus, the bound on delay d
is given by

d = max
(

α(θ)
R

+ T − θ,
M

R
+ T

)
After some max-plus algebra, we can re-arrange these results as follows.

Proposition 1.4.1 (Intserv model, buffer and delay bounds). Consider a VBR
flow, with TSPEC(M,p, r, b), served in a node that guarantees to the flow a service
curve equal to the rate-latency functionβ = βR,T . The buffer required for the flow
is bounded by

v = b+ rT +
(

b−M

p− r
− T

)+

[(p−R)+ − p+ r]

The maximum delay for the flow is bounded by

d =
M + b−M

p−r (p−R)+

R
+ T
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Figure 1.11: Computation of buffer and delay bound for one VBR flow served
in one Intserv node.

We can also apply Theorem 1.4.3 and find an arrival curve α∗ for the output
flow. We have α∗ = α � (λR ⊗ δT ) = (α � λR) � δT from the properties of �
(Chapter 3). Note that

(f � δT )(t) = f(t+ T )

for all f (shift to the left).
The computation of α � λR is explained in Theorem 3.1.14 on Page 152: it

consists in inverting time, and smoothing. Here, we give however a direct derivation,
which is possible since α is concave. Indeed, for a concave α, define t0 as

t0 = inf{t ≥ 0 : α′(t) ≤ R}
where α′ is the left-derivative, and assume that t0 < +∞. A concave function
always has a left-derivative, except maybe at the ends of the interval where it is
defined. Then by studying the variations of the function u → α(t + u) − Ru we
find that (α � λR)(s) = α(s) if s ≥ t0, and (α � λR)(s) = α(t0) + (s − t0)R if
s < t0.

bits slope = R

arrival
curve

time

t0-T-T

departure curve

Figure 1.12: Derivation of arrival curve for the output of a flow served in a
node with rate-latency service curve βR,T .

Putting the pieces all together we see that the output function α∗ is obtained
from α by
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• replacing α on [0, t0] by the linear function with slope R that has the same
value as α for t = t0, keeping the same values as α on [t0,+∞[,

• and shifting by T to the left.

Figure 1.12 illustrates the operation. Note that the two operations can be performed
in any order since ⊗ is commutative. Check that the operation is equivalent to the
construction in Theorem 3.1.14 on Page 152.

If we apply this to a VBR connection, we obtain the following result.

Proposition 1.4.2 (Intserv model, output bound). With the same assumption as
in Proposition 1.4.1, the output flow has an arrival curveα∗ given by:{

if b−M
p−r ≤ T then α∗(t) = b+ r(T + t)

else α∗(t) = min
{
(t+ T )(p ∧R) +M + b−M

p−r (p−R)+, b+ r(T + t)
}

An ATM Example Consider the example illustrated in Figure 1.13. The aggregate
flow has as an arrival curve equal to the stair function 10v25,4. The figure illustrates
that the required buffer is 18 ATM cells and the maximum delay is 10 time slots. We
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Figure 1.13: Computation of bounds for buffer x and delay d for an ATM ex-
ample. An ATM node serves 10 ATM connections, each constrained with
GCRA(25, 4) (counted in time slots). The node offers to the aggregate flow
a service curve βR,T with rate R = 1 cell per time slot and latency T = 8
time slots. The figure shows that approximating the stair function 10v25,4 by
an affine function γr,b results into an overestimation of the bounds.

know from Corollary 1.2.1 that a GCRA constraint is equivalent to a leaky bucket.
Thus, each of the 10 connections is constrained by an affine arrival curve γr,b with
r = 1

25 = 0.04 and b = 1 + 4
25 = 1.16. However, if we take as an arrival curve
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for the aggregate flow the resulting affine function 10γr,b, then we obtain a buffer
bound of 11.6 and a delay bound of 19.6. The affine function overestimates the
buffer and delay bounds. Remember that the equivalence between stair function and
affine function is only for a flow where the packet size is equal to the value of the
step, which is clearly not the case for an aggregate of several ATM connections.

A direct application of Theorem 1.4.3 shows that an arrival curve for the output
flow is given by α∗

0(t) = α(t+ T ) = v25,12(t).
In Chapter 2, we give a slight improvement to the bounds if we know that the

service curve is a strict service curve.

1.4.2 Are the Bounds Tight ?

We now examine how good the three bounds are. For the backlog and delay bounds,
the answer is simple:

Theorem 1.4.4. Consider the backlog and delay bounds in Theorems 1.4.1 and
1.4.2. Assume that

• α is a “good” function (that is, namely, is wide-sense increasing, sub-additive
andα(0) = 0)

• β is wide-sense increasing andβ(0) = 0

Then the bounds are tight. More precisely, there is one causal system with input flow
R(t) and output flowR∗(t), such that the input is constrained byα, offering to the
flow a service curveβ, and which achieves both bounds.

A causal system means that R(t) ≤ R∗(t). The theorem means that the backlog
bound in Theorem 1.4.1 is equal to supt≥0[R(t) − R∗(t)], and the delay bound in
Theorem 1.4.1 is equal to supt≥0 d(t). In the above, d(t) is the virtual delay defined
in Definition 1.1.1.

Proof: We build one such system R,R∗ by defining R = α,R∗ = min(α, β).
The system is causal because R∗ ≤ α = R. Now consider some arbitrary time t. If
α(t) < β(t) then

R∗(t) = R(t) = R(t) + β(0)

Otherwise,
R∗(t) = β(t) = R(0) + β(t)

In all cases, for all t there is some s ≤ t such that R∗(t) ≥ R(t− s) + β(s), which
shows the service curve property.

Of course, the bounds are as tight as the arrival and service curves are. We have
seen that a source such that R(t) = α(t) is called greedy. Thus, the backlog and
delay bounds are worst-case bounds that are achieved for greedy sources.

In practice, the output bound is also a worst-case bound, even though the detailed
result is somehow less elegant.
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Theorem 1.4.5. Assume that

1. α is a “good” function (that is, is wide-sense increasing, sub-additive and
α(0) = 0)

2. α is left-continuous

3. β is wide-sense increasing andβ(0) = 0

4. α�α is not bounded from above.

Then the output bound in Theorem 1.4.3 is tight. More precisely, there is one causal
system with input flowR(t) and output flowR∗(t), such that the input is constrained
byα, offering to the flow a service curveβ, andα∗ (given by Theorem 1.4.3) is the
minimum arrival curve forR∗.

We know in particular from Section 1.2 that the first three conditions are not
restrictive. Let us first discuss the meaning of the last condition. By definition of
max-plus deconvolution:

(α�α)(t) = inf
s≥0

{α(t+ s)− α(s)}

One interpretation of α�α is as follows. Consider a greedy source, with R(t) =
α(t); then (α�α)(t) is the minimum number of bits arriving over an interval of du-
ration t. Given that the function is wide-sense increasing, the last condition means
that limt→+∞(α�α)(t) = +∞. For example, for a VBR source with T-SPEC
(p,M, r, b) (Figure 1.5), we have (α�α)(t) = rt and the condition is satisfied.
The alert reader will easily be convinced that the condition is also true if the arrival
curve is a stair function.

The proof of Theorem 1.4.5 is a little technical and is left at the end of this
chapter.

We might wonder whether the output bound α∗ is a “good” function. The answer
is no, since α∗(0) is the backlog bound and is positive in reasonable cases. However,
α∗ is sub-additive (the proof is easy and left to the reader) thus the modified function
δ0 ∧α∗ defined as α∗(t) for t > 0 and 0 otherwise is a “good” function. If α is left-
continuous, δ0 ∧ α∗ is even a “very good” function since we know from the proof
of Theorem 1.4.5 that it is left-continuous.

1.4.3 Concatenation

So far we have considered elementary network parts. We now come to the main
result used in the concatenation of network elements.

Theorem 1.4.6 (Concatenation of Nodes). Assume a flow traverses systemsS1
andS2 in sequence. Assume thatSi offers a service curve ofβi, i = 1, 2 to the flow.
Then the concatenation of the two systems offers a service curve ofβ1 ⊗ β2 to the
flow.
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Proof: Call R1 the output of node 1, which is also the input to node 2. The service
curve property at node 1 gives

R1 ≥ R⊗ β1

and at node 2

R∗ ≥ R1 ⊗ β2 ≥ (R⊗ β1)⊗ β2 = R⊗ (β1 ⊗ β2)

Examples: Consider two nodes offering each a rate-latency service curve βRi,Ti
,

i = 1, 2, as is commonly assumed with Intserv. A simple computation gives

βR1,T1 ⊗ βR1,T1 = βmin(R1,R2),T1+T2

Thus concatenating Intserv nodes amounts to adding the latency components and
taking the minimum of the rates.

We are now also able to give another interpretation of the rate-latency service
curve model. We know that βR,T = (δT ⊗λR)(t); thus we can view a node offering
a rate-latency service curve as the concatenation of a guaranteed delay node, with
delay T and a constant bit rate or GPS node with rate R.

Pay Bursts Only Once The concatenation theorem allows us to understand a phe-
nomenon known as “Pay Bursts Only Once” . Consider the concatenation of two
nodes offering each a rate-latency service curve βRi,Ti

, i = 1, 2, as is commonly
assumed with Intserv. Assume the fresh input is constrained by γr,b. Assume that
r < R1 and r < R2. We are interested in the delay bound, which we know is a
worst case. Let us compare the results obtained as follows.

1. by applying the network service curve;

2. by iterative application of the individual bounds on every node

The delay bound D0 can be computed by applying Theorem 1.4.2:

D0 =
b

R
+ T0

with R = mini(Ri) and T0 =
∑

i Ti as seen above.
Now apply the second method. A bound on the delay at node 1 is (Theorem

1.4.2):

D1 =
b

R1
+ T1

The output of the first node is constrained by α∗, given by :

α∗(t) = b+ r × (t+ T1)
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A bound on the delay at the second buffer is:

D2 =
b+ rT1

R2
+ T2

And thus

D1 +D2 =
b

R1
+

b+ rT1

R2
+ T0

It is easy to see that D0 < D1 + D2. In other words, the bounds obtained by con-
sidering the global service curve are better than the bounds obtained by considering
every buffer in isolation.

Let us continue the comparison more closely. The delay through one node has
the form b

R1
+ T1 (for the first node). The element b

R1
is interpreted as the part

of the delay due to the burstiness of the input flow, whereas T1 is due to the delay
component of the node. We see that D1+D2 contains twice an element of the form
b
Ri

, whereas D0 contains it only once. We sometimes say that “we pay bursts only

once” . Another difference between D0 and D1 +D2 is the element rT1
R2

: it is due to
the increase of burstiness imposed by node 1. We see that this increase of burstiness
does not result into an increase of the overall delay.

A corollary of Theorem 1.4.6 is also that the end-to-end delay bound does not
depend on the order in which nodes are concatenated.

1.4.4 Improvement of Backlog Bounds

We give two cases where we can slightly improve the backlog bounds.

Theorem 1.4.7. Assume that a lossless node offers astrict service curveβ to a
flow with arrival curveα. Assume thatα(u0) ≤ β(u0) for someu0 > 0. Then
the duration of the busy period is≤ u0. Furthermore, for any timet, the backlog
R(t)−R∗(t) satisfies

R(t)−R∗(t) ≤ sup
u:0≤u<u0

[R(t)−R(t− u)− β(u)] ≤ sup
u:0≤u<u0

[α(u)− β(u)]

The theorem says that, for the computation of a buffer bound, it is sufficient to
consider time intervals less than u0. The idea is that the busy period duration is less
than u0.

Proof: Consider a given time t at which the buffer is not empty, and call s the last
time instant before t at which the buffer was empty. Then, from the strict service
curve property, we have

R∗(t) ≥ R∗(s) + β(t− s) = x(s) + β(t− s)

Thus the buffer size b(t) = R(t)−R∗(t) at time t satisfies

b(t) ≤ R(t)−R(s)− β(t− s) ≤ α(t− s)− β(t− s)
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Now if t − s ≥ u0, then there is a time t′ = s + u0, with s + 1 ≤ t′ ≤ t such
that b(t′) = 0. This contradicts the definition of s. Thus we can assume that t− s <
u0.

Theorem 1.4.8. Assume that a lossless node offers a service curveβ to a flow with
sub-additive arrival curveα. Assume thatβ is super-additive, and thatα(u0) ≤
β(u0) for someu0 > 0. Then for any timet, the backlogR(t)−R∗(t) satisfies

R(t)−R∗(t) ≤ sup
u:0≤u<u0

[R(t)−R(t− u)− β(u)] ≤ sup
u:0≤u<u0

[α(u)− β(u)]

Note that the condition that α is super-additive is not a restriction. In contrast,
the condition that β is super-additive is a restriction. It applies in particular to rate-
latency service curves. The theorem does not say anything about the duration of the
busy period, which is consistent with the fact we do not assume here that the service
curve is strict.

Proof: For an arbitrary time t the backlog at time t satisfies

b(t) ≤ sup
u≥0

[R(t)−R(t− u)− β(u)]

For s ≤ t define k = � t−su0
� and s′ = ku0 + s. We have s ≤ s′ ≤ t and

t− u0 < s′ (1.11)

Now from the super-additivity of β:

R(t)−R(s) ≤ [R(t)−R(s′)− β(t− s′)] + [R(s′)−R(s)− β(s′ − s)]

Note that for the second part we have

R(s′)−R(s)− β(s′ − s) ≤ k [α(u0)− β(u0)] ≤ 0

thus
R(t)−R(s) ≤ [R(t)−R(s′)− β(t− s′)]

which shows the theorem.

1.5 Greedy Shapers

1.5.1 Definitions

We have seen with the definition of the leaky bucket and of the GCRA two examples
of devices that enforce a general arrival curve. We call policerwith curve σ a device
that counts the bits arriving on an input flow and decides which bits conform with an
arrival curve of σ. We call shaper, with shaping curveσ, a bit processing device that
forces its output to have σ as an arrival curve. We call greedy shapera shaper that
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delays the input bits in a buffer, whenever sending a bit would violate the constraint
σ, but outputs them as soon as possible.

With ATM and sometimes with Intserv, traffic sent over one connection, or flow,
is policed at the network boundary. Policing is performed in order to guarantee that
users do not send more than specified by the contract of the connection. Traffic
in excess is either discarded, or marked with a low priority for loss in the case of
ATM, or passed as best effort traffic in the case of Intserv. In the latter case, with
IPv4, there is no marking mechanism, so it is necessary for each router along the
path of the flow to perform the policing function again.

Policing devices inside the network are normally buffered, they are thus shapers.
Shaping is also often needed because the output of a buffer normally does not con-
form any more with the traffic contract specified at the input.

1.5.2 Input-Output Characterization of Greedy Shapers

The main result with greedy shapers is the following.

Theorem 1.5.1 (Input-Output Characterization of Greedy Shapers). Consider
a greedy shaper with shaping curveσ. Assume that the shaper buffer is empty at
time0, and that it is is large enough so that there is no data loss. For an input flow
R, the outputR∗ is given by

R∗ = R⊗ σ̄ (1.12)

whereσ̄ is the sub-additive closure ofσ.

Proof: Remember first that if σ is sub-additive and σ(0) = 0, then σ̄ = σ. In
general, we know that we can replace σ by σ̄ without changing the definition of the
shaper. We thus assume without loss of generality that σ̄ = σ.

The proof of the theorem is an application of min-plus algebra. First, let us
consider a virtual system that would take R as input and have an output S satisfying
the constraints: {

S ≤ R
S ≤ S ⊗ σ

(1.13)

Such a system would behave as a buffer (the first equation says that the output
is derived from the input) and its output would satisfy the arrival curve constraint
σ. However, such a system is not necessarily a greedy shaper; we could have for
example a lazy shaper with S(t) = 0 for all t ≥ 0 ! For this system to be a greedy
shaper, it has to output the bits as soon as possible. Now there is a general result
about systems satisfying conditions 1.13.

Lemma 1.5.1 (A min-plus linear system). Assume thatσ is a “good” function
(that is, is sub-additive andσ(0) = 0). Among all functionsS(t) satisfying condi-
tions 1.13 for some fixed functionR, there is one that is an upper bound for all. It is
equal toR⊗ σ
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Proof of the lemma: The lemma is a special case of a general result in Chapter 4.
However, it is also possible to give a very simple proof, as follows.

Define S∗ = R⊗σ. Since σ is a “good” function, it follows immediately that S∗

is a solution to System (1.13). Now, let S′ be some other solution. We have S′ ≤ R
and thus

S′ ≤ S0 ⊗ σ = S∗

Therefore S∗ is the maximal solution.
Note that the lemma proves the existence of a maximal solution to System (1.13).

Note also that, in the lemma, function R need not be wide-sense increasing.
Now we can use the lemma by showing that R∗ = S∗. Function R is wide-

sense increasing, thus so is S∗. Obviously, R∗ is a solution of System (1.13), thus
R∗(t) ≤ S∗(t) for all t. Now if there would be some t such that R∗(t) �= S∗(t),
then this would contradict the condition that the greedy shaper attempts to send the
bits out as early as possible.

The following corollary derives immediately.

Corollary 1.5.1 (Service Curve offered by a Greedy Shaper). Consider a greedy
shaper with shaping curveσ. Assume thatσ is sub-additive andσ(0) = 0. This
system offers to the flow a service curve equal toσ.

� � 	 � � � � � � � � � �
� � � � � � � �

� � � � 	 �
�� 
 � �

� � �

Figure 1.14: Reshaping example.

Example: Buffer Sizing at a Re-shaper Re-shaping is often introduced because
the output of a buffer normally does not conform any more with the traffic contract
specified at the input. For example, consider a flow with the arrival curve σ(t) =
min(pt+M, rt+ b) that traverses a sequence of nodes, which offer a service curve
β1 = βR,T . A greedy shaper, with shaping curve σ, is placed after the sequence of
nodes (Figure 1.14). The input to the shaper (R in the figure) has an arrival curve
α∗, given by Proposition 1.4.2. Corollary 1.5.1 gives a service curve property for
the greedy shaper, thus the buffer B required at the greedy shaper is the vertical
distance v(α∗, σ). After some algebra, we obtain:

B =


if b−M

p−r < T then b+ Tr

if b−M
p−r ≥ T and p > R then M + (b−M)(p−R)

p−r + TR

else M + Tp

(1.14)
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Corollary 1.5.2 (Buffer Occupancy at a Greedy Shaper). Consider a greedy
shaper with shaping curveσ. Assume thatσ is sub-additive andσ(0) = 0. Call
R(t) the input function. The buffer occupancyx(t) at timet is given by

x(t) = sup
0≤s≤t

{R(t)−R(s)− σ(t− s)}

Proof: The backlog is defined by x(t) = R(t) − R∗(t), where R∗ is the output.
We apply Theorem 1.5.1 and get:

x(t) = R(t)− inf
0≤s≤t

{R(s) + σ(t− s)} = R(t) + sup
0≤s≤t

{−R(s)− σ(t− s)}

Note that Lemma 1.2.2 is a special case of this corollary.
In min-plus algebraic terms, we say that a system is linear and time invariant

if its input-output characterization has the form R∗ = R ⊗ β (where β is not nec-
essarily sub-additive). We can thus say from the theorem that greedy shapers are
min-plus linear and time invariant systems. There are min-plus linear and time in-
variant system that are not greedy shapers. For example, a node imposing a constant
delay T is characterized by the input-output relationship

R∗ = R⊗ δT

Compare to the guaranteed delay node (namely, a node imposing a variable delay
bounded by T ), for which the input-output relationship is a service curve property :

R∗ ≥ R⊗ δT

The rest of this Section illustrates similarly that the input-output characterization
of greedy shapers R∗ = R ⊗ σ is much stronger than the service curve property
described in Corollary 1.5.1.

1.5.3 Properties of Greedy Shapers

Consider again Figure 1.14. We have seen in the previous section how we can com-
pute the buffer size required at the greedy shaper. Now if greedy shapers are intro-
duced along a path, then some bits may be delayed at the shaper, thus the end-to-end
delay might increase. However, this is not true, as the following results state that,
from a global viewpoint, “greedy shapers come for free” .

Theorem 1.5.2 (Re-Shaping does not increase delay or buffer requirements).
Assume a flow, constrained by arrival curveα, is input to networksS1 andS2 in
sequence. Assume a greedy shaper, with curveσ ≥ α is inserted betweenS1 andS2.
Then the backlog and delay bounds given by Theorem 1.4.2 for the system without
shaper are also valid for the system with shaper.

The condition σ ≥ α means that re-shaping maybe only partial.
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Proof: Call βi the service curve of Si. The backlog bound in Theorem 1.4.1 is
given by

v(α, β1 ⊗ σ ⊗ β2) = v(α, σ ⊗ β1 ⊗ β2) (1.15)

Now the last expression is the backlog bound obtained if we put the shaper imme-
diately at the entrance of the network. Clearly, this introduces no backlog, which
shows that the overall backlog is not influenced by the shaper. The same reasoning
applies to the delay bound.

If you read carefully, you should not agree with the last paragraph. Indeed, there
is a subtlety. The bounds in Section 1.4 are tight, but since we are using several
bounds together, there is no guarantee that the resulting bound is tight. All we can
say at this point is that the bound computed for the system with shaper is the same
if we put the shaper in front; we still need to show that the bound for such a system
is the same bound as if there would be no shaper. This can be proven in a number
of ways. We give here a computational one. The proof relies on Lemma 1.5.2, given
below.

Lemma 1.5.2. Let α and σ be “good” functions. Assumeα ≤ σ. Then for any
functionβ, v(α, σ ⊗ β) = v(α, β) andh(α, σ ⊗ β) = h(α, β).

Proof: We use the reduction to min-plus deconvolution explained in Section 3.1.11.
We have:

v(α, σ ⊗ β) = [α� (σ ⊗ β)](0)

Now from Theorem 3.1.12 on Page 148: α � (σ ⊗ β) = (α � σ) � β. Also, since
σ ≥ α, we have α � σ ≤ α � α. Now α � α = α because α is a “good” function,
thus

α� (σ ⊗ β) = α� β (1.16)

and finally v(α, σ ⊗ β) = v(α, β).
Similarly h(α, β) = inf{d such that (α�β)(−d) ≤ 0} which, combined with

Equation (1.16) proves that h(α, σ ⊗ β) = h(α, β).
Consider again Figure 1.14. Assume that the first network element and the

greedy shaper are placed in the same node. Theorem 1.5.2 says that the total buffer
required for this combined node is the same as if there would be no greedy shaper at
the output. Thus, if you can dynamically allocate buffer space from a common pool
to the first network element and the greedy shaper, then the greedy shaper costs no
memory. However, the greedy shaper does need some buffer space, as given in Equa-
tion (1.14). Similarly, the theorem says that there is no penalty for the worst-case
delay.

In contrast, placing a greedy shaper has an obvious benefit. The burstiness of the
flow admitted in the next network element is reduced, which also reduces the buffer
required in that element. To be more concrete, consider the example “Pay Bursts
Only Once” in Section 1.4.3. Assume that a re-shaper is introduced at the output
of the first node. Then the input to the second node has the same arrival curve as
the fresh input, namely, γr,b instead of γr,b+rT1 . The buffer required for the flow at
node 2 is then b+ rT2 instead of b+ r(T1 + T2).
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The following result is another “physical” property of greedy shapers. It says
that shaping cannot be undone by shaping.

Theorem 1.5.3 (Shaping Conserves Arrival Constraints). Assume a flow with
arrival curve α is input to a greedy shaper with shaping curveσ. Assumeσ is a
“good” function. Then the output flow is still constrained by the original arrival
curveα.

Proof:
R∗ = R⊗ σ ≤ (R⊗ α)⊗ σ

since the condition R ≤ R⊗ α expresses that α is an arrival curve. Thus

R∗ ≤ R⊗ σ ⊗ α = R∗ ⊗ α

The output of the greedy shaper has thus min(α, σ) as an arrival curve. If α
is also a “good” function, we know (Lemma 1.2.5) that the sub-additive closure of
min(α, σ) is α⊗ σ.

Example (ATM Multiplexer): Consider an ATM switch that receives 3 ATM
connections, each constrained by GCRA(10, 0) (periodic connections). The switch
serves the connection in any work conserving manner and outputs them on a link
with rate 1 cell per time slot. What is a good arrival curve for the aggregate output ?

The aggregate input has an arrival curve α = 3v10,0. Now the server is a greedy
shaper with shaping curve σ = v1,0, thus it keeps arrival constraints. Thus the output
is constrained by 3v10,0 ⊗ v1,0, which is a “good” function. We have already met
this example in Figure 1.6.

1.6 Maximum Service Curve, Variable and Fixed De-
lay

1.6.1 Maximum Service Curves

If we modify the sense of the inequation in the definition of service curve in Sec-
tion 1.3, then we obtain a new concept, called maximum service curve, which is
useful to (1) account for constant delays and (2) in some cases to establish a rela-
tionship between delay and backlog.

Definition 1.6.1 (Maximum Service Curve). Consider a systemS and a flow
throughS with input and output functionR and R∗. We say thatS offers to the
flow amaximum service curve γ if and only ifγ ∈ F andR∗ ≤ R⊗ γ

Note that the definition is equivalent to saying that γ is wide-sense increasing
and that
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R∗(t) ≤ R(s) + γ(t− s)

for all t and all s ≤ t, or equivalently

R∗(t)−R∗(s) ≤ B(s) + γ(t− s)

where B(s) is the backlog at time s. A greedy shaper with shaping curve σ offers σ
both as a service curve and a maximum service curve.

In general, the concept of maximum service curve is not as powerful as the
concept of service curve. However, as we see below, it can be useful to account for
maximum rates and for constant propagation delays. We also see in Chapter 6 that
it allows us to find good bounds for aggregate multiplexing.

The following propositions give two special cases of interest. Their proof is easy
and left to the reader.

Proposition 1.6.1 (Minimum Delay). A lossless node offers a maximum service
curve equal toδT if and only if it imposes a minimum virtual delay equal toT .

Proposition 1.6.2 (Arrival Constraint on Output). Assume the output of a lossless
node is constrained by some arrival curveσ. Then the node offersσ as a maximum
service curve.

Like minimum service curves, maximum service curves can be concatenated:

Theorem 1.6.1 (Concatenation of Nodes). Assume a flow traverses systemsS1 and
S2 in sequence. Assume thatSi offers a maximum service curve ofγi, i = 1, 2 to
the flow. Then the concatenation of the two systems offers a service curve ofγ1⊗γ2
to the flow.

Proof: The proof mimics the proof of Theorem 1.4.6

Application: Consider a node with a maximum output rate equal to c and with
internal propagation delay equal to T . It follows from Theorem 1.6.1 and the two
previous propositions that this node offers to any flow a maximum service curve
equal to the rate-latency function βc,T (t) = [c(t− T )]+.

Maximum service curves do not allow us to derive as strong results as (ordinary)
service curves. However, they can be used to reduce the output bound and, in some
cases, to obtain a minimum delay bound. Indeed, we have the following two results.

Theorem 1.6.2 (Output Flow, generalization of Theorem 1.4.3 ). Assume a flow,
constrained by arrival curveα, traverses a system that offers a service curveβ and
a maximum service curveγ. The output flow is constrained by the arrival curve
α∗ = (α⊗ γ)� β.



44 CHAPTER 1. NETWORK CALCULUS

Proof: Instead of a computational proof as with Theorem 1.4.3, it is simpler at
this stage to use min-plus algebra. Call R and R∗ the input and output functions,
and consider R∗ � R∗, the minimum arrival curve for R∗. We have R∗ ≤ R ⊗ γ
and R∗ ≥ R⊗ β, thus

R∗ �R∗ ≤ (R⊗ γ)� (R⊗ β)

From Rule 12 in Chapter 3, Theorem 3.1.12, applied to f = R ⊗ γ, g = R and
h = β, we derive

R∗ �R∗ ≤ {(R⊗ γ)�R} � β

Now from the commutativity of ⊗ and from Rule 13 in Theorem 3.1.12:

{(R⊗ γ)�R} = {(γ ⊗R)�R} ≤ {γ ⊗ (R�R)}

Thus
R∗ �R∗ ≤ {γ ⊗ (R�R)} � β ≤ (γ ⊗ α)� β

Theorem 1.6.3 (Minimum Delay Bound). Assume a flow, constrained by arrival
curveα, traverses a system that offers a maximum service curve ofγ. Assume that
γ(D) = 0. The virtual delayd(t) satisfiesd(t) ≥ D for all t.

Proof: We have R∗(t) ≤ R(t−D) + γ(D) thus R∗(t) ≤ R(t−D)
Note that the output bound is improved by the knowledge of the maximum ser-

vice curve since in general we expect α ⊗ γ to be less than α. In contrast, the
minimum delay bound gives some new information only in the cases where there is
a latency part in the maximum service curve, which is the case for the first example
(Minimum Delay ), but not in general for the second example (Arrival Constraint
on Output).

Numerical Example: Consider again the example illustrated in Figure 1.13. Let
us first apply Theorem 1.4.3 and compute an arrival curve α∗

0 for the output. The
details are as follows. We have

α∗
0 = 10v25,4 � β1,8 = 10v25,4 � (λ1 ⊗ δ8)

Now from Rule 15 in Chapter 3, we have

α∗
0 = (10v25,4 � δ8)� λ1

Now (10v25,4 � δ8)(t) = 10v25,4(t + 8) = 10v25,12(t), and a straightforward
application of the definition of � shows that finally α∗

0 = v25,12.
Assume now that we have more information about the node, and that we can

model is as node S1 defined as the concatenation of two schedulers and a fixed
delay element (Figure 1.15). Each scheduler offers to the aggregate flow a service
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curve βR0,T0 with rate R0 = 1 cell per time slot and latency T0 = 2 time slots. The
delay element is a link with maximum rate equal to 1 cell per time slot, and a fixed
propagation and transmission delay equal to 4 time slots. The delay element is thus
the combination of a greedy shaper with shaping curve λ1(t) = t and a fixed delay
element δ4. We can verify that the concatenation of the three elements in node 1
offers a service curve equal to β1,2 ⊗ λ1 ⊗ δ4 ⊗ β1,2 = β1,8. Now, from the delay
element allows us to say that, in addition, the node also offers to the aggregate flow a
maximum service curveequal to β1,4. We can apply Theorem 1.6.2 and derive from
that the output is constrained by the arrival curve α∗

1 given by

α∗
1 = (α⊗ β1,4)� β1,8

The computation is similar to that of α∗
0 and involves the computation of 10v25,4 ⊗

λ1, which is similar to the example illustrated in Figure 1.6. Finally, we have:

α∗
1(t) = (10v25,4 ⊗ λ1)(t+ 4)

Figure 1.15 shows that α∗
1 is a better bound than the arrival curve α∗

0 that we would
obtain if we did not know the maximum service curve property.

Assume next that we change the order of the delay element in node S1 and place
it as the last element of the node. Call S2 the resulting node. Then the conclusion of
the previous paragraph remains, since the bounds are insensitive to the order, due to
the commutativity of min-plus convolution. Thus the output of system S2 also has
α∗
1 as an arrival curve. However, in that case, we can also model the delay element

as the combination of a shaper, with shaping curve λ1 (corresponding to a fixed rate
of 1 cell per time slot), followed by a fixed delay element, with constant delay equal
to 4 time slots. The input to the shaper has an arrival curve equal to α� β1,4, where
α = 10v25,4 is the fresh arrival curve. Thus, from the properties of shapers, the
output of the shaper is constrained by

α∗
2 = (α� β1,4)⊗ λ1 = 10v25,8 ⊗ λ1

Since the fixed delay component does not alter the flow, the output of system S2 has
α∗
2 as an arrival curve. Figure 1.15 shows that α∗

2 is a better bound than α∗
1.

This fact is true in general: whenever a network element can be modeled as a
shaper, then this model provides stronger bounds than the maximum service.

1.6.2 Delay from Backlog

In general it is not possible to bound delay from backlog with the framework of
service curves, except in one particular but important case.

Theorem 1.6.4. Assume a lossless node offers to a flow a minimum service curveβ
and a maximum service curveγ, such thatβ(t) = γ(t − v). Letf be the max-plus
deconvolutionγ�γ, that is,

f(t) = inf
s≥0

[γ(s+ t)− γ(s)]
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Figure 1.15: Use of maximum service curve to improve output bound. The
figure is for the same example as Figure 1.15. Top: nodes S1 and S2, two
possible implementations of a system offering the overall service curve β1,8.
Middle: arrival curve α and overall service curve β1,8. Bottom: constraint for
the output. α∗

0 (top curve, thick, plain line) is obtained with the only knowl-
edge that the service curve is β1,8. α∗

1 (middle curve, thick, dashed line) is
obtained assuming the system is S1. α∗

2 (bottom curve, thin, plain line) is
obtained assuming the system is S2.
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Then the backlogB(t) and the virtual delayd(t) satisfy

f(d(t)− v) ≤ B(t)

If in additionγ is super-additive, then

β(d(t)) ≤ B(t)

Proof: Fix some t ≥ 0; we haved(t) = inf Et where the set Et is defined by

Et = {s ≥ 0 : R∗(t+ s) ≥ R(t)}

Since R∗ and R are wide-sense increasing, Et is an interval. Thus

d(t) = sup{s ≥ 0 : R∗(t+ s) < R(t)}

We assume that R and R∗ are left-continuous. It follows that

R∗(t+ d(t)) ≤ R(t)

For some arbitrary ε, we can find some s such that

R∗(t+ d(t)) ≥ R(s) + β(t− s+ d(t))− ε

Now from the maximum service curve property

R∗(t)−R(s) ≤ γ(t− s)

Combining the three gives

B(t) = R(t)−R∗(t) ≥ β(t−s+d(t))−γ(t−s)−ε = γ(t−s+d(t)−v)−γ(t−s)−ε

and thus
B(t) ≥ inf

u≥0
[γ(d(t)− v + u)− γ(u)] (1.17)

From the definition of f , the latter term is f(d(t)−v). Finally, if γ is super-additive,
then γ�γ = γ

We can apply the theorem to a practical case:

Corollary 1.6.1. Assume a lossless node offers to a flow a minimum service curve
β = βr,v and a maximum service curveγ = βr,v′ , with v′ ≤ v. The backlogB(t)
and the virtual delayd(t) satisfy

d(t) ≤ B(t)
r

+ v
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Proof: We apply the theorem and note that γ is super-additive, because it is con-
vex.

1.6.3 Variable versus Fixed Delay

Some network elements impose fixed delays (propagation and transmission), whereas
some other network elements impose variable delays (queueing). In a number of
cases, it is important to evaluate separately the total delay and the variable part of
the delay. The total delay is important, for example, for determining throughput and
response time; the variable part is important for dimensioning playout buffers (see
Section 1.1.3 for a simple example, and chapter 5 for a more general discussion). We
have seen at the end of end of Section 1.5.2 that a node imposing a constant delay
can be modeled as a min-plus linear system. Beyond this, the concept of maximum
service curve is a tool for telling apart variable delay from fixed delay, as follows.

Consider a network, made of a series of network elements 1, ..., I , each element
being the combination of a fixed delay di and a variable delay. Assume the variable
delay component offers a service curve βi. A fixed delay component offers δdi

both
as a service curve and as a maximum service curve. Define β = β1 ⊗ ... ⊗ βI ;
the network offers as end-to-end service curve β ⊗ δd1+...+dI

, and as end-to-end
maximum service curve δd1+...+dI

. Assume the input flow is constrained by some
arrival curve α; from Theorems 1.4.2 and 1.6.3, the end-to-delay d(t) satisfies

d1 + ...+ dI ≤ d(t) ≤ h(α, β ⊗ δd1+...+dI
)

By simple inspection, h(α, β ⊗ δd1+...+dI
) = d1 + ... + dI + h(α, β), thus the

end-to-end delay satisfies

0 ≤ d(t)− [d1 + ...+ dI ] ≤ h(α, β)

In the formula, d1+ ...+dI is the fixed part of the delay, and h(α, β) is the variable
part. Thus, for the computation of the variable part of the delay, we can simply
ignore fixed delay components.

Similarly, an arrival curve constraint for the output is

α∗ = (α⊗ δd1+...+dI
)� (β ⊗ δd1+...+dI

) = α� β

thus the fixed delay can be ignored for the computation of the output bound.
For the determination of backlog, the alert reader can easily be convinced that

fixed delays cannot be ignored. In summary:

Proposition 1.6.3. 1. For the computation of backlog and fixed delay bounds,
fixed or variable delay are modeled by introducingδT functions in the ser-
vice curves. As a consequence of the commutativity of⊗, such delays can be
inserted in any order along a sequence of buffers, without altering the delay
bounds.

2. For the computation of variable delay bounds, or for an arrival constraint on
the output, fixed delays can be ignored.
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1.7 Handling Variable Length Packets

All results in this chapter apply directly to ATM systems, using discrete time mod-
els. In contrast, for variable length packets (as is usually the case with IP services),
there are additional subtleties, which we now study in detail. The main parts in this
section is the definition of a packetizer, and a study of its effect on delay, bursti-
ness and backlog bounds. We also revisit the notion of shaper in a variable length
context. For the rest of this section, time is continuous.

Throughout the section, we will consider some wide sense increasing sequences
of packet arrival times Ti ≥ 0. We assume that for all t the set {i : Ti ≤ t} is finite.

1.7.1 An Example of Irregularity Introduced by Variable Length
Packets

The problem comes from the fact that real packet switching systems normally output
entire packets, rather than a continuous data flow. Consider the example illustrated
in Figure 1.16. It shows the output of a constant bit rate trunk, with rate c, that
receives as input a sequence of packets, of different sizes. Call li, Ti the size (in
bits) and the arrival epoch for the ith packet, i = 1, 2, .... The input function is

R(t) =
∑
i

li1{Ti≤t} (1.18)

In the formula, we used the indicator function 1{expr}which is equal to 1 if expr is
true, and 0 otherwise.

We assume, as is usual in most systems, that we observe only entire packets
delivered by the trunk. This is shown as R′(t) in the figure, which results from the
bit-by-bit output R∗ by a packetization operation. The bit-by-bit output R∗ is well
understood; we know from Section 1.5 that R∗ = R ⊗ λr. However, what is the
effect of packetization ? Do the results in Sections 1.4 and 1.5 still hold ?

Certainly, we should expect some modifications. For example, the bit-by-bit out-
put R∗ in the figure is the output of a greedy shaper with curve λc, thus it has λc as
an arrival curve, but this is certainly not true for R′. Worse, we know that a greedy
shaper keeps arrival constraints, thus if R is σ-smooth for some σ, then so is R∗.
However, this is not true for R′. Consider the following example (which is originally
from [31]). Assume that σ(t) = lmax + rt with r < c. Assume that the input flow
R(t) sends a first packet of size l1 = lmax at time T1 = 0, and a second packet of
size l2 at time T2 = l2

r . Thus the flow R is indeed σ-smooth. The departure time for
the first packet is T ′

1 =
lmax
c . Assume that the second packet l2 is small, specifically,

l2 < r
c lmax; then the two packets are sent back-to-back and thus the departure time

for the second packet is T ′
2 = T ′

1+
l2
c . Now the spacing T ′

2−T ′
1 is less than l2

r , thus
the second packet is not conformant, in other words, R′ is not σ-smooth. Note that
this example is not possible if all packets are the same size.

We will see in this section that this example is quite general: packetizing variable
length packets does introduce some additional irregularities. However, we are able
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Figure 1.16: A real, variable length packet trunk of constant bit rate, viewed
as the concatenation of a greedy shaper and a packetizer. The input is R(t),
the output of the greedy shaper is R∗(t), the final output is the output of the
packetizer is R′(t).

to quantify them, and we will see that the irregularities are small (but may be larger
than the order of a packet length). Most results are extracted from [47]

1.7.2 The Packetizer

We first need a few definitions.

Definition 1.7.1 (cumulative packet lengths). A sequenceL of cumulative packet
lengths is a wide sense increasing sequence(L(0) = 0, L(1), L(2), ...) such that

lmax = sup
n
{L(n+ 1)− L(n)}

is finite

In this chapter, we interpret L(n)−L(n−1) as the length of the nth packet. We
now introduce a new building block, which was introduced in [11].

Definition 1.7.2 (Function PL [11]). Consider a sequence of cumulative packet
lengthsL with L(0) = 0. For any real numberx, define

PL(x) = sup
n∈N

{L(n)1{L(n)≤x}} (1.19)

Figure 1.17 illustrates the definition. Intuitively, PL(x) is the largest cumulative
packet length that is entirely contained in x. Function PL is right-continuous; if R is
right-continuous, then so is PL(R(t)). For example, if all packets have unit length,
then L(n) = n and for x > 0: PL(x) = �x�. An equivalent characterization of PL

is
PL(x) = L(n)⇐⇒ L(n) ≤ x < L(n+ 1) (1.20)
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Figure 1.17: Definition of function PL.

Definition 1.7.3 (Packetizer [11]). Consider a sequenceL of cumulative packet
lengths. AnL-packetizer is the system that transforms the inputR(t) intoPL(R(t)).

For the example in Figure 1.16, we have R′(t) = PL(R∗(t)) and the system
can thus be interpreted as the concatenation of a greedy shaper and a packetizer.

The following equation follows immediately:

x− lmax < PL(x) ≤ x (1.21)

Definition 1.7.4. We say that a flowR(t) is L-packetized ifPL(R(t)) = R(t) for
all t.

The following properties are easily proven and left to the reader.

• (The packetizer is isotone) If x ≤ y then PL(x) ≤ PL(y) for all x, y ∈ R.

• (PL is idempotent) PL(PL(x)) = PL(x) for all x ∈ R

• (Optimality of Packetizer) We can characterize a packetizer in a similar way
as we did for a greedy shaper in Section 1.5. Among all flows x(t) such that{

x is L-packetized
x ≤ R

(1.22)

there is one that upper-bounds all, and it is PL(R(t)).

The proof for this last item mimics that of Lemma 1.5.1; it relies on the prop-
erty that PL is idempotent.

We now study the effect of packetizers on the three bounds found in Section 1.4.
We first introduce a definition.

Definition 1.7.5 (Per-packet delay). Consider a system withL- packetized input
and output. CallTi, T ′

i the arrival and departure time for theith packet. Assume
there is no packet loss. The per-packet delay issupi(T ′

i − Ti)
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Our main result in this section is the following theorem, illustrated in Fig-
ure 1.18.

Theorem 1.7.1 (Impact of packetizer). Consider a system (bit-by-bit system) with
L-packetized inputR and bit-by-bit outputR∗, which is thenL-packetized to pro-
duce a final packetized outputR′. We callcombined system the system that mapsR
into R′. Assume both systems are first-in-first-out and lossless.

1. Theper-packet delay for the combined system is the maximum virtual delay
for the bit-by-bit system.

2. Call B∗ the maximum backlog for the bit-by-bit system andB′ the maximum
backlog for the combined system. We have

B∗ ≤ B′ ≤ B∗ + lmax

3. Assume that the bit-by-bit system offers to the flow a maximum service curve
γ and a minimum service curveβ. The combined system offers to the flow a
maximum service curveγ and a minimum service curveβ′ given by

β′(t) = [β(t)− lmax]+

4. If some flowS(t) hasα(t) as an arrival curve, thenPL(S(t)) hasα(t) +
lmax1{t>0} as an arrival curve.

The proof of the theorem is given later in this section. Before, we discuss the
implications. Item 1 says that appending a packetizer to a node does not increase
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Figure 1.18: The scenario and notation in Theorem 1.7.1.

the packet delay at this node. However, as we see later, packetization does increase
the end-to-end delay.

Consider again the example in Section 1.7.1. A simple look at the figure shows
that the backlog (or required buffer) is increased by the packetization, as indicated
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by item 2. Item 4 tells us that the final output R′ has σ′(t) = σ(t) + lmax1t>0 as an
arrival curve, which is consistent with our observation in Section 1.7.1 that R′ is not
σ-smooth, even though R∗ is. We will see in Section 1.7.4 that there is a stronger
result, in relation with the concept of “packetized greedy shaper” .

Item 3 is the most important practical result in this section. It shows that pack-
etizing weakens the service curve guarantee by one maximum packet length. For
example, if a system offers a rate-latency service curve with rate R, then appending
a packetizer to the system has the effect of increasing the latency by lmax

R .
Consider also the example in Figure 1.16. The combination of the trunk and the

packetizer can be modeled as a system offering

• a minimum service curve βc, lmax
c

• a maximum service curve λc

Proof of Theorem 1.7.1

1. For some t such that Ti ≤ t < Ti+1 we have R(t) = L(i) and thus

sup
t∈[Ti,Ti+1)

d(t) = d(Ti)

now
d(Ti) = T ′

i − Ti

Combining the two shows that

sup
t

d(t) = sup
i
(T ′

i − Ti)

2. The proof is a direct consequence of Equation (1.21).

3. The result on maximum service curve γ follows immediately from Equa-
tion (1.21). Consider now the minimum service curve property. Fix some time
t. For Ti ≤ s < Ti+1 we have R(s) = R(Ti) and β is wide-sense increasing,
thus

inf
Ti≤s<Ti+1

(R(s) + β(t− s)) = R(Ti) + βr(t− Ti)

where βr(t−Ti) = infε>0{β[(t−Ti)+ ε]} is the limit of β to the right. Thus

(R⊗ β)(t) = inf
i such that Ti≤t

(R(Ti) + βr(t− Ti))

For a fixed t there is only a finite number of i such that Ti ≤ t, thus the inf in
the previous equation is a min and there is some j such that

(R⊗ β)(t) = R(Tj) + βr(t− Tj)

By hypothesis, R∗(t) ≥ (R⊗ β)(t), thus
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R′(t) ≥ R∗(t)− lmax ≥ R(Tj) + βr(t− Tj)− lmax

On the other hand, R∗(t) ≥ R(Tj) and R is L-packetized, thus

R′(t) ≥ R(Tj)

Combining the two shows that

R′(t) ≥ max [R(Tj), R(Tj) + βr(t− Tj)− lmax]
= R(Tj) + max [βr(t− Tj)− lmax, 0]
= R(Tj) + β′

r(t− Tj)

from which we conclude that R′(t) ≥ inf0≤s≤t (R(s) + β′(t− s))

4. The proof is a direct consequence of Equation (1.21).

Example: concatenation of GPS nodes Consider the concatenation of the the-
oretical GPS node, with guaranteed rate R (see Section 1.3.1 on Page 22) and an
L-packetizer. Assume this system receives a flow of variable length packets. This
models a theoretical node that would work as a GPS node but is constrained to de-
liver entire packets. This is not very realistic, and we will see in Chapter 2 more
realistic implementations of GPS, but this example is sufficient to explain one im-
portant effect of packetizers.

By applying Theorem 1.7.1, we find that this node offers a rate-latency ser-
vice curve βR, lmax

R
. Now concatenate m such identical nodes, as illustrated in Fig-
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Figure 1.19: The concatenation of several GPS fluid nodes with packetized
outputs

ure 1.19. The end-to-end service curve is the rate latency-function βR,T with

T = m
lmax

R

We see on this example that the additional latency introduced by one packetizer is
indeed of the order of one packet length; however, this effect is multiplied by the
number of hops.

For the computation of the end-to-end delay bound, we need to take into account
Theorem 1.7.1, which tells us that we can forget the last packetizer. Thus, a bound
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on end-to-end delay is obtained by considering that the end-to-end path offers a
service curve equal to the latency-function βR,T0 with

T0 = (m− 1)
lmax

R

For example, if the original input flow is constrained by one leaky bucket of rate r
and bucket pool of size b, then an end-to-end delay bound is

b+ (m− 1)lmax

R
(1.23)

The alert reader will easily show that this bound is a worst case bound. This il-
lustrates that we should be careful in interpreting Theorem 1.7.1. It is only at the
last hop that the packetizer implies no delay increase. The interpretation is as fol-
lows. Packetization delays the first bits in a packet, which delays the processing at
downstream nodes. This effect is captured in Equation (1.23). In summary:

Remark 1.7.1. Packetizers do not increase the maximum delay at the node where
they are appended. However, they generally increase the end-to-end delay.

We will see in Chapter 2 that many practical schedulers can be modeled as the
concatenation of a node offering a service curve guarantee and a packetizer, and we
will give a practical generalization of Equation (1.23).

1.7.3 A Relation between Greedy Shaper and Packetizer

We have seen previously that appending a packetizer to a greedy shaper weakens
the arrival curve property of the output. There is however a case where this is not
true. This case is important for the results in Section 1.7.4, but also has practical
applications of its own. Figure 1.20 illustrates the theorem.
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Figure 1.20: Theorem 1.7.2 says that R(1) is σ-smooth.

Theorem 1.7.2. Consider a sequenceL of cumulative packet lengths and callPL
theL-packetizer. Consider a “good” functionσ and assume that{

There is a sub-additive functionσ0 and a numberl ≥ lmax such that
σ(t) = σ0(t) + l1t>0

(1.24)
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Call Cσ the greedy shaper with shaping curveσ. For any input, the output of the
composition6PL ◦ Cσ ◦ PL is σ-smooth.

In practical terms, the theorem is used as follows. Consider an L-packetized
flow, pass it through a greedy shaper with shaping curve σ; and packetize the output;
then the result is σ-smooth (assuming that σ satisfies condition in Equation (1.24)
in the theorem).

Note that in general the output of Cσ ◦PL is notL-packetized, even if σ satisfies
the condition in the theorem (finding a counter-example is simple and is left to the
reader for her enjoyment). Similarly, if the input to PL ◦ Cσ is not L-packetized,
then the output is not σ-smooth, in general.

The theorem could also be rephrased by saying that, under condition in Equa-
tion (1.24)

PL ◦ Cσ ◦ PL = Cσ ◦ PL ◦ Cσ ◦ PL
since the two above operators always produce the same output.

Discussion of Condition in Equation (1.24) Condition Equation (1.24) is satis-
fied in practice if σ is concave and σr(0) ≥ lmax, where σr(0) = inft>0 σ(t) is
the limit to the right of σ at 0. This occurs for example if the shaping curve is de-
fined by the conjunction of leaky buckets, all with bucket size at least as large as the
maximum packet size.

This also sheds some light on the example in Figure 1.16: the problem occurs
because the shaping curve λC does not satisfy the condition.

The alert reader will ask herself whether a sufficient condition for Equation (1.24)
to hold is that σ is sub-additive and σr(0) ≥ lmax. Unfortunately, the answer is no.
Consider for example the stair function σ = lmaxvT . We have σr(0) = lmax but if
we try to rewrite σ into σ(t) = σ0(t)+ l1t>0 we must have l = lmax and σ0(t) = 0
for t ∈ (0, T ]; if we impose that σ0 is sub-additive, the latter implies σ0 = 0 which
is not compatible with Equation (1.24).7

Proof of Theorem 1.7.2: We use the notation in Figure 1.20. We want to show
that R(1) is σ-smooth. We have R∗ = R ⊗ σ. Consider now some arbitrary s and t
with s < t. From the definition of min-plus convolution, for all ε > 0, there is some
u ≤ s such that

(R⊗ σ)(s) ≥ R(u) + σ(s− u)− ε (1.25)

Now consider the set E of ε > 0 such that we can find one u < s satisfying the
above equation. Two cases are possible: either 0 is an accumulation point for E8

(case 1) , or not (case 2).
Consider case 1; there is a sequence (εn, sn), with sn < s,

6We use the notation PL ◦ Cσ to denote the composition of the two operators, with Cσ applied first;
see Section 4.1.3.

7The same conclusion unfortunately also holds if we replace sub-additive by “star-shaped” (Sec-
tion 3.1).

8namely, there is a sequence of elements in E which converges to 0
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lim
n→+∞ εn = 0

and
(R⊗ σ)(s) ≥ R(sn) + σ(s− sn)− εn

Now since sn ≤ t:
(R⊗ σ)(t) ≤ R(sn) + σ(t− sn)

Combining the two:

(R⊗ σ)(t)− (R⊗ σ)(s) ≤ σ(t− sn)− σ(s− sn) + εn

Now t− sn > 0 and s− sn > 0 thus

σ(t− sn)− σ(s− sn) = σ0(t− sn)− σ0(s− sn)

We have assumed that σ0 is sub-additive. Now t ≥ s thus

σ0(t− sn)− σ0(s− sn) ≤ σ0(t− s)

we have thus shown that, for all n

(R⊗ σ)(t)− (R⊗ σ)(s) ≤ σ0(t− s) + εn

and thus
(R⊗ σ)(t)− (R⊗ σ)(s) ≤ σ0(t− s)

Now from Equation (1.21), it follows that

R(1)(t)−R(1)(s) ≤ σ0(t− s) + lmax ≤ σ(t− s)

which ends the proof for case 1.
Now consider case 2. There is some ε0 such that for 0 < ε < ε0, we have to take

u = s in Equation (1.25). This implies that

(R⊗ σ)(s) = R(s)

Now R is L-packetized by hypothesis. Thus

R(1)(s) = PL((R⊗ σ)(s)) = PL(R(s)) = R(s) = (R⊗ σ)(s)

thus
R(1)(t)−R(1)(s) = PL((R⊗ σ)(t)− (R⊗ σ)(s)

≤ (R⊗ σ)(t)− (R⊗ σ)(s)

now R⊗ σ has σ as an arrival curve thus

R(1)(t)−R(1)(s) ≤ σ(t− s)

which ends the proof for case 2.
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Example: Buffered Leaky Bucket Controller based on Virtual Finish Times
Theorem 1.7.2 gives us a practical implementation for a packet based shaper. Con-
sider that we want to build a device that ensures that a packet flow satisfies some
concave, piecewise linear arrival curve (and is of course L- packetized). We can
realize such a device as the concatenation of a buffered leaky bucket controller op-
erating bit-by-bit and a packetizer. We compute the output time for the last bit of a
packet (= finish time) under the bit-by-bit leaky bucket controller, and release the
entire packet instantly at this finish time. If each bucket pool is at least as large as
the maximum packet size then Theorem 1.7.2 tells us that the final output satisfies
the leaky bucket constraints.

Counter-example If we consider non-concave arrival curves, then we can find an
arrival curve σ that does satisfy σ(t) ≥ lmax for t > 0 but that does not satisfy
Equation (1.24). In such a case, the conclusion of Theorem 1.7.2 may not hold in
general. Figure 1.21 shows an example where the output R(1) is not σ-smooth, when
σ is a stair function.
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Figure 1.21: A counter example for Theorem 1.7.2. A burst of 10 packets of
size equal to 10 data units arrive at time t = 0, and σ = 25v1. The greedy
shaper emits 25 data units at times 0 and 1, which forces the packetizer to
create a burst of 3 packets at time 1, and thus R(1) is not σ-smooth.

1.7.4 Packetized Greedy Shaper

We can come back to the questions raised by the example in Figure 1.16 and give a
more fundamental look at the issue of packetized shaping. Instead of synthesizing
the concatenation of a greedy shaper and a packetizer as we did earlier, we define
the following, consistent with Section 1.5.
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Definition 1.7.6. [Packetized Greedy Shaper] Consider an input sequence of pack-
ets, represented by the functionR(t) as in Equation (1.18). CallL the cumulative
packet lengths. We callpacketized shaper, with shaping curveσ, a system that forces
its output to haveσ as an arrival curveand beL-packetized. We callpacketized
greedy shaper a packetized shaper that delays the input packets in a buffer, when-
ever sending a packet would violate the constraintσ, but outputs them as soon as
possible.

Example: Buffered Leaky Bucket Controller based on Bucket Replenishment
The case σ(t) = minm=1,...,M (γrm,bm

(t) can be implemented by a controller that
observes a set of M fluid buckets, where the mth bucket is of size bm and leaks at a
constant rate rm. Every bucket receives li units of fluid when packet i is released (li
is the size of packet i). A packet is released as soon as the level of fluid in bucket m
allows it, that is, has gone down below bm − li, for all m. We say that now we have
defined a buffered leaky bucket controller based on “bucket replenishment” . It is
clear that the output has σ as an arrival curve, is L-packetized and sends the packets
as early as possible. Thus it implements the packetized greedy shaper. Note that this
implementation differs from the buffered leaky bucket controller based on virtual
finish times introduced in Section 1.7.3. In the latter, during a period where, say,
bucket m only is full, fragments of a packet are virtually released at rate rm, bucket
m remains full, and the (virtual) fragments are then re-assembled in the packetizer;
in the former, if a bucket becomes full, the controller waits until it empties by at
least the size of the current packet. Thus we expect that the level of fluid in both
systems is not the same, the former being an upper bound. We will see however in
Corollary 1.7.1 that both implementations are equivalent.

In this example, if a bucket size is less than the maximum packet size, then it is
never possible to output a packet: all packets remain stuck in the packet buffer, and
the output is R(t) = 0. In general, we can say that

Proposition 1.7.1. If σr(0) < lmax then the the packetized greedy shaper blocks all
packets for ever (namely,R(t) = 0). Thus in this section, we assume thatσ(t) ≥
lmax for t > 0.

Thus, for practical cases, we have to assume that the arrival curve σ has a dis-
continuity at the origin at least as large as one maximum packet size.

How does the packetized greedy shaper compare with the concatenation of a
greedy shaper with shaping curve σ and a packetizer ? We know from the example
in Figure 1.16 that the output has σ′(t) = σ(t)+lmax1t>0 as an arrival curve, but not
σ. Now, does the concatenation implement a packetized greedy shaper with shaping
curve σ′ ? Before giving a general answer, we study a fairly general consequence of
Theorem 1.7.2.

Theorem 1.7.3 (Realization of packetized Greedy Shaper). Consider a sequence
L of cumulative packet lengths and a “good” functionσ. Assume thatσ satisfies the
condition in Equation (1.24). Consider only inputs that areL packetized. Then the
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packetized greedy shaper forσ andL can be realized as the concatenation of the
greedy shaper with shaping curveσ and theL-packetizer.
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Figure 1.22: The packetized greedy shaper can be realized as a (bit-by-bit
fluid shaper followed by a packetizer, assuming Equation (1.24) holds. In
practice, this means that we can realize packetized greedy shaping by com-
puting finish times in the virtual fluid system and release packets at their
finish times.

Proof: Call R(t) the packetized input; the output of the bit-by-bit greedy shaper
followed by a packetizer is R(1)(t) = PL(R ⊗ σ)(t)). Call R(t) the output of the
packetized greedy shaper. We have R ≤ R thus R⊗ σ ≤ R⊗ σ and thus

PL(R⊗ σ) ≤ PL(R⊗ σ)

But R is σ-smooth, thus R ⊗ σ = R, and is L-packetized, thus PL(R ⊗ σ) = R.
Thus the former inequality can be rewritten as R ≤ R(1). Conversely, from Theo-
rem 1.7.2, R(1) is also σ-smooth and L-packetized. The definition of the packetized
greedy shaper implies that R ≥ R(1) (for a formal proof, see Lemma 1.7.1) thus
finally R = R(1).

We have seen that the condition in the theorem is satisfied in particular if σ
is concave and σr(0) ≥ lmax, for example if the shaping curve is defined by the
conjunction of leaky buckets, all with bucket size at least as large as the maximum
packet size. This shows the following.

Corollary 1.7.1. For L-packetized inputs, the implementations of buffered leaky
bucket controllers based on bucket replenishment and virtual finish times are equiv-
alent.

If we relax Equation (1.24) then the construction of the packetized greedy shaper
is more complex:
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Theorem 1.7.4 (I/O characterisation of packetized greedy shapers). Consider
a packetized greedy shaper with shaping curveσ and cumulative packet lengthL.
Assume thatσ is a “good” function. The outputR(t) of the packetized greedy shaper
is given by

R = inf
{
R(1), R(2), R(3), ...

}
(1.26)

with R(1)(t) = PL((σ ⊗R)(t)) andR(i)(t) = PL((σ ⊗R(i−1))(t)) for i ≥ 2.

Figure 1.23 illustrates the theorem, and shows the iterative construction of the
output on one example. Note that this example is for a shaping function that does
not satisfy Equation (1.24). Indeed, otherwise, we know from Theorem 1.7.3 that
the iteration stops at the first step, namely, R = R(1) in that case. We can also check
for example that if σ = λr (thus the condition in Proposition 1.7.1 is satisfied) then
the result of Equation (1.26) is 0.

�  �

� $ �
�

� � - � � � . �


 � � � � �

� � � �

� � � �

� � � �

Figure 1.23: Representation of the output of the packetized greedy shaper
(left) and example of output (right). The data are the same as with Fig-
ure 1.21.

Proof: The proof is a direct application of Lemma 1.7.1 (which itself is an appli-
cation of the general method in Section 4.3 on Page 175).

Lemma 1.7.1. Consider a sequenceL of cumulative packet lengths and a “good”
functionσ. Among all flowsx(t) such that

x ≤ R
x is L-packetized
x hasσ as an arrival curve

(1.27)
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there is one flowR(t) that upper-bounds all. It is given by Equation (1.26).

Proof: The lemma is a direct application of Theorem 4.3.1, as explained in Sec-
tion 4.3.2. However, in order to make this chapter self-contained, we give an alter-
native, direct proof, which is quite short.

If x is a solution, then it is straightforward to show by induction on i that x(t) ≤
R(i)(t) and thus x ≤ R. The difficult part is now to show that R is indeed a solution.
We need to show that the three conditions in Equation (1.27) hold. Firstly, R(1) ≤
R(t) and by induction on i, R(i) ≤ R for all i; thus R ≤ R.

Secondly, consider some fixed t; R(i)(t) is L-packetized for all i ≥ 1. Let
L(n0) := R(1)(t). Since R(i)(t) ≤ R(1)(t), R(i)(t) is in the set

{L(0), L(1), L(2), ..., L(n0)}.

This set is finite, thus, R(t), which is the infimum of elements in this set, has to be
one of the L(k) for k ≤ n0. This shows that R(t) is L-packetized, and this is true
for any time t.

Thirdly, we have, for all i

R(t) ≤ R(i+1)(t) = PL((σ ⊗R(i))(t)) ≤ (σ ⊗R(i))(t)

thus
R ≤ inf

i
(σ ⊗R(i))

Now convolution by a fixed function is upper-semi-continuous, which means
that

inf
i
(σ ⊗R(i)) = σ ⊗R

This is a general result in Chapter 4 for any min-plus operator. An elementary proof
is as follows.

infi(σ ⊗R(i))(t) = infs∈[0,t],i∈N

[
σ(s) +R(i)(t− s)

]
= infs∈[0,t]

{
infi∈N

[
(σ(s) +R(i)(t− s)

]}
= infs∈[0,t]

{
σ(s) + infi∈N

[
R(i)(t− s)

]}
= infs∈[0,t]

[
σ(s) +R(t− s)

]
= (σ ⊗R)(t)

Thus
R ≤ σ ⊗R,

which shows the third condition. Note that R is wide-sense increasing.

Does a packetized greedy shaper keep arrival constraints ? Figure 1.24 shows
a counter-example, namely, a variable length packet flow that has lost its initial
arrival curve constraint after traversing a packetized greedy shaper.

However, if arrival curves are defined by leaky buckets, we have a positive result.
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Figure 1.24: The input flow is shown above; it consists of 3 packets of size
10 data units and one of size 5 data units, spaced by one time unit. It is
α-smooth with α = 10v1,0. The bottom flow is the output of the packetized
greedy shaper with σ = 25v3,0. The output has a burst of 15 data units
packets at time 3. It is σ-smooth but not α-smooth.

Theorem 1.7.5 (Conservation of concave arrival constraints). Assume anL-
packetized flow with arrival curveα is input to a packetized greedy shaper with
cumulative packet lengthL and shaping curveσ. Assume thatα andσ are concave
with αr(0) ≥ lmax andσr(0) ≥ lmax. Then the output flow is still constrained by
the original arrival curveα.

Proof: Since σ satisfies Equation (1.24), it follows from Theorem 1.7.3 that R =
PL(σ ⊗ R). Now R is α-smooth thus it is not modified by a bit-by-bit greedy
shaper with shaping curve α, thus R = α ⊗ R. Combining the two and using the
associativity of ⊗ gives R = PL[(σ ⊗ α) ⊗ R]. From our hypothesis, σ ⊗ α =
min(σ, α) (see Theorem 3.1.6 on Page 136) and thus σ⊗α satisfies Equation (1.24).
Thus, by Theorem 1.7.2, R is σ ⊗ α-smooth, and thus α-smooth.

Series decomposition of shapers

Theorem 1.7.6. Consider a tandem ofM packetized greedy shapers in series; as-
sume that the shaping curveσm of themth shaper is concave withσmr (0) ≥ lmax.
For L-packetized inputs, the tandem is equivalent to the packetized greedy shaper
with shaping curveσ = minm σm.

Proof: We do the proof for M = 2 as it extends without difficulty to larger values
of M . Call R(t) the packetized input, R′(t) the output of the tandem of shapers, and
R(t) the output of the packetized greedy shaper with input R(t).

Firstly, by Theorem 1.7.3

R′ = PL[σ2 ⊗ PL(σ1 ⊗R)]

Now σm ≥ σ for all m thus

R′ ≥ PL[σ ⊗ PL(σ ⊗R)]
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Again by Theorem 1.7.3, we have R = PL(σ ⊗ R). Moreover R is L-packetized
and σ-smooth, thus R = PL(R) and R = σ ⊗R. Thus finally

R′ ≥ R (1.28)

Secondly, R′ is L-packetized and by Theorem 1.7.5, it is σ-smooth. Thus the
tandem is a packetized (possibly non greedy) shaper. Since R(t) is the output of the
packetized greedy shaper, we must have R′ ≤ R. Combining with Equation (1.28)
ends the proof.

It follows that a shaper with shaping curve σ(t) = minm=1,...,M (rmt + bm),
where bm ≥ lmax for all m, can be implemented by a tandem of M individual
leaky buckets, in any order. Furthermore, by Corollary 1.7.1, every individual leaky
bucket may independently be based either on virtual finish times or on bucket re-
plenishment.

If the condition in the theorem is not satisfied, then the conclusion may not hold.
Indeed, for the example in Figure 1.24, the tandem of packetized greedy shapers
with curves α and σ does not have an α-smooth output, therefore it cannot be equiv-
alent to the packetized greedy shaper with curve min(α, σ).

Unfortunately, the other shaper properties seen in Section 1.5 do not generally
hold. For shaping curves that satisfy Equation (1.24), and when a packetized greedy
shaper is introduced, we need to compute the end-to-end service curve by applying
Theorem 1.7.1.

1.8 Lossless Effective Bandwidth and Equivalent Ca-
pacity

1.8.1 Effective Bandwidth of a Flow

We can apply the results in this chapter to define a function of a flow called the
effective bandwidth. This function characterizes the bit rate required for a given
flow. More precisely, consider a flow with cumulative function R; for a fixed, but
arbitrary delay D, we define the effective bandwidtheD(R) of the flow as the bit
rate required to serve the flow in a work conserving manner, with a virtual delay
≤ D.

Proposition 1.8.1. The effective bandwidth of a flow is given by

eD(R) = sup
0≤s≤t

R(t)−R(s)
t− s+D

(1.29)

For an arrival curve α we define the effective bandwidth eD(α) as the effective
bandwidth of the greedy flow R = α. By a simple manipulation of Equation 1.29,
the following comes.

Proposition 1.8.2. The effective bandwidth of a “good” arrival curve is given by
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eD(α) = sup
0≤s

α(s)
s+D

(1.30)

The alert reader will check that the effective bandwidth of a flow R is also the
effective bandwidth of its minimum arrival curve R � R. For example, for a flow
with T-SPEC (p,M, r, b), the effective bandwidth is the maximum of r and the
slopes of lines (QA0) and (QA1) in Figure 1.25; it is thus equal to:

eD = max

{
M

D
, r, p

(
1−

D − M
p

b−M
p−r +D

)}
(1.31)

Assume α is sub-additive. We define the sustainable rate m as m = lim infs→+∞
α(s)
s
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Figure 1.25: Computation of Effective Bandwidth for a VBR flow (left); exam-
ple for r = 20 packets/second, M = 10 packets, p = 200 packets per second
and b = 26 packets (right).

and the peak rate by p = sups>0
α(s)
s . Then m ≤ eD(α) ≤ p for all D. Moreover,

if α is concave, then limD→+∞ eD(α) = m.If α is differentiable, e(D) is the slope
of the tangent to the arrival curve, drawn from the time axis at t = −D (Figure
1.26). It follows also directly from the definition in (1.29) that

eD(
∑
i

αi) ≤
∑
i

eD(αi) (1.32)

In other words, the effective bandwidth for an aggregate flow is less than or equal
to the sum of effective bandwidths. If the flows have all identical arrival curves,
then the aggregate effective bandwidth is simply I×eD(α1). It is this latter relation
that is the origin of the term “effective bandwidth” . The difference

∑
i eD(αi) −

eD(
∑

i αi) is a buffering gain; it tells us how much capacity is saved by sharing a
buffer between the flows.

1.8.2 Equivalent Capacity

Similar results hold if we replace delay constraints by the requirement that a fixed
buffer size is not exceeded. Indeed, the queue with constant rate C, guarantees a
maximum backlog of B (in bits) for a flow R if C ≥ fB(R), with
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Figure 1.26: Effective Bandwidth for a delay constraint D and Equivalent Ca-
pacity for a buffer size B

fB(R) = sup
0≤s<t

R(t)−R(s)−B

t− s
(1.33)

Similarly, for a “good” function α, we have:

fB(α) = sup
s>0

α(s)−B

s
(1.34)

We call fB(α) the equivalent capacity, by analogy to [44]. Similar to effective band-
width, the equivalent capacity of a heterogeneous mix of flows is less than or equal
to the sum of equivalent capacities of the flows, provided that the buffers are also
added up; in other words, fB(α) ≤

∑
i fBi

(αi), with α =
∑

i αi and B =
∑

i Bi.
Figure 1.26 gives a graphical interpretation.

For example, for a flow with T-SPEC (p,M, r, b), using the same method as
above, we find the following equivalent capacity:

fB =

{
if B < M then +∞
else r + (p−r)(b−B)+

b−M
(1.35)

An immediate computation shows that fb(γr,b) = r. In other words, if we allo-
cate to a flow, constrained by an affine function γr,b, a capacity equal to its sustain-
able rate r, then a buffer equal to its burst tolerance b is sufficient to ensure loss-free
operation.

Consider now a mixture of Intserv flows (or VBR connections), with T-SPECs
(Mi, pi, ri, bi). If we allocate to this aggregate of flows the sum of their sustainable
rates

∑
i ri, then the buffer requirement is the sum of the burst tolerances

∑
i bi,

regardless of other parameters such as peak rate. Conversely, Equation 1.35 also
illustrates that there is no point allocating more buffer than the burst tolerance: if
B > b, then the equivalent capacity is still r.

The above has illustrated that it is possible to reduce the required buffer or delay
by allocating a rate larger than the sustainable rate. In Section 2.2, we described how
this may be done with a protocol such as RSVP.
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Note that formulas (1.29) or (1.33), or both, can be used to estimate the capacity
required for a flow, based on a measured arrival curve. We can view them as low-
pass filters on the flow function R.

1.8.3 Example: Acceptance Region for a FIFO Multiplexer

Consider a node multiplexing n1 flows of type 1 and n2 flows of type 2, where every
flow is defined by a T-SPEC (pi,Mi, ri, bi). The node has a constant output rate C.
We wonder how many flows the node can accept.

If the only condition for flow acceptance is that the delay for all flows is bounded
by some value D, then the set of acceptable values of (n1, n2) is defined by

eD(n1α1 + n2α2) ≤ C

We can use the same convexity arguments as for the derivation of formula (1.31),
applied to the function n1α1 + n2α2. Define θi = bi−M

pi−ri
and assume θ1 ≤ θ2. The

result is:

eD(n1α1 + n2α2) = max


n1M1+n2M2

D ,
n1M1+n2M2+(n1p1+n2p2)θ1

θ1+D
,

n1b1+n2M2+(n1r1+n2p2)θ2
θ2+D

,

n1r1 + n2r2

The set of feasible (n1, n2) derives directly from the previous equation; it is the
convex part shown in Figure 1.27. The alert reader will enjoy performing the com-
putation of the equivalent capacity for the case where the acceptance condition bears
on a buffer size B.

i pi Mi ri bi θi

1 20’000 packets/s 1 packet 500 packets/s 26 packets 1.3 ms
2 5’000 packets/s 1 packet 500 packets/s 251 packets 55.5 ms

Figure 1.27: Acceptance region for a mix of type 1 and type 2 flows. Maximum
delay D = xx. The parameters for types 1 and 2 are shown in the table,
together with the resulting values of θi.

Coming back to equation 1.32, we can state in more general terms that the ef-
fective bandwidth is a convex function of function α, namely:

eD(aα1 + (1− a)α2) ≤ aeD(α1) + (1− a)eD(α2)

for all a ∈ [0, 1]. The same is true for the equivalent capacity function.
Consider now a call acceptance criterion based solely on a delay bound, or based

on a maximum buffer constraint, or both. Consider further that there are I types of
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connections, and define the acceptance region A as the set of values (n1, . . . , nI)
that satisfy the call acceptance criterion, where ni is the number of connections
of class i. From the convexity of the effective bandwidth and equivalent capacity
functions, it follows that the acceptance regionA is convex. In chapter 9 we compare
this to acceptance regions for systems with some positive loss probability.

Sustainable Rate Allocation If we are interested only in course results, then we
can reconsider the previous solution and take into account only the sustainable rate
of the connection mix. The aggregate flow is constrained (among others) by α(s) =
b+rs, with b =

∑
i nibi and r =

∑
i niri. Theorem 1.4.1 shows that the maximum

aggregate buffer occupancy is bounded by b as long as C ≥ r. In other words,
allocating the sustainable rate guarantees a loss-free operation, as long as the total
buffer is equal to the burstiness.

In a more general setting, assume an aggregate flow has α as minimum arrival
curve, and assume that some parameters r and b are such that

lim
s→+∞α(s)− rs− b = 0

so that the sustainable rate r with burstiness b is a tight bound. It can easily be shown
that if we allocate a rate C = r, then the maximum buffer occupancy is b.

Consider now multiplexing a number of VBR connections. If no buffer is avail-
able, then it is necessary for a loss-free operation to allocate the sum of the peak
rates. In contrast, using a buffer of size b makes it possible to allocate only the sus-
tainable rate. This is what we call the buffering gain, namely, the gain on the peak
rate obtained by adding some buffer. The buffering gain comes at the expense of
increased delay, as can easily be seen from Theorem 1.4.2.

1.9 Proof of Theorem 1.4.5

Step 1: Consider a fixed time t0 and assume, in this step, that there is some time
u0 that achieves the supremum in the definition of α� β. We construct some input
and output functions R and R∗ such that R is constrained by α, the system (R,R∗)
is causal, and α∗(t0) = (R∗ �R∗)(t0). R and R∗ are given by (Figure 1.28)

R(t) = α(t) if t < u0 + t0
R(t) = α(u0 + t0) if t ≥ u0 + t0
R∗(t) = inf[α(t), β(t)] if t < u0 + t0
R∗(t) = R(t) if t ≥ u0 + t0

It is easy to see, as in the proof of Theorem 1.4.4 that R and R∗ are wide-sense
increasing, that R∗ ≤ R and that β is a service curve for the flow. Now

R∗(u0 + t0)−R∗(u0) = α(u0 + t0)−R∗(u0) ≥ α(u0 + t0)− β(u0) = α∗(t0)
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Figure 1.28: Step 1 of the proof of Theorem 1.4.5: a system that attains the
output bound at one value t0.

Step 2: Consider now a sequence of times t0, t1, ..., tn, ... (not necessarily increas-
ing). Assume, in this step, that for all n there is a value un that achieves the supre-
mum in the definition of (α�β)(tn). We prove that there are some functions R and
R∗ such that R is constrained by α, the system (R,R∗) is causal, has β as a service
curve, and α∗(tn) = (R∗ �R∗)(tn) for all n ≥ 0.

We build R and R∗ by induction on a set of increasing intervals [0, s0], [0, s1],...,
[0, sn].... The induction property is that the system restricted to time interval [0, sn]
is causal, has α as an arrival curve for the input, has β as a service curve, and satisfies
α∗(ti) = (R∗ �R∗)(ti) for i ≤ n.

The first interval is defined by s0 = u0 + t0; R and R∗ are built on [0, s0] as
in step 1 above. Clearly, the induction property is true for n = 0. Assume we have
built the system on interval [0, sn]. Define now sn+1 = sn + un + tn + δn+1. We
chose δn+1 such that

α(s+ δn+1)− α(s) ≥ R(sn) for all s ≥ 0 (1.36)

This is possible from the last condition in the Theorem. The system is defined on
]sn, sn+1] by (Figure 1.29)

R(t) = R∗(t) = R(sn) for sn < t ≤ sn + δn+1

R(t) = R(sn) + α(t− sn − δn+1) for sn + δn+1 < t ≤ sn+1

R∗(t) = R(sn) + (α ∧ β)(t− sn − δn+1) for sn + δn+1 < t < sn+1

R∗(sn+1) = R(sn+1)

We show now that the arrival curve constraint is satisfied for the system defined
on [0, sn+1]. Consider R(t) − R(v) for t and v in [0, sn+1]. If both t ≤ sn and
v ≤ sn, or if both t > sn and v > sn then the arrival curve property holds from
our construction and the induction property. We can thus assume that t > sn and
v ≤ sn. Clearly, we can even assume that t ≥ sn + δn+1, otherwise the property is
trivially true. Let us rewrite t = sn + δn+1 + s. We have, from our construction:

R(t)−R(v) = R(sn+δn+1+s)−R(v) = R(sn)+α(s)−R(v) ≤ R(sn)+α(s)

Now from Equation (1.36), we have:

R(sn) + α(s) ≤ α(s+ δn+1) ≤ α(s+ δn+1 + sn − v) = α(t− v)
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Figure 1.29: Step 2 of the proof of Theorem 1.4.5: a system that attains the
output bound for all values tn, n ∈ N.

which shows the arrival curve property.
Using the same arguments as in step 1, it is simple to show that the system is

causal, has β as a service curve, and that

R∗(un+1 + tn+1)−R∗(un+1) = α∗(tn+1)

which ends the proof that the induction property is also true for n+ 1.

Step 3: Consider, as in step 2, a sequence of times t0, t1, ..., tn, ... (not necessarily
increasing). We now extend the result in step 2 to the case where the supremum in
the definition of α∗ = (α � β)(tn) is not necessarily attained. Assume first that
α∗(tn) is finite for all n. For all n and all m ∈ N∗ there is some um,n such that

α(tn + um,n)− β(um,n) ≥ α∗(tn)− 1
m

(1.37)

Now the set of all couples (m,n) is enumerable. Consider some numbering (M(i), N(i)),
i ∈ N for that set. Using the same construction as in step 2, we can build by in-
duction on i a sequence of increasing intervals [0, si] and a system (R,R∗) that is
causal, has α as an arrival curve for the input, has β as a service curve, and such that

R∗(si)−R∗(si − tN(i)) ≥ α∗(tN(i))− 1
M(i)

Now consider an arbitrary, but fixed n. By applying the previous equations to all i
such that N(i) = n, we obtain

(R∗ �R∗)(tn) ≥ supi such that N(i)=n

{
α∗(tN(i))− 1

M(i)

}
= α∗(tn)− infi such that N(i)=n

{
1

M(i)

}
Now the set of all 1

M(i) for i such that N(i) = n is N∗, thus
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inf
i such that N(i)=n

{
1

M(i)

}
= 0

and thus (R∗�R∗)(tn) = α∗(tn), which ends the proof of step 3 in the case where
α∗(tn) is finite for all n.

A similar reasoning can be used if α∗(tn) is infinite for some tn. In that case
replace Equation (1.37) by α(tn + um,n)− β(um,n) ≥ m.

Step 4: Now we conclude the proof. If time is discrete, then step 3 proves the theo-
rem. Otherwise we use a density argument. The set of nonnegative rational numbers
Q+ is enumerable; we can thus apply step 3 to the sequence of all elements of Q+,
and obtain system (R,R∗), with

(R∗ �R∗)(q) = α∗(q) for all q ∈ Q+

Function R∗ is right-continuous, thus, from the discussion at the end of Theo-
rem 1.2.2, it follows that R∗ � R∗ is left-continuous. We now show that α∗ is also
left-continuous. For all t ≥ 0 we have:

sup
s<t

α∗(s) = sup
(s,v) such that s<t and v≥0

{α(s+v)−β(v)} = sup
v≥0

{sup
s<t

[α(s+v)−β(v)]}

Now
sup
s<t

α(s+ v) = α(t+ v)

because α is left-continuous. Thus

sup
s<t

α∗(s) = sup
v≥0

{α(t+ v)− β(v)]} = α∗(t)

which shows that α is left-continuous.
Back to the main argument of step 4, consider some arbitrary t ≥ 0. The set Q+

is dense in the set of nonnegative real numbers, thus there is a sequence of rational
numbers qn ∈ Q+, with n ∈ N, such that qn ≤ t and limn→+∞ qn = t. From the
left-continuity of R∗ �R∗ and α∗ we have:

(R∗ �R∗)(t) = lim
n→+∞(R∗ �R∗)(qn) = lim

n→+∞α∗(qn) = α∗(t)

1.10 Bibliographic Notes

Network calculus as has been applied to dimensioning ATM switches in [57]. A
practical algorithm for the determination of the minimum arrival curve for ATM
system is described in [58]. It uses the burstiness function of a flow, defined in [54]
as follows. For any r, B(r) is the minimum b such that the flow is γr,b-smooth, and
is thus the required buffer if the flow is served at a constant rate r. Note that B(r) is
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the Legendre transform of the minimum arrival curve σ of the flow, namely, B(r) =
supt≥0(σ(t)− rt) [58] gives a fast algorithm for computing B(r). Interestingly, the
concept is applied also to the distribution of symbols in a text.

In [74], the concepts of arrival and service curve are used to analyze real time
processing systems. It is shown that the service curve for a variable capacity node
must be super-additive, and conversely, any super-additive function is a service
curve for a variable capacity node. Compare to greedy shapers, which have a sub-
additive service curve. This shows that, except for constant bit rate trunks, a greedy
shaper cannot be modeled as a variable capacity node, and conversely.

In [9], the authors consider a crossbar switch, and call ri,j the rate assigned to
the traffic from input port i to output port j. Assume that

∑
i ri,j ≤ 1 for all j

and
∑

j ri,j ≤ 1 for all i. Using properties of doubly-stochastic matrices (such as
(ri,j) is), they give a simple scheduling algorithm that guarantees that the flow from
port i to port j is allocated a variable capacity C satisfying Ci,j(t) − Ci,j(s) ≥
ri,j(t − s) − si,j for some si,j defined by the algorithm. Thus, the node offers a
service curve equal to the rate-latency function βri,j ,si,j

.
A dual approach to account for variable length packets is introduced in [11]. It

consists in replacing the definition of arrival curve (or σ-smoothness) by the concept
of g-regularity. Consider a flow of variable length packets, with cumulative packet
length L and call Ti the arrival epoch for the ith packet. The flow is said to be g-
regular if T (j) − T (i) ≥ g(L(j) − L(i)) for all packet numbers i ≤ j. A theory
is then developed with concepts similar to the greedy shaper. The theory uses max-
plus convolution instead of min-plus convolution. The (b, r) regulator originally
introduced by Cruz [19] is a shaper in this theory, whose output is g-regular, with

g(x) = (x−b)
r

+
. This theory does not exactly correspond to the usual concept of

leaky bucket controllers. More specifically, there is not an exact correspondence
between the set of flows that are g-regular on one hand, and that are σ-smooth on
the other. We explain why with an example. Consider the set of flows that are g-
regular, with g(x) = x

r . The minimum arrival curve we can put on this set of flows
is σ(t) = rt+ lmax [11]. But conversely, if a flow is σ-smooth, we cannot guarantee
that it is g-regular. Indeed, the following sequence of packets is a flow that is σ-
smooth but not g-regular: the flow has a short packet (length l1 < lmax) at time
T1 = 0, followed by a packet of maximum size lmax at time T2 = l1

r . In fact, if a

flow is σ-smooth, then it is g′-regular, with g′(x) = (x−lmax)
r

+
.

The strict service curve in Definition 1.3.2 is called “strong” service curve in
[43].

1.11 Exercises

Exercise 1.1. Compute the maximum buffer sizeX for a system that is initially
empty, and where the input function isR(t) =

∫ t
0

r(s)ds, for the following cases.

1. if r(t) = a (constant)
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2. one on-off connection with peak rate 1 Mb/s, on period 1 sec, off periodτ
seconds, and trunk bit ratec = 0.5 Mb/s.

3. if r(t) = c+ c sinωt, with trunk bit ratec > 0.

Exercise 1.2. You have a fixed buffer of sizeX, that receives a data inputr(t).
Determine the output ratec that is required to avoid buffer overflow given that the
buffer is initially empty.

Exercise 1.3. 1. For a flow with constant bit ratec, give some possible arrival
curves.

2. Consider a flow with an arrival curve given by:α(t) = B, whereB is con-
stant. What does this mean for the flow ?

Exercise 1.4. We say that a flow is(P,B) constrained if it hasγP,B as an
arrival curve.

A trunk system has a buffer size ofB and a trunk bitrate ofP . Fill in the
dots: (1) there is no loss if the input is(., .) constrained (2) the output is(., .)
constrained.

1.2. A (P,B) constrained flow is fed into an infinite buffer served at a rate ofc.
What is the maximum delay ?

Exercise 1.5 (On-Off flows). 1. Assume a data flow is periodical, with period
T , and satisfies the following:r(t) = p for 0 ≤ t < T0, andr(t) = 0 for
T0 ≤ t < T .

(a) DrawR(t) =
∫ t
0

r(s)ds

(b) Find an arrival curve for the flow. Find the minimum arrival curve for
the flow.

(c) Find the minimum(r, b) such that the flow is(r, b) constrained.

2. A traffic flow uses a link with bitrateP (bits/s). Data is sent as packets of
variable length. The flow is controlled by a leaky bucket(r, b). What is the
maximum packet size ? What is the minimum time interval between packets of
maximum size ?

Application: P = 2 Mb/s, r = 0.2 Mb/s; what is the required burst toleranceb
if the packet length is 2 Kbytes ? What is then the minimum spacing between
packets ?

Exercise 1.6. Consider the following alternative definition of the GCRA:

Definition 1.11.1. The GCRA (T, τ ) is a controller that takes as input a cell arrival
timet and returnsresult. It has internal (static) variablesX (bucket level) and
LCT (last conformance time).

• initially, X = 0 andLCT = 0
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• when a cell arrives at timet, then

if (X - t + LCT > tau)
result = NON-CONFORMANT;

else {
X = max (X - t + LCT, 0) + T;
LCT = t;
result = CONFORMANT;
}

Show that the two definitions of GCRA are equivalent.

Exercise 1.7. 1. For the following flows and a GCRA(10, 2), give the confor-
mant and non-conformant cells. Times are in cell slots at the link rate. Draw
the leaky bucket behaviour assuming instantaneous cell arrivals.

(a) 0, 10, 18, 28, 38

(b) 0, 10, 15, 25, 35

(c) 0, 10, 18, 26, 36

(d) 0, 10, 11, 18, 28

2. What is the maximum number of cells that can flow back to back with
GCRA(T, CDVT) (maximum “clump” size) ?

Exercise 1.8. 1. For the following flows and a GCRA(100, 500), give the con-
formant and non-conformant cells. Times are in cell slots at the link rate.

(a) 0, 100, 110, 12, 130, 140, 150, 160, 170, 180, 1000, 1010

(b) 0, 100, 130, 160, 190, 220, 250, 280, 310, 1000, 1030

(c) 0, 10, 20, 300, 310, 320, 600, 610, 620, 800, 810, 820, 1000, 1010, 1020,
1200, 1210, 1220, 1400, 1410, 1420, 1600, 1610, 1620

2. Assume that a cell flow has a minimum spacing ofγ time units between cell
emission times (γ is the minimum time between the beginnings of two cell
transmissions). What is the maximum burst size for GCRA(T, τ) ? What is the
minimum time between bursts of maximum size ?

3. Assume that a cell flow has a minimum spacing between cells ofγ time units,
and a minimum spacing between bursts ofTI . What is the maximum burst size
?

Exercise 1.9. For a CBR connection, here are some values from an ATM operator:

peak cell rate (cells/s) 100 1000 10000 100000
CDVT (microseconds) 2900 1200 400 135
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1. What are the(P,B) parameters in b/s and bits for each case ? How doesT
compare toτ ?

2. If a connection requires a peak cell rate of 1000 cells per second and a cell
delay variation of 1400 microseconds, what can be done ?

3. Assume the operator allocates the peak rate to every connection at one buffer.
What is the amount of buffer required to assure absence of loss ? Numerical
Application for each of the following cases, where a numberN of identical
connections with peak cell rateP is multiplexed.

case 1 2 3 4
nb of connnections 3000 300 30 3
peak cell rate (c/s) 100 1000 10000 100000

Exercise 1.10. The two questions in this problem are independent.

1. An ATM source is constrained by GCRA(T = 30 slots,τ = 60 slots), where
time is counted in slots. One slot is the time it takes to transmit one cell on the
link. The source sends cells according to the following algorithm.

• In a first phase, cells are sent at timest(1) = 0, t(2) = 15, t(3) =
30, . . . , t(n) = 15(n − 1) as long as all cells are conformant. In other
words, the numbern is the largest integer such that all cells sent at times
t(i) = 15(i − 1), i ≤ n are conformant. The sending of celln at time
t(n) ends the first phase.

• Then the source enters the second phase. The subsequent celln + 1 is
sent at the earliest time aftert(n) at which a conformant cell can be
sent, and the same is repeated for ever. In other words, callt(k) the
sending time for cellk, with k > n; we have then:t(k) is the earliest
time aftert(k − 1) at which a conformant cell can be sent.

How many cells were sent by the source in time interval[0, 151] ?

2. A network node can be modeled as a single buffer with a constant output
rate c (in cells per second). It receivesI ATM connections labeled1, . . . , I.
Each ATM connection has a peak cell ratepi (in cells per second) and a cell
delay variation toleranceτi (in seconds) for1 ≤ i ≤ I. The total input rate
into the buffer is at least as large as

∑I
i=1 pi (which is equivalent to saying

that it is unlimited). What is the buffer size (in cells) required for a loss-free
operation ?

Exercise 1.11. In this problem, time is counted in slots. One slot is the duration to
transmit one ATM cell on the link.

1. An ATM sourceS1 is constrained by GCRA(T = 50 slots,τ = 500 slots),
The source sends cells according to the following algorithm.
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• In a first phase, cells are sent at timest(1) = 0, t(2) = 10, t(3) =
20, . . . , t(n) = 10(n − 1) as long as all cells are conformant. In other
words, the numbern is the largest integer such that all cells sent at times
t(i) = 10(i − 1), i ≤ n are conformant. The sending of celln at time
t(n) ends the first phase.

• Then the source enters the second phase. The subsequent celln + 1 is
sent at the earliest time aftert(n) at which a conformant cell can be
sent, and the same is repeated for ever. In other words, callt(k) the
sending time for cellk, with k > n; we have then:t(k) is the earliest
time aftert(k − 1) at which a conformant cell can be sent.

How many cells were sent by the source in time interval[0, 401] ?

2. An ATM sourceS2 is constrained byboth GCRA(T = 10 slots,τ = 2 slots)
and GCRA(T = 50 slots,τ = 500 slots). The source starts at time0, and has
an infinite supply of cells to send. The source sends its cells as soon as it is
permitted by the combination of the GCRAs. We callt(n) the time at which
the source sends thenth cell, witht(1) = 0. What is the value oft(15) ?

Exercise 1.12. Consider a flowR(t) receiving a minimum service curve guarantee
β. Assume that

• β is concave and wide-sense increasing

• theinf in R⊗ β is amin

For all t, call τ(t) a number such that

(R⊗ β)(t) = R(τ(t)) + β(t− τ(t))

Show that it is possible to chooseτ such that ift1 ≤ t2 thenτ(t1) ≤ τ(t2).

Exercise 1.13. 1. Find the maximum backlog and maximum delay for an ATM
CBR connection with peak rateP and cell delay variationτ , assuming the
service curve isc(t) = r(t− T0)+

2. Find the maximum backlog and maximum delay for an ATM VBR connection
with peak rateP , cell delay variationτ , sustainable cell rateM and burst
toleranceτB (in seconds), assuming the service curve isc(t) = r(t− T0)+

Exercise 1.14. Show the following statements:

1. Consider a(P,B) constrained flow, served at a ratec ≥ P . The output is
also(P,B) constrained.

2. Assumea() has a bounded right-handside derivative. Then the output for a
flow constrained bya(), served in a buffer at a constant ratec ≥ supt≥0 a′(t),
is also constrained bya().
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Exercise 1.15. 1. Find the the arrival curve constraining the output for an ATM
CBR connection with peak rateP and cell delay variationτ , assuming the
service curve isc(t) = r(t− T0)+

2. Find the arrival curve constraining the output for an ATM VBR connection
with peak rateP , cell delay variationτ , sustainable cell rateM and burst
toleranceτB (in seconds), assuming the service curve isc(t) = r(t− T0)+

Exercise 1.16. Consider the figure “Derivation of arrival curve for the output of a
flow served in a node with rate-latency service curveβR,T ”. What can be said ift0
in the Figure is infinite, namely, ifa′(t) > r for all t ?

Exercise 1.17. Consider a series of guaranteed service nodes with service curves
ci(t) = ri(t − Ti)+. What is the maximum delay through this system for a flow
constrained by(m, b) ?

Exercise 1.18. A flow with T-SPEC(p,M, r, b) traverses nodes 1 and 2. Nodei
offers a service curveci(t) = Ri(t− Ti)+. What buffer size is required for the flow
at node 2 ?

Exercise 1.19. A flow with T-SPEC(p,M, r, b) traverses nodes 1 and 2. Nodei
offers a service curveci(t) = Ri(t−Ti)+. A shaper is placed between nodes 1 and
2. The shaper forces the flow to the arrival curvez(t) = min(R2t, bt+m).

1. What buffer size is required for the flow at the shaper ?

2. What buffer size is required at node 2 ? What value do you find ifT1 = T2 ?

3. Compare the sum of the preceding buffer sizes to the size that would be re-
quired if no re-shaping is performed.

4. Give an arrival curve for the output of node 2.

Exercise 1.20. Prove the formula giving of paragraph “Buffer Sizing at a Re-
shaper”

Exercise 1.21. Is Theorem “Input-Output Characterization of Greedy Shapers” a
stronger result than Corollary “Service Curve offered by a Greedy Shaper” ?

Exercise 1.22. 1. Explain what is meant by “we pay bursts only once”.

2. Give a summary in at most 15 lines of the main properties of shapers

3. Define the following concepts by using the⊗ operator: Service Curve, Arrival
Curve, Shaper

4. What is a greedy source ?

Exercise 1.23. 1. Show that for a constant bit rate trunk with ratec, the backlog
at timet is given by

W (t) = sup
s≤t

{R(t)−R∗(s)− c(t− s)}
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2. What does the formula become if we assume only that, instead a constant bit
rate trunk, the node is a scheduler offeringβ as a service curve ?

Exercise 1.24. Is it true that offering a service curveβ implies that, during any
busy period of lengtht, the amount of service received rate is at leastβ(t) ?

Exercise 1.25. A flowS(t) is constrained by an arrival curveα. The flow is fed into
a shaper, with shaping curveσ. We assume that

α(s) = min(m+ ps, b+ rs)

and

σ(s) = min(Ps,B +Rs)

We assume thatp > r, m ≤ b andP ≥ R.
The shaper has a fixed buffer size equal toX ≥ m. We require that the buffer

never overflows.

1. Assume thatB = +∞. Find the smallest ofP which guarantees that there is
no buffer overflow. LetP0 be this value.

2. We do not assume thatB = +∞ any more, but we assume thatP is set to
the valueP0 computed in the previous question. Find the value(B0, R0) of
(B,R) which guarantees that there is no buffer overflow and minimizes the
cost functionc(B,R) = aB +R, wherea is a positive constant.

What is the maximum virtual delay if(P,B,R) = (P0, B0, R0) ?

Exercise 1.26. We consider a buffer of sizeX cells, served at a constant rate of
c cells per second. We putN identical connections into the buffer; each of theN
connections is constrained both by GCRA(T1, τ1) and GCRA(T2, τ2). What is the
maximum value ofN which is possible if we want to guarantee that there is no cell
loss at all ?

Give the numerical application forT1 = 0.5 ms,τ1 = 4.5 ms,T2 = 5 ms,
τ2 = 495 ms,c = 106 cells/second,X = 104 cells

Exercise 1.27. We consider a flow defined by its functionR(t), with R(t) = the
number of bits observed since timet = 0.

1. The flow is fed into a buffer, served at a rater. Call q(t) the buffer content
at timet. We do the same assumptions as in the lecture, namely, the buffer is
large enough, and is initially empty. What is the expression ofq(t) assuming
we knowR(t) ?

We assume now that, unlike what we saw in the lecture, the initial buffer
content (at timet = 0) is not 0, but some valueq0 ≥ 0. What is now the
expression forq(t) ?
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2. The flow is put into a leaky bucket policer, with rater and bucket sizeb. This
is a policer, not a shaper, so nonconformant bits are discarded. We assume
that the bucket is large enough, and is initially empty. What is the condition
on R which ensures that no bit is discarded by the policer (in other words,
that the flow is conformant) ?

We assume now that, unlike what we saw in the lecture, the initialbucket
content (at timet = 0) is not 0, but some valueb0 ≥ 0. What is now the
condition onR which ensures that no bit is discarded by the policer (in other
words, that the flow is conformant) ?

Exercise 1.28. Consider a variable capacity network node, with capacity curve
M(t). Show that there is one maximum functionS∗(t) such that for all0 ≤ s ≤ t,
we have

M(t)−M(s) ≥ S∗(t− s)

Show thatS∗ is super-additive.
Conversely, if a functionβ is super-additive, show that there is a variable ca-

pacity network node, with capacity curveM(t), such that for all0 ≤ s ≤ t, we have
M(t)−M(s) ≥ S∗(t− s).

Show that, with a notable exception, a shaper cannot be modeled as a variable
capacity node.

Exercise 1.29. 1. Consider a packetized greedy shaper with shaping curveσ(t) =
rt for t ≥ 0. Assume thatL(k) = kM whereM is fixed. Assume that the
input is given byR(t) = 10M for t > 0 and R(0) = 0. Compute the
sequenceR(i)(t) used in the representation of the output of the packetized
greedy shaper, fori = 1, 2, 3, ....

2. Same question ifsigma(t) = (rt+ 2M)1{t > 0}.
Exercise 1.30. Consider a source given by the function{

R(t) = B for t > 0
R(t) = 0 for t ≤ 0

Thus the flow consists of an instantaneous burst ofB bits.

1. What is the minimum arrival curve for the flow ?

2. Assume that the flow is served in one node that offers a minimum service curve
of the rate latency type, with rater and latency∆. What is the maximum delay
for the last bit of the flow ?

3. We assume now that the flow goes through a series of two nodes,N1 andN2,
whereNi offers to the flow a minimum service curve of the rate latency type,
with rateri and latency∆i, for i = 1, 2. What is the the maximum delay for
the last bit of the flow through the series of two nodes ?
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4. With the same assumption as in the previous item, callR1(t) the function
describing the flow at the output of nodeN1 (thus at the input of nodeN2).
What is the worst case minimum arrival curve forR1 ?

5. We assume that we insert betweenN1 andN2 a “reformatter” S. The input
to S is R1(t). We callR′

1(t) the output ofS. ThusR′
1(t) is now the input to

N2. The function of the “reformatter”S is to delay the flowR1 in order to
output a flowR′

1 that is a delayed version ofR. In other words, we must have
R′
1(t) = R(t − d) for somed. We assume that the reformatterS is optimal

in the sense that it chooses the smallest possibled. In the worst case, what is
this optimal value ofd ?

6. With the same assumptions as in the previous item, what is the worst case
end-to-end delay through the series of nodesN1,S,N2 ? Is the reformatter
transparent ?

Exercise 1.31. Letσ be a good function. Consider the concatenation of a bit-by-bit
greedy shaper, with curveσ, and anL-packetizer. Assume thatσ(0+) = 0. Consider
only inputs that areL-packetized

1. Is this system a packetized shaper forσ ?

2. Is it a packetized shaper forσ + lmax ?

3. Is it a packetized greedy shaper forσ + lmax ?

Exercise 1.32. Assume thatσ is a good function andσ = σ0 + lu0 whereu0 is the
step function with a step att = 0. Can we conclude thatσ0 is sub-additive ?

Exercise 1.33. Is the operator(PL) upper-semi-continuous ?

Exercise 1.34. 1. Consider the concatenation of anL-packetizer and a network
element with minimum service curveβ and maximum service curveγ. Can we
say that the combined system offer a minimum service curve(β(t) − lmax)+

and a maximum service curveγ, as in the case where the concatenation would
be in the reverse order ? .

2. Consider the concatenation of a GPS node offering a guaranteeλr1 , an
L-packetizer, and a second GPS node offering a guaranteeλr2 . Show that
the combined system offers a rate-latency service curve with rateR =
min(r1, r2) and latencyE = lmax

max(r1,r2)
.

Exercise 1.35. Consider a node that offers to a flowR(t) a rate-latency service
curveβ = SR,L. Assume thatR(t) is L-packetized, with packet arrival times called
T1, T2, ... (and is left-continuous, as usual)

Show that(R ⊗ β)(t) = minTi∈[0,t][R(Ti) + β(t − Ti)] (and thus, theinf is
attained).
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Exercise 1.36. 1. AssumeK connections, each with peak ratep, sustainable
ratem and burst toleranceb, are offered to a trunk with constant service rate
P and FIFO buffer of capacityX. Find the conditions onK for the system to
be loss-free.

2. If Km = P , what is the condition onX for K connections to be accepted ?

3. What is the maximum number of connection ifp = 2 Mb/s, m = 0.2 Mb/s,
X = 10MBytes,b = 1Mbyte andP = 0.1, 1, 2 or 10 Mb/s ?

4. For a fixed buffer sizeX, draw the acceptance region whenK andP are the
variables.

Exercise 1.37. Show the formulas giving the expressions forfB(R) andfB(α).

Exercise 1.38. 1. What is the effective bandwith for a connection withp = 2
Mb/s,m = 0.2 Mb/s,b = 100 Kbytes whenD = 1msec, 10 msec, 100 msec,
1s ?

2. Plot the effective bandwidthe as a function of the delay constraint in the
general case of a connection with parametersp,m, b.

Exercise 1.39. 1. Compute the effective bandwidth for a mix of VBR connec-
tions1, . . . , I.

2. Show how the homogeneous case can be derived from your formula

3. AssumeK connections, each with peak ratep, sustainable ratem and burst
toleranceb, are offered to a trunk with constant service rateP and FIFO
buffer of capacityX. Find the conditions onK for the system to be loss-free.

4. Assume that there are two classes of connections, withKi connections in class
i, i = 1, 2, offered to a trunk with constant service rateP and FIFO buffer
of infinite capacityX. The connections are accepted as long as their queuing
delay does not exceed some valueD. Draw the acceptance region, that is, the
set of(K1,K2) that are accepted by CAC2. Is the acceptance region convex ?
Is the complementary of the acceptance region in the positive orthant convex
? Does this generalize to more than two classes ?
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Chapter 2

Application of Network
Calculus to the Internet

In this chapter we apply the concepts of Chapter 1 and explain the theoretical un-
derpinnings of integrated and differentiated services. Integrated services define how
reservations can be made for flows. We explain in detail how this framework was
deeply influenced by GPS. In particular, we will see that it assumes that every router
can be modeled as a node offering a minimum service curve that is a rate-latency
function. We explain how this is used in a protocol such as RSVP. We also analyze
the more efficient framework based on service curve scheduling. This allows us to
address in a simple way the complex issue of schedulability.

We explain the concept of Guaranteed Rate node, which corresponds to a ser-
vice curve element, but with some differences, because it uses a max-plus approach
instead of min-plus. We analyze the relation between the two approaches.

Differentiated services differ radically, in that reservations are made per class of
service, rather than per flow. We show how the bounding results in Chapter 1 can be
applied to find delay and backlog bounds. We also introduce the “damper” , which is
a way of enforcing a maximum service curve, and show how it can radically reduce
the delay bounds.

2.1 GPS and Guaranteed Rate Nodes

In this section we describe GPS and its derivatives; they form the basis on which the
Internet guaranteed model was defined.

2.1.1 Packet Scheduling

A guaranteed service network offers delay and throughput guarantees to flows, pro-
vided that the flows satisfy some arrival curve constraints (Section 2.2). This re-
quires that network nodes implement some form of packet scheduling, also called

83
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service discipline. Packet scheduling is defined as the function that decides, at every
buffer inside a network node, the service order for different packets.

A simple form of packet scheduling is FIFO: packets are served in the order of
arrival. The delay bound, and the required buffer, depend on the minimum arrival
curve of the aggregate flow (Section 1.8 on page 64). If one flow sends a large
amount of traffic, then the delay increases for all flows, and packet loss may occur.
Thus FIFO scheduling requires that arrival curve constraints on all flows be strictly
enforced at all points in the network. Also, with FIFO scheduling, the delay bound
is the same for all flows. We study FIFO scheduling in more detail in Section 6.

An alternative [23, 41] is to use per flow queuing, in order to (1) provide iso-
lation to flows and (2) offer different guarantees. We consider first the ideal form
of per flow queuing called “Generalized Processor Sharing” (GPS) [60], which was
already mentioned in Chapter 1.

2.1.2 GPS and a Practical Implementation (PGPS)

A GPS node serves several flows in parallel, and has a total output rate equal to c b/s.
A flow i is allocated a given weight, say φi. Call Ri(t), R∗

i (t) the input and output
functions for flow i. The guarantee is that at any time t, the service rate offered to
flow i is 0 is flow i has no backlog (namely, if Ri(t) = R∗

i (t)), and otherwise is
equal to φi∑

j∈B(t) φj
c, where B(t) is the set of backlogged flows at time t. Thus

R∗
i (t) =

∫ t

0

φi∑
j∈B(s) φj

1{i∈B(s)}ds

In the formula, we used the indicator function 1{expr}, which is equal to 1 if expr
is true, and 0 otherwise.

It follows immediately that the GPS node offers to flow i a service curve equal to
λric, with ri = φiC∑

j φj
. It is shown in [61] that a better service curve can be obtained

for every flow if we know some arrival curve properties for all flows; however the
simple property is sufficient to understand the integrated service model.

GPS satisfies the requirement of isolating flows and providing differentiated
guarantees. We can compute the delay bound and buffer requirements for every
flow if we know its arrival curve, using the results of Chapter 1. However, a GPS
node is a theoretical concept, which is not really implementable, because it relies on
a fluid model, and assumes that packets are infinitely divisible. How can we make a
practical implementation of GPS ? One simple solution would be to use the virtual
finish times as we did for the buffered leaky bucket controller in Section 1.7.3: for
every packet we would compute its finish time θ under GPS, then at time θ present
the packet to a multiplexer that serves packets at a rate c. Figure 2.1 (left) shows the
finish times on an example. It also illustrates the main drawback that this method
would have: at times 3 and 5, the multiplexer would be idle, whereas at time 6 it
would have a burst of 5 packets to serve. In particular, such a scheduler would not
be work conserving.
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This is what motivated researchers to find other practical implementations of
GPS. We study here one such implementation of GPS, called packet by packet
generalized processor sharing (PGPS) [60]. Other implementations of GPS are dis-
cussed in Section 2.1.3.

PGPS emulates GPS as follows. There is one FIFO queue per flow. The sched-
uler handles packets one at a time, until it is fully transmitted, at the system rate
c. For every packet, we compute the finish time that it would have under GPS (we
call this the “GPS-finish-time” ). Then, whenever a packet is finished transmitting,
the next packet selected for transmission is the one with the earliest GPS-finish-
time, among all packets present. Figure 2.1 shows one example. We see that, unlike
the simple solution discussed earlier, PGPS is work conserving, but does so at the
expense of maybe scheduling a packet beforeits finish time under GPS.
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Figure 2.1: Scheduling with GPS (left) and PGPS (right). Flow 0 has weight
0.5, flows 1 to 5 have weight 0.1. All packets have the same transmission
time equal to 1 time unit.

We can quantify the difference between PGPS and GPS in the following propo-
sition. In Section 2.1.3, we will see how to derive a service curve property.

Proposition 2.1.1 ([60]). The finish time for PGPS is at most the finish time of GPS
plus L

c , wherec is the total rate andL is the maximum packet size.

Proof: Call D(n) the finish time of the nth packet for the aggregate input flow
under PGPS, in the order of departure, and θ(n) under GPS. Call n0 the number of
the packet that started the busy period in which packet n departs. Note that PGPS
and GPS have the same busy periods, since if we observe only the aggregate flows,
there is no difference between PGPS and GPS.

There may be some packets that depart before packet n in PGPS, but that
nonetheless have a later departure time under GPS. Call m0 ≥ n0 the largest packet
number for which this occurs, if any; otherwise let m0 = n0 − 1. In this proposi-
tion, we call l(m) the length in bits of packet m. Under PGPS, packet m0 started
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service at D(m0) − l(m0)
c , which must be earlier than the arrival times of packets

m = m0 + 1, ..., n. Indeed, otherwise, by definition of PGPS, the PGPS scheduler
would have scheduled packets m = m0 + 1, ..., n before packet m0. Now let us
observe the GPS system. Packets m = m0 + 1, ..., n depart no later than packet
n, by definition of m0; they have arrived after D(m0) − l(m0)

c . By expressing the

amount of service in the interval [D(m0)− l(m0)
c , θ(n)] we find thus

n∑
m=m0+1

l(m) ≤ c

(
θ(n)−D(m0) +

l(m0)
c

)
Now since packets m0, ..., n are in the same busy period, we have

D(n) = D(m0) +

∑n
m=m0+1 l(m)

c

By combining the two equations above we find D(n) ≤ θ(n)+ l(m0)
c , which shows

the proposition in the case where m0 ≤ n0.
If m0 = n0−1, then all packets n0, ..., n depart before packet n under GPS and

thus the same reasoning shows that

n∑
m=n0

l(m) ≤ c (θ(n)− t0)

where t0 is the beginning of the busy period, and that

D(n) = t0 +

∑n
m=n0

l(m)
c

Thus D(n) ≤ θ(n) in that case.

2.1.3 Guaranteed Rate (GR) Nodes and the Max-Plus Approach

The service curve concept defined earlier can be approached from the dual point of
view, which consists in studying the packet arrival and departure times instead of
the functions R(t) (which count the bits arrived up to time t). This latter approach
leads to max-plus algebra (which has the same properties as min-plus), is often more
appropriate to account for details due to variable packet sizes, but works well only
when the service curves are of the rate-latency type. It also useful when nodes cannot
be assumed to be FIFO per flow, as may be the case with DiffServ (Section 2.4).

GR also allows to show that many schedulers have the rate-latency service curve
property. Indeed, a large number of practical implementations of GPS, other than
PGSP, have been proposed in the literature; let us mention: virtual clock schedul-
ing [45], packet by packet generalized processor sharing [60] and self-clocked fair
queuing [37](see also [28]). For a thorough discussion of practical implementations
of GPS, see [77, 28]). These implementations differ in their implementation com-
plexity and in the bounds that can be obtained. It is shown in [29] that all of these
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implementations fit in the following framework, called “Guaranteed Rate” , which
we define in now. We will also analyze how it relates to the min-plus approach.

Definition 2.1.1 (GR Node[29]). Consider a node that serves a flow. Packets are
numbered in order of arrival. Letan ≥ 0, dn ≥ 0 be the arrival and departure times.
We say that a node is the aguaranteed rate (GR) node for this flow, with rater and
delaye, if it guarantees thatdn ≤ fn + e, wherefn is defined by Equation (2.1).{

f0 = 0
fn = max {an, fn−1}+ ln

r for all n ≥ 1
(2.1)

The variables fn (“Guaranteed Rate Clocks” ) can be interpreted as the depar-
tures times from a FIFO constant rate server, with rate r. The parameter e expresses
how much the node deviates from it. Note however that a GR node need not be
FIFO. A GR node is also called “Rate-Latency server” .

Theorem 2.1.1 (Max-Plus Representation of GR). Consider a system where pack-
ets are numbered1, 2, ... in order of arrival. Callan, dn the arrival and departure
times for packetn, and ln the size of packetn. Define by conventiond0 = 0. The
system is a GR node with rater and latencye if and only if for all n there is some
k ∈ {1, ..., n} such that

dn ≤ e+ ak +
lk + ...+ ln

r
(2.2)

Proof: The recursion Equation (2.1) can be solved iteratively, using the same
max-plus method as in the proof of Proposition 1.2.4. Define

An
j = aj +

lj + ...+ ln
r

for 1 ≤ j ≤ n

Then we obtain
fn = max(An

n, A
n
n−1, ..., A

n
1 )

The rest follows immediately.
Equation (2.2) is the dual of the service curve definition (Equation (1.9) on

Page 87), with β(t) = r(t− e)+. We now elucidate this relationship.

Theorem 2.1.2 (Equivalence with service curve). Consider a node withL-packetized
input.

1. If the node guarantees a minimum service curve equal to the rate-latency
functionβ = βr,v, and if it is FIFO, then it is a GR node with rater and
latencyv.

2. Conversely, a GR node with rater and latencye is the concatenation of a
service curve element, with service curve equal to the rate-latency function
βr,v, and anL-packetizer. If the GR node is FIFO, then so is the service curve
element.
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The proof is long and is given at the end of this section.
By applying Theorem 1.7.1, we obtain

Corollary 2.1.1. A GR node offers a minimum service curveβr,v+ lmax
r

The service curve can be used to obtain backlog bounds.

Theorem 2.1.3 (Delay Bound). For an α-smooth flow served in a (possibly non
FIFO) GR node with rater and latencye, the delay for any packet is bounded by

sup
t>0

[
α(t)
r

− t] + e (2.3)

Proof: By Theorem 2.1.1, for any fixed n, we can find a 1 ≤ j ≤ n such that

fn = aj +
lj + ...+ ln

r

The delay for packet n is

dn − an ≤ fn + e− an

Define t = an − aj . By hypothesis

lj + ...+ ln ≤ α(t+)

where α(t+) is the limit to the right of α at t. Thus

dn − an ≤ −t+
α(t+)

r
+ e ≤ sup

t≥0
[
α(t+)

r
− t] + e

Now supt>0[
α(t)
r − t] = supt≥0[

α(t+)
r − t].

Comment: Note that Equation (2.3) is the horizontal deviation between the ar-
rival curve α and the rate-latency service curve with rate r and latency e. Thus, for
FIFO GR nodes, Theorem 2.1.3 follows from Theorem 2.1.1 and the fact that the
packetizer can be ignored for delay computations. The information in Theorem 2.1.3
is that it also holds for non-FIFO nodes.

Concatenation of GR nodes For GR nodes that are FIFO per flow, the concate-
nation result obtained with the service curve approach applies. Specifically, the con-
catenation of M GR nodes (that are FIFO per flow) with rates rm and latencies em
is GR with rate r = minm rm and latency e =

∑
m em + (M − 1)Lmax

r , where
Lmax is the maximum packet size for the flow. The term (M − 1)Lmax

r is due to
packetizers.

A bound on the end-to-end delay through such a concatenation is thus
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D =
M∑
m=1

vm + lmax

M−1∑
m=1

1
rm

+
σ

minm rm
(2.4)

which is the formula in [29]. It is a generalization of Equation (1.23) on Page 55.
For GR nodes that are not FIFO per flow, the concatenation result is no longer

true; see [48] for some partial results.

Proof of Theorem 2.1.2 Part 1: Consider a service curve element S. Assume to
simplify the demonstration that the input and output functions R and R∗ are right-
continuous. Consider the virtual system S0 made of a bit-by-bit greedy shaper with
shaping curve λr, followed by a constant bit-by-bit delay element. The bit-by-bit
greedy shaper is a constant bit rate server, with rate r. Thus the last bit of packet
n departs from it exactly at time fn, defined by Equation (2.1), thus the last bit of
packet n leaves S0 at d0n = fn + e. The output function of S0 is R0 = R ⊗ βr,e.
By hypothesis, R∗ ≥ R0, and by the FIFO assumption, this shows that the delay in
S is upper bounded by the delay in S′. Thus dn ≤ fn + e.

Part 2: Consider the virtual system S whose output S(t) is defined by

if di−1 < t ≤ di
then S(t) = min{R(t),max[L(i− 1), L(i)− r(di − t)]} (2.5)

See Figure 2.2 for an illustration. It follows immediately that R′(t) = PL(S(t)).
Also consider the virtual system S0 whose output is

S0(t) = (βr,v ⊗R)(t)

S0 is the constant rate server, delayed by v. Our goal is now to show that S ≥ S0.
Call d0i the departure time of the last bit of packet i in S0 (see Figure 2.2 for an

example with i = 2). Let u = d0i −di. The definition of GR node means that u ≥ 0.
Now since S0 is a shifted constant rate server, we have:

if d0i −
li
r

< s < d0i then S0(s) = L(i)− r(d0i − s)

Also d0i−1 ≤ d0i − li
r thus S0(d0i − li

r ) = L(i− 1) and

if s ≤ d0i −
li
r
then S0(s) ≤ L(i− 1)

It follows that

if di−1 + u < s < d0i then S0(s) ≤ max[L(i− 1), L(i)− r(d0i − s)] (2.6)

Consider now some t ∈ (di−1, di] and let s = t + u. If S(t) = R(t), since
R ≥ S0, we then obviously have S(t) ≥ S0(t). Else, from Equation (2.1),
S(t) = max[L(i − 1), L(i) − r(di − t)]. We have d0i − s = di − t and thus,
combining with Equation (2.6), we derive that S0(s) ≤ S(t). Now s ≥ t, thus fi-
nally S0(t) ≤ S(t). One can also readily see that S is FIFO if di−1 ≤ di for all
i.
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Figure 2.2: Arrival and departure functions for GR node. The virtual system
output is S(t).

2.2 The Integrated Services Model of the IETF

2.2.1 The Guaranteed Service

The Internet supports different reservation principles. Two services are defined: the
“guaranteed” service, and the “ controlled load” service. They differ in that the for-
mer provides real guarantees, while the latter provides only approximate guarantees.
We outline the differences in the rest of this section. In both cases, the principle is
based on “admission control” , which operates as follows.

• In order to receive the guaranteed or controlled load service, a flow must first
perform a reservation during a flow setup phase.

• A flow must confirm to an arrival curve of the form α(t) = min(M +pt, rt+
b), which is called the T-SPEC (see Section 1.2.2 on page16). The T-SPEC is
declared during the reservation phase.

• All routers along the path accept or reject the reservation. With the guaranteed
service, routers accept the reservation only if they are able to provide a service
curve guarantee and enough buffer for loss-free operation. The service curve
is expressed during the reservation phase, as explained below.

For the controlled load service, there is no strict definition of what accepting
a reservation means. Most likely, it means that the router has an estimation
module that says that, with good probability, the reservation can be accepted
and little loss will occur; there is no service curve or delay guarantee.

In the rest of this chapter we focus on the guaranteed service. Provision of the
controlled load service relies on models with loss, which are discussed in Chapter 9.

2.2.2 The Integrated Services Model for Internet Routers

The reservation phase assumes that all routers can export their characteristics using a
very simple model. The model is based on the view that an integrated services router
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implements a practical approximation of GPS, such as PGPS, or more generally, a
GR node. We have shown in Section 2.1.3 that the service curve offered to a flow
by a router implementing GR is a rate-latency function, with rate R and latency T
connected by the relationship

T =
C

R
+D (2.7)

with C = the maximum packet size for the flow and D = L
c , where L is the maxi-

mum packet size in the router across all flows, and c the total rate of the scheduler.
This is the model defined for an Internet node [71].

Fact 2.2.1. The Integrated Services model for a router is that the service curve
offered to a flow is always a rate-latency function, with parameters related by a
relation of the form (2.7).

The values of C and D depend on the specific implementation of a router, see
Corollary 2.1.1 in the case of GR nodes. Note that a router does not necessarily
implement a scheduling method that approximates GPS. In fact, we discuss in Sec-
tion 2.3 a family of schedulers that has many advantages above GPS. If a router
implements a method that largely differs from GPS, then we must find a service
curve that lower-bounds the best service curve guarantee offered by the router. In
some cases, this may mean loosing important information about the router. For ex-
ample, it is not possible to implement a network offering constant delay to flows
by means of a system like SCED+, discussed in Section 2.4.3, with the Integrated
Services router model.

2.2.3 Reservation Setup with RSVP

Consider a flow defined by TSPEC (M,p, r, b), that traverses nodes 1, . . . , N . Usu-
ally, nodes 1 and N are end-systems while nodes n for 1 < n < N are routers. The
Integrated Services model assumes that node n on the path of the flow offers a rate
latency service curve βRn,Tn

, and further assumes that Tn has the form

Tn =
Cn

R
+Dn

where Cn and Dn are constants that depend on the characteristics of node n.
The reservation is actually put in place by means of a flow setup procedure such

as the resource reservation protocol (RSVP). At the end of the procedure, node n on
the path has allocated to the flow a value Rn ≥ r. This is equivalent to allocating a
service curve βRn,Tn

. From Theorem 1.4.6 on page 34, the end-to-end service curve
offered to the flow is the rate-latency function with rate R and latency T given by{

R = minn=1...N Rn

T =
∑N

n=1

(
Cn

Rn
+Dn

)
Let Ctot =

∑N
n=1 Cn and Dtot =

∑N
n=1 Dn. We can re-write the last equation as
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T =
Ctot
R

+Dtot −
N∑
n=1

Sn (2.8)

with

Sn = Cn

(
1
R
− 1

Rn

)
(2.9)

The term Sn is called the “ local slack” term at node n.
From Proposition 1.4.1 we deduce immediately:

Proposition 2.2.1. If R ≥ r, the bound on the end-to-end delay, under the condi-
tions described above is

b−M

R

(
p−R

p− r

)+

+
M + Ctot

R
+Dtot −

N∑
n=1

Sn (2.10)

We can now describe the reservation setup with RSVP. Some details of flow
setup with RSVP are illustrated on Figure 2.3. It shows that two RSVP flows are
involved: an advertisement (PATH) flow and a reservation (RESV) flow. We describe
first the point-to-point case.

• A PATH message is sent by the source; it contains the T-SPEC of the flow
(source T-SPEC), which is not modified in transit, and another field, the AD-
SPEC, which is accumulated along the path. At a destination, the ADSPEC
field contains, among others, the values of Ctot,Dtot used in Equation 2.10.
PATH messages do not cause any reservation to be made.

• RESV messages are sent by the destination and cause the actual reservations
to be made. They follow the reverse path marked by PATH messages. The
RESV message contains a value, R′, (as part of the so-called R-SPEC), which
is a lower bound on the rate parameters Rn that routers along the path will
have to reserve. The value of R′ is determined by the destination based on the
end-to-end delay objective dobj, following the procedure described below. It
is normally not changed by the intermediate nodes.

Define function f by

f(R′) :=
b−M

R′

(
p−R′

p− r

)+

+
M + Ctot

R′ +Dtot

In other words, f is the function that defines the end-to-end delay bound, assuming
all nodes along the path would reserve Rn = R′. The destination computes R′

as the smallest value ≥ r for which f(R′) ≤ dobj. Such a value exists only if
Dtot < dobj.

In the figure, the destination requires a delay variation objective of 600 ms,
which imposes a minimum value of R′ =622 kb/s. The value of R′ is sent to the
next upstream node in the R-SPEC field of the PATH message. The intermediate
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Sender A Receiver 
B

1. path m essage
TSPEC=
2K ,10M b/s,512kb/s,32K
AdSpec=()

2. path m essage
Sender TSPEC=
2K ,10M b/s,512kb/s,32K
AdSpec=(10.2kb, 0.05s)

3. path m essage
Sender TSPEC=
2K ,10M b/s,512kb/s,32K
AdSpec=(51.2, 0.1)

4. B requests guaranteed QoS 
reservation w ith delay variation 

0.6s;    B reserves 622 kb/s 

5. resv m essage
Receiver TSPEC=
2K ,10M b/s,512kb/s,24K
R-SPEC =(622 kb/s)

6. resv m essage
Receiver TSPEC=
2K ,10M b/s,512kb/s,24K
R-SPEC =(622 kb/s)

7. resv m essage
Receiver TSPEC=
2K ,10M b/s,512kb/s,24K
R-SPEC =(622 kb/s)

R2R1

Figure 2.3: Setup of Reservations, showing the PATH and RESV flows

nodes do not know the complete values Ctot and Dtot, nor do they know the total
delay variation objective. Consider the simple case where all intermediate nodes are
true PGPS schedulers. Node n simply checks whether it is able to reserve Rn = R′

to the flow; this involves verifying that the sum of reserved rates is less than the
scheduler total rate, and that there is enough buffer available (see below). If so, it
passes the RESV message upstream, up to the destination if all intermediate nodes
accept the reservation. If the reservation is rejected, then the node discards it and
normally informs the source. In this simple case, all nodes should set their rate to
Rn = R′ thus R = R′, and Equation (2.10) guarantees that the end-to-end delay
bound is guaranteed.

In practice, there is a small additional element (use of the slack term), due to the
fact that the designers of RSVP also wanted to support other schedulers. It works as
follows.

There is another term in the R-SPEC, called the slackterm. Its use is illustrated
on Figure 2.4. In the figure, we see that the end-to-end delay variation requirement,
set by the destination, is 1000 ms. In that case, the destination reserves the minimum
rate, namely, 512 kb/s. Even so, the delay variation objective Dobj is larger than
the bound Dmax given by Formula (2.10). The difference Dobj −Dmax is written
in the slack term S and passed to the upstream node in the RESV message. The
upstream node is not able to compute Formula (2.10) because it does not have the
value of the end-to-end parameters. However, it can use the slack term to increase its
internal delay objective, on top of what it had advertised. For example, a guaranteed
rate node may increase its value of v (Theorem 2.1.1) and thus reduce the internal
resources required to perform the reservation. The figure shows that R1 reduces the
slack term by 100 ms. This is equivalent to increasing the Dtot parameter by 100ms,
but without modifying the advertised Dtot.
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Sender A Receiver 
B

1. path m essage
TSPEC=
2K ,10M b/s,512kb/s,32K
AdSpec=()

2. path m essage
Sender TSPEC=
2K ,10M b/s,512kb/s,32K
AdSpec=(10.2s/kb/s, 
0.05s)

3. path m essage
Sender TSPEC=
2K ,10M b/s,512kb/s,32K
AdSpec=(51.2, 0.1)

4. B requests guaranteed QoS 
reservation w ith delay variation 

1.0s;    B reserves 512kb/s

5. resv m essage
Receiver TSPEC=
2K ,10M b/s,512kb/s,24K
R-SPEC =(512kb/s , S=
0.288s)

6. resv m essage
Receiver TSPEC=
2K ,10M b/s,512kb/s,24K
R-SPEC =(512kb/s , S=
0.288s)

6. resv m essage
Receiver TSPEC=
2K ,10M b/s,512kb/s,24K
R-SPEC =(512 kb/s,
S=0.188s)

R2R1

Figure 2.4: Use of the slack term

The delays considered here are the total (fixed plus variable) delays. RSVP also
contains a field used for advertising the fixed delay part, which can be used to com-
pute the end-to-end fixed delay. The variable part of the delay (called delay jitter) is
then obtained by subtraction.

2.2.4 A Flow Setup Algorithm

There are many different ways for nodes to decide which parameter they should
allocate. We present here one possible algorithm. A destination computes the worst
case delay variation, obtained if all nodes reserve the sustainable rate r. If the result-
ing delay variation is acceptable, then the destination sets R = r and the resulting
slack may be used by intermediate nodes to add a local delay on top of their ad-
vertised delay variation defined by C and D. Otherwise, the destination sets R to
the minimum value Rmin that supports the end-to-end delay variation objective and
sets the slack to 0. As a result, all nodes along the path have to reserve Rmin. As
in the previous cases, nodes may allocate a rate larger than the value of R they pass
upstream, as a means to reduce their buffer requirement.

Definition 2.2.1 (A Flow Setup Algorithm). • At a destination systemI, com-
pute

Dmax = fT (r) +
Ctot

r
+Dtot

If Dobj > Dmax then assign to the flow a rateRI = r and an additional
delay variationdI ≤ Dobj −Dmax; setSI = Dobj −Dmax − dI and send
reservation requestRI , SI to stationI − 1.

Else (Dobj ≤ Dmax) find the minimumRmin such thatfT (Rmin)+ Ctot

Rmin
≤

Dobj − Dtot, if it exists. Send reservation requestRI = Rmin, SI = 0 to
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stationI − 1. If Rmin does not exist, reject the reservation or increase the
delay variation objectiveDobj .

• At an intermediate systemi: receive fromi+1 a reservation requestRi+1, Si+1.

If Si = 0, then perform reservation for rateRi+1 and if successful, send
reservation requestRi = Ri+1, Si = 0 to stationi− 1.

Else (Si > 0), perform a reservation for rateRi+1 with some additional delay
variationdi ≤ Si+1. if successful, send reservation requestRi = Ri+1, Si =
Si+1 − di to stationi− 1.

The algorithm ensures a constant reservation rate. It is easy to check that the end
to end delay variation is bounded by Dobj .

2.2.5 Multicast Flows

Consider now a multicast situation. A source S sends to a number of destinations,
along a multicast tree. PATH messages are forwarded along the tree, they are dupli-
cated at splitting points; at the same points, RESV messages are merged. Consider
such a point, call it node i, and assume it receives reservation requests for the same
T-SPEC but with respective parameters R′

in, S
′
in and R′′

in, S
′′
in. The node performs

reservations internally, using the semantics of algorithm 3. Then it has to merge the
reservation requests it will send to node i− 1. Merging uses the following rules:

R-SPEC Merging Rules The merged reservation R,S is given by

R = max(R′, R′′)

S = min(S′, S′′)

Let us consider now a tree where algorithm 3 is applied. We want to show that
the end-to-end delay bounds at all destinations are respected.

The rate along the path from a destination to a source cannot decrease with this
algorithm. Thus the minimum rate along the tree towards the destination is the rate
set at the destination, which proves the result.

A few more features of RSVP are:

• states in nodes need to be refreshed; if they are not refreshed, the reservation
is released (“soft states” ).

• routing is not coordinated with the reservation of the flow

We have so far looked only at the delay constraints. Buffer requirements can be
computed using the values in Proposition 1.4.1.
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2.2.6 Flow Setup with ATM

With ATM, there are the following differences:

• The path is determined at the flow setup time only. Different connections may
follow different routes depending on their requirements, and once setup, a
connection always uses the same path.

• With standard ATM signaling, connection setup is initiated at the source and
is confirmed by the destination and all intermediate systems.

2.3 Schedulability

So far, we have considered one flow in isolation and assumed that a node is able
to offer some scheduling, or service curve guarantee. In this section we address the
global problem of resource allocation.

When a node performs a reservation, it is necessary to check whether local re-
sources are sufficient. In general, the method for this consists in breaking the node
down into a network of building blocks such as schedulers, shapers, and delay ele-
ments. There are mainly two resources to account for: bit rate (called “bandwidth” )
and buffer. The main difficulty is the allocation of bit rate. Following [33], we will
see in this section that allocating a rate amounts to allocating a service curve. It is
also equivalent to the concept of schedulability.

Consider the simple case of a PGPS scheduler, with outgoing rate C. If we want
to allocate rate ri to flow i, for every i, then we can allocate to flow i the GPS weight
φi = ri

C . Assume that ∑
i

ri ≤ C (2.11)

Then we know from Proposition 2.1.1 and Corollary 2.1.1 that every flow i is guar-
anteed the rate-latency service curve with rate ri and latency L

C . In other words, the
schedulability condition for PGPS is simply Equation (2.11). However, we will see
now that a schedulability conditions are not always as simple. Note also that the
end-to-end delay depends not only on the service curve allocated to the flow, but
also on its arrival curve constraints.

Many schedulers have been proposed, and some of them do not fit in the GR
framework. The most general framework in the context of guaranteed service is
given by SCED (Service Curve Earliest Deadline first) [33],which we describe now.
We give the theory for constant size packets and slotted time; some aspects of the
general theory for variable length packets are known [11], some others remain to be
done. We assume without loss of generality that every packet is of size 1 data unit.

2.3.1 EDF Schedulers

As the name indicates, SCED is based on the concept of Earliest Deadline First
(EDF) scheduler. An EDF scheduler assigns a deadline Dn

i to the nth packet of flow



2.3. SCHEDULABILITY 97

i, according to some method. We assume that deadlines are wide-sense increasing
within a flow. At every time slot, the scheduler picks at one of the packets with the
smallest deadline among all packets present. There is a wide variety of methods
for computing deadlines. The “delay based” schedulers [52] set Dn

i = An + di
where An is the arrival time for the nth packet for flow i, and di is the delay budget
allocated to flow i. If di is independent of i, then we have a FIFO scheduler. We will
see that those are special cases of SCED, which we view as a very general method
for computing deadlines.

An EDF scheduler is work conserving, that is, it cannot be idle if there is at
least one packet present in the system. A consequence of this is that packets from
different flows are not necessarily served in the order of their deadlines. Consider for
example a delay based scheduler, and assume that flow 1 has a lrage delay budget d1,
while flow 2 has a small delay budget d2. It may be that a packet of flow 1 arriving
at t1 is served before a packet of flow 2 arriving at t2, even though the deadline of
packet 1, t1 + d1 is larger than the deadline of packet 2.

We will now derive a general schedulability criterion for EDF schedulers. Call
Ri(t), t ∈ N, the arrival function for flow i. Call Zi(t) the number of packets of
flow i that have deadlines ≤ t. For example, for a delay based scheduler, Zi(t) =
Ri(t− di). The following is a modified version of [11].

Proposition 2.3.1. Consider an EDF scheduler withI flows and outgoing rateC.
A necessary condition for all packets to be served within their deadlines is

for all s ≤ t :
I∑
i=1

Zi(t)−Ri(s) ≤ C(t− s) (2.12)

A sufficient condition is

for all s ≤ t :
I∑
i=1

[Zi(t)−Ri(s)]+ ≤ C(t− s) (2.13)

Proof: We first prove the necessary condition. Call R′
i the output for flow i. Since

the scheduler is work conserving, we have
∑I

i=1 R′
i = λC ⊗ (

∑I
i=1 Ri). Now

R′
i ≥ Zi by hypothesis. Thus

I∑
i=1

Zi(t) ≤ inf
s∈[0,t]

C(t− s) +
I∑
i=1

Ri(s)

which is equivalent to Equation (2.12)
Now we prove the sufficient condition, by contradiction. Assume that at some

t a packet with deadline t is not yet served. In time slot t, the packet served has a
deadline ≤ t, otherwise our packet would have been chosen instead. Define s0 such
that the time interval [s0 + 1, t] is the maximum time interval ending at t that is
within a busy period and for which all packets served have deadlines ≤ t.
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Now call S the set of flows that have a packet with deadline ≤ t present in the
system at some point in the interval [s0 + 1, t]. We show that if

if i ∈ S then R′
i(s0) = Ri(s0) (2.14)

that is, flow i is not backlogged at the end of time slot s0. Indeed, if s0 + 1 is the
beginning of the busy period, then the property is true for any flow. Otherwise, we
proceed by contradiction. Assume that i ∈ S and that i would have some backlog at
the end of time slot s0. At time s0 some packet with deadline > t was served; thus
the deadline of all packets remaining in the queue at the end of time slot s0 must
have a deadline > t. Since deadlines are assumed wide-sense increasing within a
flow, all deadlines of flow i packets that are in the queue at time s0, or will arrive
later, have deadline > t, which contradicts that i ∈ S.

Further, it follows from the last argument that if i ∈ S, then all packets served
before or at t must have a deadline ≤ t. Thus

if i ∈ S then R′
i(t) ≤ Zi(t)

Now since there is at least one packet with deadline ≤ t not served at t, the
previous inequality is strict for at least one i in S. Thus∑

i∈S
R′
i(t) <

∑
i∈S

Zi(t) (2.15)

Observe that all packets served in [s0 + 1, t] must be from flows in S. Thus

I∑
i=1

(R′
i(t)−R′

i(s0)) =
∑
i∈S

(R′
i(t)−R′

i(s0))

Combining with Equation (2.14) and Equation (2.15) gives

I∑
i=1

(R′
i(t)−R′

i(s0)) <
∑
i∈S

(Zi(t)−Ri(s0))

Now [s0+1, t] is entirely in a busy period thus
∑I

i=1(R
′
i(t)−R′

i(s0)) = C(t−s0);
thus

C(t−s0) <
∑
i∈S

(Zi(t)−Ri(s0)) =
∑
i∈S

(Zi(t)−Ri(s0))+ ≤
I∑
i=1

(Zi(t)−Ri(s0))+

which contradicts Equation (2.13).
A consequence of the proposition that if a set of flows is schedulable for some

deadline allocation algorithm, then it is also schedulable for any other deadline al-
location method that produces later or equal deadlines. Other consequences, of im-
mediate practical importance, are drawn in the next section.
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2.3.2 SCED Schedulers [69]

Given, for all i, a function βi, SCED defines a deadline allocation algorithm that
guarantees, under some conditions, that flow i does have βi as a minimum service
curve1. Roughly speaking, SCED sets Zi(t), the number of packets with deadline
up to t, to (Ri ⊗ βi)(t).

Definition 2.3.1 (SCED). Call An
i the arrival time for packetn of flow i. Define

functionsRn
i by:

Rn
i (t) = inf

s∈[0,An
i ]
[Ri(s) + βi(t− s)]

With SCED, the deadline for packetn of flowi is defined by

Dn
i = (Rn

i )
−1(n) = min{t ∈ N : Rn

i (t) ≥ n}
Functionβi is called the “target service curve” for flowi.

Function Rn
i is similar to the min-plus convolution Ri⊗βi, but the minimum is

computed over all times up to An
i . This allows to compute a packet deadline as soon

as the packet arrives; thus SCED can be implemented in real time. The deadline
is obtained by applying the pseudo-inverse of Rn

i , as illustrated on Figure 2.5. If
βi = δdi

, then it is easy to see that Dn
i = An

i +di, namely, SCED is the delay based
scheduler in that case. The following proposition is the main property of SCED. It
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Figure 2.5: Definition of SCED. Packet n of flow i arrives at time An
i . Its dead-

line is Dn
i .

shows that SCED implements a deadline allocation method based on service curves.

Proposition 2.3.2. For the SCED scheduler, the number of packets with deadline
≤ t is given byZi(t) = �(Ri ⊗ βi)(t)�

1We use the original work in [69], which is called there “SCED-B” . For simplicity, we call it SCED.
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Proof: We drop index i in this demonstration. First, we show that Z(t) ≥ �(R⊗
β)(t)�. Let n = �(R ⊗ β)(t)�. Since R ⊗ β ≤ R and R takes integer values, we
must have R(t) ≥ n and thus An ≤ t. Now Rn(t) ≥ (R⊗ β)(t) thus

Rn(t) ≥ (R⊗ β)(t) ≥ n

By definition of SCED, Dn this implies that Dn ≤ t which is equivalent to Z(t) ≥
n.

Conversely, for some fixed but arbitrary t, let now n = Z(t). Packet n has a
deadline ≤ t, which implies that An ≤ t and for all s ∈ [0, An] :

R(s) + β(t− s) ≥ n (2.16)

Now for s ∈ [An, t] we have R(s) ≥ n thus R(s) + β(t − s) ≥ n. Thus Equa-
tion (2.16) is true for all s ∈ [0, t], which means that (R⊗ β)(t) ≥ n.

Theorem 2.3.1 (Schedulability of SCED, ATM). Consider a SCED scheduler with
I flows, total outgoing rateC, and target service curveβi for flow i.

1. If
I∑
i=1

βi(t) ≤ Ct for all t ≥ 0 (2.17)

then every packet is served before or at its deadline and every flowi receives
�βi� as a service curve.

2. Assume that in addition we know that every flowi is constrained by an arrival
curveαi. If

I∑
i=1

(αi ⊗ βi)(t) ≤ Ct for all t ≥ 0 (2.18)

then the same conclusion holds

Proof:

1. Proposition 2.3.2 implies that Zi(t) ≤ Ri(s) + βi(t− s) for 0 ≤ s ≤ t. Thus
Zi(t)−Ri(s) ≤ βi(t− s). Now 0 ≤ βi(t− s) thus

[Zi(t)−Ri(s)]+ = max[Zi(t)−Ri(s), 0] ≤ βi(t− s)

By hypothesis,
∑I

i=1 βi(t − s) ≤ C(t − s) thus by application of Proposi-
tion 2.3.1, we know that every packet is served before or at its deadline. Thus
R′
i ≥ Zi and from Proposition 2.3.2:

R′
i ≥ Zi = �βi ⊗Ri�

Now Ri takes only integer values thus �βi ⊗Ri� = �βi� ⊗Ri.

2. By hypothesis, Ri = αi ⊗ Ri thus Zi = �αi ⊗ βi ⊗ Ri� and we can apply
the same argument, with αi ⊗ βi instead of βi.



2.3. SCHEDULABILITY 101

Schedulability of delay based schedulers A delay based scheduler assigns a de-
lay objective di to all packets of flow i. A direct application of Theorem 2.3.1 gives
the following schedulability condition.

Theorem 2.3.2 ([52]). Consider a delay based scheduler that servesI flows, with
delaydi assigned to flowi. All packets have the same size and time is slotted. Assume
flow i is αi-smooth, whereαi is sub-additive. CallC the total outgoing bit rate. Any
mix of flows satisfying these assumptions is schedulable if∑

i

αi(t− di) ≤ Ct

If αi(t) ∈ N then the condition is necessary.

Proof: A delay based scheduler is a special case of SCED, with target service
curve βi = δdi

. This shows that the condition in the theorem is sufficient. Con-
versely, consider the greedy flows given by Ri(t) = αi(t). This is possible because
αi is assumed to be sub-additive. Flow Ri must be schedulable, thus the output R′

i

satisfies R′
i(t) ≥ αi(i − di). Now

∑
i R

′
i(t) ≤ ct, which proves that the condition

must hold.
It is shown in [52] that a delay based scheduler has the largest schedulability

region among all schedulers, given arrival curves and delay budgets for every flow.
Note however that in a network setting, we are interested in the end-to-end delay
bound, and we know (Section 1.4.3) that it is generally less than the sum of per hop
bounds.

The schedulability of delay based schedulers requires that an arrival curve is
known and enforced at every node in the network. Because arrival curves are modi-
fied by network nodes, this motivates the principle of Rate Controlled Service Dis-
ciplines (RCSDs) [40, 78, 28], which implement in every node a packet shaper fol-
lowed by a delay based scheduler. The packet shaper guarantees that an arrival curve
is known for every flow. Note that such a combination is not work conserving.

Because of the ”pay bursts only once” phenomenon, RCSD might provide end-
to-end delay bounds that are worse than guaranteed rate nodes. However, it is pos-
sible to avoid this by aggressively reshaping flows in every node, which, from The-
orem 2.3.2, allows us to set smaller deadlines. If the arrival curves constraints on
all flows are defined by a single leaky bucket, then it is shown in [63, 62] that one
should reshape a flow to its sustained rate at every node in order to achieve the same
end-to-end delay bounds as GR nodes would.

Schedulability of GR nodes Consider the family of GR nodes, applied to the
ATM case. We cannot give a general schedulability condition, since the fact that
a scheduler is of the GR type does not tell us exactly how the scheduler operates.
However, we show that for any rate r and delay v we can implement a GR node
with SCED.
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Theorem 2.3.3 (GR node as SCED, ATM case). Consider the SCED scheduler
with I flows and outgoing rateC. Let the target service curve for flowi be equal to
the rate-latency service curve with rateri and latencyvi. If

I∑
i=1

ri ≤ C

then the scheduler is a GR node for each flowi, with rateri and delayvi.

Proof: From Proposition 2.3.2:

Zi(t) = �(Ri ⊗ λri
)(t− vi)�

thus Zi is the output of the constant rate server, with rate ri, delayed by vi. Now
from Theorem 2.3.1 the condition in the theorem guarantees that R′

i ≥ Zi, thus the
delay for any packet of flow i is bounded by the delay of the constant rate server
with rate ri, plus vi.

Note the fundamental difference between rate based and delay based schedulers.
For the former, schedulability is a condition on the sum of the rates; it is independent
of the input traffic. In contrast, for delay based schedulers, schedulability imposes a
condition on the arrival curves. Note however that in order to obtain a delay bound,
we need some arrival curves, even with delay based schedulers.

Better than Delay Based scheduler A scheduler need not be either rate based or
delay based. Rate based schedulers suffer from coupling between delay objective
and rate allocation: if we want a low delay, we may be forced to allocate a large
rate, which because of Theorem 2.3.3 will reduce the number of flows than can be
scheduled. Delay based schedulers avoid this drawback, but they require that flows
be reshaped at every hop. Now, with clever use of SCED, it is possible to obtain
the benefits of delay based schedulers without paying the price of implementing
shapers.

Assume that for every flow i we know an arrival curve αi and we wish to obtain
an end-to-end delay bound di. Then the smallest network service curve that should
be allocated to the flow is αi ⊗ δdi

(the proof is easy and left to the reader). Thus a
good thing to do is to build a scheduler by allocating to flow i the target service
curve αi ⊗ δdi

. The schedulability condition is the same as with a delay based
scheduler, however, there is a significant difference: the service curve is guaranteed
even if some flows are not conforming to their arrival curves. More precisely, if
some flows do not conform to the arrival curve constraint, then the service curve is
still guaranteed, but the delay bound is not.

This observation can be exploited to allocate service curves in a more flexible
way than what is done in Section 2.2 [18]. Assume flow i uses the sequence of
nodes m = 1, ...,M . Every node receives a part dmi of the delay budget di, with∑M

m=1 dmi ≤ di. Then it is sufficient that every node implements SCED with a
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target service curve βmi = δdm
i
⊗αi for flow i. The schedulability condition at node

m is ∑
j∈Em

αj(t− dmj ) ≤ Cmt

where Em is the set of flows scheduled at node m and Cm is the outgoing rate of
node m. If it is satisfied, then flow i receives αi ⊗ δdi

as end-to-end service curve
and therefore has a delay bounded by di. The schedulability condition is the same
as if we had implemented at node m the combination of a delay based scheduler
with delay budget dmi , and a reshaper with shaping curve αi; but we do not have to
implement a reshaper. In particular, the delay bound for flow i at node m is larger
than dmi ; we find again the fact that the end-to-end delay bound is less than the sum
of individual bounds.

In [69], it is explained how to allocate a service curves βmi to every network
element m on the path of the flow, such that β1

i ⊗ β2
i ⊗ ... = αi ⊗ δi, in order to

obtain a large schedulability set. This generalizes and improves the schedulability
region of RCSD.

Extension to variable length packets We can extend the previous results to vari-
able length packets; we follow the ideas in [11]. The first step is to consider a ficti-
tious preemptive EDF scheduler (system I), that allocates a deadline to every bit. We
define ZI

i (t) as before, as the number of bits whose deadline is ≤ t. A preemptive
EDF scheduler serves the bits present in the system in order of their deadlines. It
is preemptive (and fictitious) in that packets are not delivered entirely, but, in con-
trast, are likely to be interleaved. The results in the previous sections apply with no
change to this system.

The second step is to modify system I by allocating to every bit a deadline
equal to the deadline of the last bit in the packet. Call it system II. We have
ZII
i (t) = PLi(ZI

i (t)) where PLi is the cumulative packet length (Section 1.7) for
flow i. From the remarks following Proposition 2.3.1, it follows that if system I is
schedulable, then so is system II. System II is made of a preemptive EDF scheduler
followed by a packetizer.

The third step consists in defining “packet-EDF” scheduler (system III); this
is derived from system II in the same way as PGSP is from GPS. More precisely,
the packet EDF scheduler picks the next packet to serve among packets present in
the system with minimum deadline. Then, when a packet is being served, it is not
interrupted. We also say that system III is the non-preemptive EDF scheduler. Then
the departure time of any packet in system III is bounded by its departure time in
system II plus lmax

C where lmax is the maximum packet size across all flows and C
is the total outgoing rate. The proof is similar to Proposition 2.1.1 and is left to the
reader (it can also be found in [11]).

We can apply the three steps above to a SCED scheduler with variable size
packets, called “Packet-SCED” .

Definition 2.3.2 (Packet SCED). A PSCED schedulers is a non-premptive EDF
schedulers, where deadlines are allocated as follows. CallAn

i the arrival time for
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packetn of flowi. Define functionsRn
i by:

Rn
i (t) = inf

s∈[0,An
i ]
[Ri(s) + βi(t− s)]

With PSCED, the deadline for packetn of flowi is defined by

Dn
i = (Rn

i )
−1(Li(n)) = min{t ∈ N : Rn

i (t) ≥ (Li(n))}

whereLi is the cumulative packet length for flowi. Functionβi is called the “target
service curve” for flowi.

The following proposition follows from the discussion above.

Proposition 2.3.3. [11] Consider a PSCED scheduler withI flows, total outgoing
rate C, and target service curveβi for flow i. Call limax the maximum packet size
for flow i and letlmax = maxi limax.

1. If
I∑
i=1

βi(t) ≤ Ct for all t ≥ 0 (2.19)

then every packet is served before or at its deadline pluslmax
C . A bound on

packet delay ish(αi, βi)+ lmax
C . Moreover, every flowi receives[βi(t−limax)−

lmax
C ]+ as a service curve.

2. Assume that, in addition, we know that every flowi is constrained by an ar-
rival curveαi. If

I∑
i=1

(αi ⊗ βi)(t) ≤ Ct for all t ≥ 0 (2.20)

then the same conclusion holds.

Note that the first part of the conclusion means that the maximum packet delay
can be computed by assuming that flow i would receive βi (not βi(t − limax)) as a
service curve, and adding max

C .

Proof: It follows from the three steps above that the PSCED scheduler can be
broken down into a preemptive EDF scheduler, followed by a packetizer, followed
by a delay element. The rest follows from the properties of packetizers and Theo-
rem 2.3.1.
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2.3.3 Buffer Requirements

As we mentioned at the beginning of this section, buffer requirements have to be
computed in order to accept a reservation. The condition is simply

∑
i Xi ≤ X

where Xi is the buffer required by flow i at this network element, and X is the
total buffer allocated to the class of service. The computation of Xi is based on
Theorem 1.4.1; it requires computing an arrival curve of every flow as it reaches
the node. This is done using Theorem 1.4.2 and the flow setup algorithm, such as in
Definition 2.2.1.

It is often advantageous to reshape flows at every node. Indeed, in the absence
of reshaping, burstiness is increased linearly in the number of hops. But we know
that reshaping to an initial constraint does not modify the end-to-end delay bound
and does not increase the buffer requirement at the node where it is implemented.
If reshaping is implemented per flow, then the burstiness remains the same at every
node.

2.4 Application to Differentiated Services

2.4.1 Differentiated Services

In addition to the reservation based services we have studied in Section 2.2, the
Internet also proposes differentiated services [7]. The major goal of differentiated
services is to provide some form of better service while avoiding per flow state
information as is required by integrated services. The idea to achieve this is based
on the following principles.

• Traffic classes are defined; inside a network, all traffic belonging to the same
class is treated as one single aggregate flow.

• At the network edge, individual flows (called “micro-flows” ) are assumed to
conform to some arrival curve, as with integrated services.

If the aggregate flows receive appropriate service curves in the network, and if the
total traffic on every aggregate flow is not too large, then we should expect some
bounds on delay and loss. The condition on microflows is key to ensuring that the
total aggregate traffic remains within some arrival curve constraints. A major diffi-
culty however, as we will see, is to derive bounds for individual flows from charac-
teristics of an aggregate.

Differentiated services is a framework that includes a number of different ser-
vices. The main two services defined today are expedited forwarding (EF)[21, 5]
and assured forwarding (AF)[36]. The goal of EF is to provide to an aggregate some
hard delay guarantees, and no loss. The goal of AF is to separate traffic between
a small number of classes (4); inside each class, three levels of drop priorities are
defined. One of the AF classes could be used to provide a low delay service with no
loss, similar to EF.
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Figure 2.6: Network Model for EF. Microflows are individually shaped and
each conform to some arrival curve. At all nodes, microflows R1 to R3 are
handled as one aggregate flow, with a guaranteed rate (GR) guarantee.
Upon leaving a node, the different microflows take different paths and be-
come part of other aggregates at other nodes.

In this chapter, we focus on the fundamental issue of how aggregate scheduling
impacts delay and throughput guarantees. In the rest of this section, we use the
network model shown on Figure 2.6. Our problem is to find bounds for end-to-
end delay jitter on one hand, for backlog at all nodes on the other hand, under the
assumptions mentioned above. Delay jitter is is the difference between maximum
and minimum delay; its value determines the size of playout buffers (Section 1.1.3).

2.4.2 An Explicit Delay Bound for EF

We consider EF, the low delay traffic class, as mentioned in Section 2.4.1, and find a
closed form expression for the worst case delay, which is valid in any topology, in a
lossless network. This bound is based on a general time stopping method explained
in detail in Chapter 6. It was obtained in [13] and [39].

Assumption and Notation (See Figure 2.6)

• Microflow i is constrained by the arrival curve ρit+σi at the network access.
Inside the network, EF microflows are not shaped.

• Node m acts as a Guaranteed Rate node for the entire EF aggregate, with rate
rm and latency em. This is true in particular if the aggregate is served as one
flow in a FIFO service curve element, with a rate-latency service curve; but
it also holds quite generally, even if nodes are non-FIFO (Section 2.1.3). In
Chapter 6, we explain that the generic node model used in the context of EF
is packet scale rate guarantee, which satisfies this assumption.

Let e be an upper bound on em for all m.
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• h is a bound on the number of hops used by any flow. This is typically 10 or
less, and is much less than the total number of nodes in the network.

• Utilization factors: Define νm = 1
rm

∑
i�m ρi, where the notation i  m

means that node m is on the path of microflow i. Let ν be an upper bound on
all vm.

• Scaled burstiness factors: Define τm = 1
rm

∑
i�m σi. Let τ be an upper bound

on all τm.

• Lmax is an upper bound on the size (in bits) of any EF packet.

Theorem 2.4.1 (Closed form bound for delay and backlog [13]). If ν < 1
h−1

then a bound on end-to-end delay variation for EF ishD1 with

D1 =
e+ τ

1− (h− 1)ν

At nodem, the buffer required for serving low delay traffic without loss is bounded
byBreq = rmD1 + Lmax.

Proof: (Part 1:) Assume that a finite bound exists and call D the least upper
bound. The data that feeds node m has undergone a variable delay in the range
[0, (h − 1)D], thus an arrival curve for the EF aggregate at node m is νrm(t +
(h − 1)D) + rmτ . By application of Equation (2.3), the delay seen by any packet
is bounded by e+ τ + (h− 1)Dν; thus D ≤ e+ τ + (h− 1)Dν. If the utilization
factor ν is less than 1

h−1 , it follows that D ≤ D1.
(Part 2:) We prove that a finite bound exists, using the time-stopping method.

For any time t > 0, consider the virtual system made of the original network, where
all sources are stopped at time t. This network satisfies the assumptions of part 1,
since there is only a finite number of bits for the entire lifetime of the network. Call
D′(t) the worst case delay across all nodes for the virtual network indexed by t.
From the above derivation we see that D′(t) ≤ D1 for all t. Letting t tend to +∞
shows that the worst case delay at any node remains bounded by D1.

(Part 3:) By Corollary 2.1.1, the backlog is bounded by the vertical deviation
between the arrival curve νrm(t+ (h− 1)D) + rmτ and the service curve [rm(t−
em)− Lmax]+, which after some algebra gives Breq

The theorem can be slightly improved by avoiding to take maxima for νm; this
gives the following result (the proof is left to the reader):

Corollary 2.4.1. If ν < 1
h−1 then a bound on end-to-end delay variation for EF is

hD′
1 with

D′
1 = min

m

{
em + τm

1− (h− 1)νm

}
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Improved Bound When Peak Rate is Known: A slightly improved bound can
be obtained if, in addition, we have some information about the total incoming bit
rate at every node. We add the following assumptions to the previous list.

• Let Cm denote a bound on the peak rate of all incoming low delay traffic
traffic at node m. If we have no information about this peak rate, then Cm =
+∞. For a router with large internal speed and buffering only at the output,
Cm is the sum of the bit rates of all incoming links (the delay bound is better
for a smaller Cm).

• Fan-in: Let Im be the number of incident links at node m. Let F be an upper
bound on ImLmax

rm
. F is the maximum time to transmit a number of EF packets

that simultaneously appear on multiple inputs.

• Redefine τm := max{ ImLmax
rm

, 1
rm

∑
i�m σi}. Let τ be an upper bound on

all τm.

• Let um = [Cm−rm]+

Cm−νmrm
. Note that 0 ≤ um ≤ 1, um increases with Cm, and

if Cm = +∞, then um = 1. Call u = maxm um. The parameter u ∈ [0, 1]
encapsulates how much we gain by knowing the maximum incoming rates
Cm (u is small for small values of Cm).

Theorem 2.4.2 (Improved Delay Bound When Peak Rate is Known [13, 39]).
Let ν∗ = minm{ Cm

(h−1)(Cm−rm)++rm
}. If ν < ν∗, a bound on end-to-end delay

variation for EF ishD2 with

D2 =
e+ uτ + (1− u)F
1− (h− 1)uν

Proof: The proof is similar to the proof of Theorem 2.4.1. Call D the least bound,
assuming it exists.

An arrival curve for the flow of EF packets arriving at node m on some incident
link l is Cl

mt + Lmax, where Cl
m is the peak rate of the link (this follows from

item 4 in Theorem 1.7.1). Thus an arrival curve for the incoming flow of EF packets
at node m is Cmt + ImLmax. The incoming flow is thus constrained by the T-
SPEC (M,p, r, b) (see Page 16) with M = ImLmax, p = Cm, r = rmνm, b =
rmτm + (h− 1)Drmνm. By Proposition 1.4.1, it follows that

D ≤ ImLmax(1− um)
rm

+ (τm + (h− 1)Dνm)um

The condition ν < ν∗ implies that 1− (h− 1)νmum > 0, thus

D ≤ em + τmum + ImLmax(1−um)
rm

1− (h− 1)νmum
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The above right-hand-side is an increasing function of um, due to τm ≥ ImLmax
rm

.
Thus we have a bound by replacing um by u:

D ≤ em + τmu+ ImLmax(1−u)
rm

1− (h− 1)νmu
≤ D2

The rest of the proof follows along lines similar to the proof of Theorem 2.4.1.
It is also possible to derive an improved backlog bound, using Proposition 1.4.1.

As with Theorem 2.4.2, we also have the following variant.

Corollary 2.4.2. If ν < ν∗, a bound on end-to-end delay variation for EF ishD′
2

with

D′
2 = min

m

{
em + τmum + ImLmax(1−um)

rm

1− (h− 1)νmum

}

Discussion: If we have no information about the peak incoming rate Cl, then we
set Cl = +∞ and Theorem 2.4.2 gives the same bound as Theorem 2.4.2. For finite
values of Cm, the delay bound is smaller, as illustrated by Figure 2.7.
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Figure 2.7: The bound D (in seconds) in Theorem 2.4.1 versus the utilization
factor ν for h = 10, e = 21500Brm

, Lmax = 1000 b, σi = 100B and ρi = 32kb/s
for all flows, rm = 149.760Mb/s, and Cm = +∞ (thin line) or Cm = 2rm (thick
line).

The bound is valid only for small utilization factors; it explodes at ν > 1
h−1 ,

which does not mean that the worst case delay does grow to infinity [38]. In some
cases the network may be unbounded; in some other cases (such as the unidirectional
ring, there is always a finite bound for all ν < 1. This issue is discussed in Chapter 6,
where we we find better bounds, at the expense of more restrictions on the routes
and the rates. Such restrictions do not fit with the differentiated services framework.
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Note also that, for feed-forward networks, we know that there are finite bounds for
ν < 1. However we show now that the condition ν < 1

h−1 is the best that can be
obtained, in some sense.

Proposition 2.4.1. [4, 13] With the assumptions of Theorem 2.4.1, ifν < 1
h−1 , then

for anyD′ > 0, there is a network in which the worst case delay is at leastD′.

In other words, the worst case queuing delay can be made arbitrarily large; thus
if we want to go beyond Theorem 2.4.1, any bound for differentiated services must
depend on the network topology or size, not only on the utilization factor and the
number of hops.

Proof: We build a family of networks, out of which, for any D′, we can exhibit
an example where the queuing delay is at least D′.

The thinking behind the construction is as follows. All flows are low priority
flows. We create a hierarchical network, where at the first level of the hierarchy we
choose one “fl ow” for which its first packet happens to encounter just onepacket of
every other flow whose route it intersects, while its next packet does not encounter
any queue at all. This causes the first two packets of the chosen flow to come back-
to-back after several hops. We then construct the second level of the hierarchy by
taking a new flow and making sure that its first packet encounters two back-to-back
packets of each flow whose routes it intersects, where the two back-to-back packet
bursts of all these flows come from the output of a sufficient number of networks
constructed as described at the first level of the hierarchy. Repeating this process
recursively sufficient number of times, for any chosen delay value D we can create
deep enough hierarchy so that the queuing delay of the first packet of some flow
encounters a queuing delay more than D (because it encounters a large enough back-
to-back burst of packets of every other flow constructed in the previous iteration),
while the second packet does not suffer any queuing delay at all. We now describe
in detail how to construct such a hierarchical network (which is really a family of
networks) such that utilization factor of any link does not exceed a given factor ν,
and no flow traverses more than h hops.

Now let us describe the networks in detail. We consider a family of networks
with a single traffic class and constant rate links, all with same bit rate C. The
network is assumed to be made of infinitely fast switches, with one output buffer
per link. Assume that sources are all leaky bucket constrained, but are served in an
aggregate manner, first in first out. Leaky bucket constraints are implemented at the
network entry; after that point, all flows are aggregated. Without loss of generality,
we also assume that propagation delays can be set to 0; this is because we focus
only on queuing delays. As a simplification, in this network, we also assume that all
packets have a unit size. We show that for any fixed, but arbitrary delay budget D,
we can build a network of that family where the worst case queueing delay is larger
than D, while each flow traverses at most a specified number of hops.

A network in our family is called N (h, ν, J) and has three parameters: h (max-
imum hop count for any flow), ν (utilization factor) and J (recursion depth). We
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focus on the cases where h ≥ 3 and 1
h−1 < ν < 1, which implies that we can

always find some integer k such that

ν >
1

h− 1
kh+ 1
kh− 1

(2.21)

NetworkN (h, ν, J) is illustrated in Figures 2.8 and 2.9; it is a collection of identical
building blocks, arranged in a tree structure of depth J . Every building block has
one internal source of traffic (called “ transit traffic” ), kh(h − 1) inputs (called the
“building block inputs” ), kh(h−1) data sinks, h−1 internal nodes, and one output.
Each of the h−1 internal nodes receives traffic from kh building block inputs plus it
receives transit traffic from the previous internal node, with the exception of the first
one which is fed by the internal source. After traversing one internal node, traffic
from the building block inputs dies in a data sink. In contrast, transit traffic is fed to
the next internal node, except for the last one which feeds the building block output
(Figure 2.8). Figure 2.9 illustrates that our network has the structure of a complete
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Figure 2.8: The internal node (top) and the building block (bottom) used in
our network example.

tree, with depth J . The building blocks are organized in levels j = 1, ..., J . Each of
the inputs of a level j building block (j ≥ 2) is fed by the output of one level j − 1
building block. The inputs of level 1 building blocks are data sources. The output of
one j − 1 building block feeds exactly one level j building block input. At level J ,
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there is exactly one building block, thus at level J − 1 there are kh(h− 1) building
blocks, and at level 1 there are (kh(h − 1))J−1 building blocks. All data sources
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Figure 2.9: The network made of building blocks from Figure 2.8

have the same rate r = νC
kh+1 and burst tolerance b = 1 packet. In the rest of this

section we take as a time unit the transmission time for one packet, so that C = 1.
Thus any source may transmit one packet every θ = kh+1

ν time units. Note that a
source may refrain from sending packets, which is actually what causes the large
delay jitter. The utilization factor on every link is ν, and every flow uses 1 or h hops.

Now consider the following scenario. Consider some arbitrary level 1 building
block. At time t0, assume that a packet fully arrives at each of the building block
inputs of level 1, and at time t0 + 1, let a packet fully arrive from each data source
inside every level 1 building block (this is the first transit packet). The first transit
packet is delayed by hk − 1 time units in the first internal node. Just one time unit
before this packet leaves the first queue, let one packet fully arrive at each input of
the second internal node. Our first transit packet will be delayed again by hk − 1
time units. If we repeat the scenario along all internal nodes inside the building
block, we see that the first transit packet is delayed by (h − 1)(hk − 1) time units.
Now from Equation (2.21), θ < (h−1)(hk−1), so it is possible for the data source
to send a second transit packet at time (h − 1)(hk − 1). Let all sources mentioned
so far be idle, except for the emissions already described. The second transit packet
will catch up to the first one, so the output of any level 1 building block is a burst
of two back-to-back packets. We can choose t0 arbitrarily, so we have a mechanism
for generating bursts of 2 packets.

Now we can iterate the scenario and use the same construction at level 2. The
level-2 data source sends exactly three packets, spaced by θ. Since the internal node
receives hk bursts of two packets originating from level 1, a judicious choice of the
level 1 starting time lets the first level 2 transit packet find a queue of 2hk−1 packets
in the first internal node. With the same construction as in level 1, we end up with a
total queuing delay of (h− 1)(2hk − 1) > 2(h− 1)(hk − 1) > 2θ for that packet.
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Now this delay is more than 2θ, and the first three level-2 transit packets are delayed
by the same set of non-transit packets; as a result, the second and third level-2 transit
packets will eventually catch up to the first one and the output of a level 2 block is
a burst of three packets. This procedure easily generalizes to all levels up to J . In
particular, the first transit packet at level J has an end-to-end delay of at least Jθ.
Since all sources become idle after some time, we can easily create a last level J
transit packet that finds an empty network and thus a zero queuing delay.

Thus there are two packets in network N (h, ν, J), with one packet having a
delay larger than Jθ, and the other packet has zero delay. This establishes that a
bound on queuing delay, and thus on delay variation in network N (h, ν, J) has to
be at least as large as Jθ.

2.4.3 Bounds for Aggregate Scheduling with Dampers

At the expense of some protocol complexity, the previous bounds can be improved
without losing the feature of aggregate scheduling. It is even possible to avoid bound
explosions at all, using the concepts of damper. Consider an EDF scheduler (for
example a SCED scheduler) and assume that every packet sent on the outgoing link
carries a field with the difference d between its deadline and its actual emission time,
if it is positive, and 0 otherwise. A damper is a regulator in the next downstream node
that picks for the packet an eligibility time that lies in the interval [a+d−∆, a+d],
where ∆ is a constant of the damper, and a is the arrival time of the packet in the
node where the damper resides. We call ∆ the “damping tolerance” . The packet
is then withheld until its eligibility time [76, 18], see Figure 2.10. In addition, we
assume that the damper operates in a FIFO manner; this means that the sequence of
eligibility times for consecutive packets is wide-sense increasing.

Unlike the scheduler, the damper does not exist in isolation. It is associated with
the next scheduler on the path of a packet. Its effect is to forbid scheduling the packet
before the eligibility time chosen for the packet. Consider Figure 2.10. Scheduler m
works as follows. When it has an opportunity to send a packet, say at time t, it picks
a packet with the earliest deadline, among all packets that are present in node N ,
and whose eligibility date is ≥ t. The timing information d shown in the figure is
carried in a packet header, either as a link layer header information, or as an IP hop
by hop header extension. At the end of a path, we assume that there is no damper at
the destination node.

The following proposition is obvious, but important, and is given without proof.

Proposition 2.4.2. Consider the combinationS of a scheduler and its associated
damper. If all packets are served by the scheduler before or at their deadlines, then
S provides a bound on delay variation equal to∆.

It is possible to let ∆ = 0, in which case the delay is constant for all packets. A
bound on the end-to-end delay variation is then the delay bound at the last scheduler
using the combination of a scheduler and a damper (this is called “ jitter EDD” in
[76]). In practice, we consider ∆ > 0 for two reasons. Firstly, it is impractical to
assume that we can write the field d with absolute accuracy. Secondly, having some
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Figure 2.10: Dampers in a differentiated services context. The model shown
here assumes that routers are made of infinitely fast switching fabrics and
output schedulers. There is one logical damper for each upstream scheduler.
The damper decides when an arriving packet becomes visible in the node.
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slack in the delay variation objective provides better performance to low priority
traffic [18].

There is no complicated feasibility condition for a damper, as there is for sched-
ulers. The operation of a damper is always possible, as long as there is enough
buffer.

Proposition 2.4.3 (Buffer requirement for a damper). If all packets are served
by the scheduler before or at their deadlines, then the buffer requirement at the
associated damper is bounded by the buffer requirement at the scheduler.

Proof: Call R(t) the total input to the scheduler, and R′(t) the amount of data
with deadline ≤ t. Call R∗(t) the input to the damper, we have R∗(t) ≤ R(t).
Packets do not stay in the damper longer than until their deadline in the scheduler,
thus the output R1(t) of the damper satisfies R1(t) ≥ R′(t). The buffer requirement
at the scheduler at time t is R(t) − R′(t); at the damper it is R∗(t) − R1(t) ≥
R(t)−R′(t).

Theorem 2.4.3 (Delay and backlog bounds with dampers). Take the same as-
sumptions as in Theorem 2.4.1, we assume that every schedulerm that is not an
exit point is associated with a damper in the next downstream node, with damping
tolerance∆m. Let∆ be a bound on all∆m.

If ν ≤ 1, then a bound on the end-to-end delay jitter for low delay traffic is

D = e+ (h− 1)∆(1 + ν) + τν

A bound on the queuing delay at any scheduler is

D0 = e+ ν[τ + (h− 1)∆]

The buffer required at schedulerm, for serving low delay traffic without loss is
bounded by

Breq = rmD0

A bound on the buffer required at damperm is the same as the buffer required at
schedulerm.

Proof: The variable part of the delay between the input of a scheduler and the
input of the next one is bounded by ∆. Now let us examine the last scheduler, say
m, on the path of a packet. The delay between a source for a flow i  m and
scheduler m is a constant plus a variable part bounded by (h− 1)∆. Thus an arrival
curve for the aggregate low-delay traffic arriving at scheduler m is

α2(t) = νrm(t+ τ + (h− 1)∆)

By applying Theorem 1.4.2, a delay bound at scheduler m is given by

D2 = E + uν[τ + (h− 1)∆]
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A bound on end-to-end delay variation is (h − 1)∆ + D2, which is the required
formula.

The derivation of the backlog bound is similar to that in Theorem 2.4.1.
The benefit of dampers is obvious: there is no explosion to the bound, it is finite

(and small if ∆ is small) for any utilization factor up to 1 (see Figure 2.11). Further-
more, the bound is dominated by h∆, across the whole range of utilization factors
up to 1. A key factor in obtaining little delay variation is to have a small damping
tolerance δ.
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Figure 2.11: The bound D (in seconds) in Theorem 2.4.3 the same param-
eters as Figure 2.7, for a damping tolerance ∆ = 5 ms per damper, and
Cm = +∞ (thick line). The figure also shows the two curves of Figure 2.7,
for comparison. The bound is very close to h∆ = 0.05s, for all utilization
factors up to 1.

There is a relation between a damper and a maximum service curve. Consider
the combination of a scheduler with minimum service curve β and its associate
damper with damping tolerance ∆. Call p the fixed delay on the link between the
two. It follows immediately that the combination offers the maximum service curve
β⊗ δp−∆ and the minimum service curve β⊗ δp. Thus a damper may be viewed as
a way to implement maximum service curve guarantees. This is explored in detail
in [18].

2.4.4 Static Earliest Time First (SETF)

A simpler alternative to the of dampers is proposed by Z.-L. Zhang et al under the
name of Static Earliest Time First (SETF) [80].

Assumptions We take the same assumptions as with Theorem 2.4.1, with the fol-
lowing differences.
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• At network access, packets are stamped with their time of arrival. At any node,
they are served within the EF aggregate at one node in order of time stamps.
Thus we assume that nodes offer a GR guarantee to the EF aggregate, as
defined by Equation (2.1) or Equation (2.2), but where packets are numbered
in order of time stamps (i.e. their order at the network access, not at this node).

Theorem 2.4.4. If the time stamps have infinite precision, for allν < 1, the end-to-
end delay variation for the EF aggregate is bounded by

D = (e+ τ)
1− (1− ν)h

ν(1− ν)h−1

Proof: The proof is similar to the proof of Theorem 2.4.1. Call Dk the least
bound, assuming it exists, on the end-to-end delay after k hops, k ≤ h. Consider a
tagged packet, with label n, and call dk its delay in k hops. Consider the node m
that is the hth hop for this packet. Apply Equation (2.2): there is some label k ≤ n
such that

dn ≤ e+ ak +
lk + ...+ ln

r
(2.22)

where aj and dj are the arrival and departure times at node m of the packet labeled
j, and lj its length in bits. Now packets k to n must have arrived at the network
access before an − dk and after am −DHh−1. Thus

lk + ...+ ln ≤ α(an − am − dk +Dh−1)

where α is an arrival curve at network access for the traffic that will flow through
node m. We have α(t) ≤ rm(νt+ τ). By Equation (2.3), the delay dn − an for our
tagged packet is bounded by

e+ sup
t≥0

[
α(t− dk +Dh−1)

rm
− t

]
= e+ τ + ν(Dh−1 − dk)

thus
dk+1 ≤ dk + e+ τ + ν(Dh−1 − dk)

The above inequation can be solved iteratively for dk as a function of Dh−1; then
take k = h− 1 and assume the tagged packet is one that achieves the worst case k-
hop delay, thus Dh−1 = dh−1 which gives an inequality for Dh−1; last, take k = h
and obtain the end-to-end delay bound as desired.

Comments: The bound is finite for all values of the utilization factor ν < 1,
unlike the end-to-end bound in Theorem 2.4.1. Note that for small values of ν, the
two bounds are equivalent.

We have assumed here infinite precision about the arrival time stamped in every
packet. In practice, the timestamp is written with some finite precision; in that case,
Zhang [80] finds a bound which lies between Theorem 2.4.1 and Theorem 2.4.4 (at
the limit, with null precision, the bound is exactly Theorem 2.4.4).
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2.5 Bibliographic Notes

The delay bound for EF in Theorem 2.4.2 was originally found in [13], but neglect-
ing the Lmax term; a formula that accounts for Lmax was found in [39].

Bounds that account for statistical multiplexing can be found in [55].

2.6 Exercises

Exercise 2.1. Consider a guaranteed rate scheduler, with rateR and delayv, that
receives a packet flow with cumulative packet lengthL. The (packetized) scheduler
output is fed into a constant bit rate trunk with ratec > R and propagation delay
T .

1. Find a minimum service curve for the complete system.

2. Assume the flow of packets is(r, b)-constrained, withb > lmax. Find a bound
on the end-to-end delay and delay variation.

Exercise 2.2. Assume all nodes in a network are of the GR type. A flow with T-
SPECα(t) = min(rt+ b,M + pt) has performed a reservation with rateR across
a sequence ofH nodes. Assume no reshaping is done. What is the buffer requirement
at thehth node along the path, forh = 1, ...H ?

Exercise 2.3. Assume all nodes in a network are made of a shaper followed by a
GR scheduler. A flow with T-SPECα(t) = min(rt + b,M + pt) has performed a
reservation with rateR across a sequence ofH nodes. Assume that the shaper at
every node uses the shaping curveσ = γr,b. What is the buffer requirement at the
hth node along the path, forh = 1, ...H ?

Exercise 2.4. Assume all nodes in a network are made of a shaper followed by a
FIFO multiplexer. Assume that flowI has T-SPEC,αi(t) = min(rit+ bi,M +pit),
that the shaper at every node uses the shaping curveσi = γri,bi

for flow i. Find the
schedulability conditions for every node.

Exercise 2.5. A network consists of two nodes in tandem. There aren1 flows of type
1 andn2 flows of type2. Flows of typei have arrival curveαi(t) = rit+bi, i = 1, 2.
All flows go through nodes1 then2. Every node is made of a shaper followed by
an EDF scheduler. At both nodes, the shaping curve for flows of typei is someσi
and the delay budget for flows of typei is di. Every flow of typei should have a
end-to-end delay bounded byDi. Our problem is to find good values ofd1 andd2.

1. We assume thatσi = αi. What are the conditions ond1 andd2 for the end-to-
end delay bounds to be satisfied ? What is the set of(n1, n2) that are schedu-
lable ?

2. Same question if we setσi = λri
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Exercise 2.6. Consider the scheduler in Theorem 2.3.3. Find an efficient algorithm
for computing the deadline of every packet.

Exercise 2.7. Consider a SCED scheduler with target service curve for flowi given
by

βi = γri,bi
⊗ δdi

Find an efficient algorithm for computing the deadline of every packet.
Hint: use an interpretation as a leaky bucket.

Exercise 2.8. Consider the delay bound in Theorem 2.4.1. Take the same assump-
tions but assume also that the network is feedforward. Which better bound can you
give ?
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