NETWORK CALCULUS

A Theory of Deterministic Queuing Systems
for the Internet

JEAN-YVES LE BOUDEC
PATRICK THIRAN

Online Version of the Book Springer Verlag - LNCS 2050

Version January 16, 2002

A Annelies
A Joana, Mé&lle, Audraine et Elias
A ma nere
—JL

A mes parents
—-PT

Pouréviter les grumeaux
Qui encombrent lesiseaux
Il fallait, c’est compliqie,
Maitriser les seaux pegs

Branle-bas dans les campus
On pourra degnavant
Calculer plus simplement
Gracea l'algebre Min-Plus

Foin des obscures astuces
Pour estimer les&lais
Et la gigue des paquets

Placea “Network Calculus”

—-JL

vi

Summary of Changes

2002 Jan 14, JL Chapter 2: added a better coverage of GR nodes, in particular
equivalence with service curve. Fixed bug in Proposition 1.4.1

2002 Jan 16, JL Chapter 6: M. Andrews brought convincing proof that conjecture
6.3.1 is wrong. Redesigned Chapter 6 to account for this. Removed redun-
dancy between Section 2.4 and Chapter 6. Added SETF to Section 2.4

Contents

Introduction Xiii
| A First Coursein Network Calculus 1
1 Network Calculus 3
1.1 ModelsforDataFlows 4
1.1.1 Cumulative Functions, Discrete Time versus Continuous
TimeModels 4
1.1.2 Backlogand VirtualDelay 6
1.1.3 Example: The PlayoutBuffer 7
1.2 ArrivalCurves.. e 8
1.2.1 Definition of an Arrival Curve 8
1.2.2 Leaky Bucket and Generic Cell Rate Algorithm 12
1.2.3 Sub-additivity and Arrival Curves 17
1.2.4 Minimum Arrival Curve 20
1.3 ServiceCurves. e 22
1.3.1 Definition of Service Curve. 22
1.3.2 Classical Service Curve Examples 25
1.4 Network CalculusBasics 28
141 ThreeBounds 28
142 AretheBoundsTight? 33
143 Concatenation 34
1.4.4 Improvement of BacklogBounds 36
15 GreedyShapers. i 37
1.5.1 Definitions 37
1.5.2 Input-Output Characterization of Greedy Shapers. 38
1.5.3 Properties of Greedy Shapers. 40
1.6 Maximum Service Curve, Variable and Fixed Delay 42
1.6.1 Maximum ServiceCurves 42
1.6.2 DelayfromBacklog 45
1.6.3 \VariableversusFixedDelay 48
1.7 Handling Variable LengthPackets. 49

Vii

viii

CONTENTS

1.7.1 An Example of Irregularity Introduced by Variable Length

Packets 49
1.7.2 ThePacketizer 50
1.7.3 A Relation between Greedy Shaper and Packetizer 55
1.7.4 Packetized Greedy Shaper. 58
1.8 Effective Bandwidth and Equivalent Capacity. 64
1.8.1 Effective BandwidthofaFlow 64
1.8.2 EquivalentCapacity. 65
1.8.3 Example: Acceptance Region for a FIFO Multiplexer 67
1.9 Proofof Theorem1.45 68
1.10 BibliographicNotes 71
1.11 EXErciSeS. v v v i e e e e 72
Application to the I nternet 83
2.1 GPSand Guaranteed Rate Nodes..... 83
2.1.1 PacketScheduling 83
2.1.2 GPS and a Practical Implementation (PGPS) 84
2.1.3 Guaranteed Rate (GR) Nodes and the Max-Plus Approach . 86
2.2 The Integrated Services Model of the IETF. 90
2.2.1 The Guaranteed Service 90
2.2.2 The Integrated Services Model for Internet Routers 90
2.2.3 Reservation SetupwithRSVP. 91
2.2.4 AFlow Setup Algorithm 94
2.25 MulticastFlows 95
2.2.6 FlowSetupwithATM 96
2.3 Schedulability 96
231 EDFSchedulers 96
2.3.2 SCED Schedulers[69] 99
2.3.3 BufferRequirements 105
2.4 Application to Differentiated Services 105
2.4.1 Differentiated Services 105
2.4.2 AnExplicit Delay BoundforEF 106
2.4.3 Bounds for Aggregate Scheduling with Dampers 113
2.4.4 Static Earliest Time First (SETF) 116
2.5 BibliographicNotes 118
26 EXErCISES. v i e 118
Mathematical Background 123
Basic Min-plusand M ax-plus Calculus 125
3.1 Min-plusCalculus 125
3.1.1 Infimumand Minimum 125
3.1.2 Dioid(RU {400}, A\,4) v 127

3.1.3 A Catalog of Wide-sense Increasing Functions 128

CONTENTS iX

3.1.5 Concave, Convex and Star-shaped Functions. 132
3.1.6 Min-plus Convolution 133
3.1.7 Sub-additive Functions 140
3.1.8 Sub-additive Closure 143
3.1.9 Min-plus Deconvolution 147
3.1.10 Representation of Min-plus Deconvolution by Time Inversion151
3.1.11 Vertical and Horizontal Deviations... 154
3.2 Max-plusCalculus 155
3.2.1 Max-plus Convolution and Deconvolution 155
3.2.2 Linearity of Min-plus Deconvolution in Max-plus Algebra . 156
3.3 EXErCiSes i 156
4 Min-plusand Max-plus System Theory 159
4.1 Min-plus and Max-plus Operators 159
4.1.1 \VectorNotations. 159
4.1.2 Operators e e 161
4.1.3 ACatalogofOperators 162
4.1.4 Upper and Lower Semi-continuous Operators. 163
4,15 IsotoneOperators. e 164
4.1.6 LinearOperators 164
417 CausalOperators. 169
4.1.8 Shift-invariantOperators 170
4.19 IdempotentOperators. 171
4.2 ClosureofanOperator 171
4.3 Fixed Point Equation (Space Method) 175
431 MainTheorem 175
4.3.2 Examplesof Application 177
4.4 Fixed Point Equation (Time Method). 181
45 Conclusion 182
11" A Second Coursein Network Calculus 183
5 Optimal Multimedia Smoothing 185
5.1 ProblemSetting 185
5.2 Constraints Imposed by Lossless Smoothing. 187
5.3 Minimal Requirements on Delays and Playback Buffer 188
5.4 Optimal Smoothing Strategies 189
5.4.1 Maximal Solution 189
5.4.2 Minimal Solution. L. 189
5.4.3 SetofOptimal Solutions 190
5.5 Optimal Constant Rate Smoothing. 191
5.6 Optimal Smoothing versus Greedy Shaping 195
5.7 Comparison with Delay Equalization. 198

3.1.4 Pseudo-inverse of Wide-sense Increasing Functions .. . 129

CONTENTS

5.8 Lossless Smoothing over Two Networks 200
5.8.1 Minimal Requirements on the Delays and Buffer Sizes for
Two Networks 202
5.8.2 Optimal Constant Rate Smoothing over Two Networks . . . 203
5.9 BibliographicNotes 205
Aggregate Scheduling 207
6.1 Introduction 207

6.2 Transformation of Arrival Curve through Aggregate Scheduling . . 209
6.2.1 Aggregate Multiplexing in a Strict Service Curve Element . 209
6.2.2 Aggregate Multiplexing in a FIFO Service Curve Element . 210

6.2.3 Aggregate MultiplexinginaGR Node. 215
6.3 Stability and Bounds for a Network with Aggregate Scheduling . . . 215
6.3.1 Thelssueof Stability 215
6.3.2 The Time StoppingMethod 216
6.4 Stability Results and ExplicitBounds 220
6.4.1 TheRingisStable. 220
6.4.2 Explicit Bounds for a Homogeneous ATM Network with
Strong Source Rate Conditions 224
6.5 BibliographicNotes 230
6.6 EXErCiSeS. i e 231
Adaptive and Packet Scale Rate Guarantees 233
7.1 Introduction 233
7.2 AdaptiveGuarantee. 233
7.2.1 Limitations of the Service Curve Abstraction. 233
7.2.2 Definition of Adaptive Guarantee 234
7.2.3 Properties of Adaptive Guarantees 236
7.3 Packet Scale Rate Guarantee 240
7.3.1 Definition of Packet Scale Rate Guarantee 240
7.3.2 Practical Realization of Packet Scale Rate Guarantee 242
7.3.3 Proofof Theorem7.3.1. 244
7.4 BibliographicNotes 247
7.5 EXErCiSeS. v i i e e 247
Time Varying Shapers 249
8.1 Introduction 249
8.2 TimeVaryingShapers. 249
8.3 Time Invariant Shaper with Initial Conditions 251
8.3.1 Shaper with Non-empty Initial Buffer 251
8.3.2 Leaky Bucket Shapers with Non-zero Initial Bucket Level . 252
8.4 Time Varying Leaky-Bucket Shaper 254

8.5 BibliographicNotes 255

CONTENTS Xi

9 Systemswith Losses 257

9.1 A Representation Formula forLosses 257
9.1.1 Lossesina Finite Storage Element.. 257
9.1.2 LossesinaBounded Delay Element 259

9.2 Application 1: BoundonlLossRate. 261

9.3 Application 2: Bound on Losses in Complex Systems. 262
9.3.1 Bound on Losses by Segregation between Buffer and Policer 262
9.3.2 BoundonlLossesinaVBRShaper. 265

9.4 Skohorkhod's Reflection Problem 267

9.5 BibliographicNotes 271

Xii CONTENTS

| ntroduction

What this Book is About

Network Calculus is a set of recent developments that provide deep insights into
flow problems encountered in networking. The foundation of network calculus
lies in the mathematical theory of dioids, and in particular, the Min-Plus dioid
(also called Min-Plus algebra). With network calculus, we are able to understand
some fundamental properties of integrated services networks, window flow control,
scheduling and buffer or delay dimensioning.

This book is organized in three parts. Part | (Chapters 1 and 2) is a self con-
tained, first course on network calculus. It can be used at the undergraduate level
or as an entry course at the graduate level. The prerequisite is a first undergraduate
course on linear algebra and one on calculus. Chapter 1 provides the main set of re-
sults for a first course: arrival curves, service curves and the powerful concatenation
results are introduced, explained and illustrated. Practical definitions such as leaky
bucket and generic cell rate algorithms are cast in their appropriate framework, and
their fundamental properties are derived. The physical properties of shapers are de-
rived. Chapter 2 shows how the fundamental results of Chapter 1 are applied to
the Internet. We explain, for example, why the Internet integrated services internet
can abstract any router by a rate-latency service curve. We also give a theoretical
foundation to some bounds used for differentiated services.

Part Il contains reference material that is used in various parts of the book. Chap-
ter 3 contains all first level mathematical background. Concepts such as min-plus
convolution and sub-additive closure are exposed in a simple way. Part | makes a
number of references to Chapter 3, but is still self-contained. The role of Chapter 3is
to serve as a convenient reference for future use. Chapter 4 gives advanced min-plus
algebraic results, which concern fixed point equations that are not used in Part I.

Part Il contains advanced material; it is appropriate for a graduate course. Chap-
ter 5 shows the application of network calculus to the determination of optimal play-
back delays in guaranteed service networks; it explains how fundamental bounds for
multimedia streaming can be determined. Chapter 6 considers systems with aggre-
gate scheduling. While the bulk of network calculus in this book applies to systems
where schedulers are used to separate flows, there are still some interesting results
that can be derived for such systems. Chapter 7 goes beyond the service curve defini-

Xiii

Xiv INTRODUCTION

tion of Chapter 1 and analyzes adaptive guarantees, as they are used by the Internet
differentiated services. Chapter 8 analyzes time varying shapers; it is an extension
of the fundamental results in Chapter 1 that considers the effect of changes in sys-
tem parameters due to adaptive methods. An application is to renegotiable reserved
services. Lastly, Chapter 9 tackles systems with losses. The fundamental result is a
novel representation of losses in flow systems. This can be used to bound loss or
congestion probabilities in complex systems.

Network calculus belongs to what is sometimes called “exotic algebras” or “top-
ical algebras”. This is a set of mathematical results, often with high description
complexity, that give insights into man-made systems such as concurrent programs,
digital circuits and, of course, communication networks. Petri nets fall into this fam-
ily as well. For a general discussion of this promising area, see the overview paper
[32] and the book [26].

We hope to convince many readers that there is a whole set of largely unex-
plored, fundamental relations that can be obtained with the methods used in this
book. Results such as “shapers keep arrival constraints” or “pay bursts only once”,
derived in Chapter 1 have physical interpretations and are of practical importance to
network engineers.

All results here are deterministic. Beyond this book, an advanced book on net-
work calculus would explore the many relations between stochastic systems and the
deterministic relations derived in this book. The interested reader will certainly en-
joy the pioneering work in [26] and [11]. The appendix contains an index of the
terms defined in this book.

Networ k Calculus, a System Theory for Computer Net-
works

In the rest of this introduction we highlight the analogy between network calculus
and what is called “system theory”. You may safely skip it if you are not familiar
with system theory.

Network calculus is a theory afeterministic queuingystems found in com-
puter networks. It can also be viewed as slystem theorthat applies to computer
networks. The main difference with traditional system theory, as the one that was so
successfully applied to design electronic circuits, is that here we consider another al-
gebra, where the operations are changed as follows: addition becomes computation
of the minimum, multiplication becomes addition.

Before entering the subject of the book itself, let us briefly illustrate some of the
analogies and differences between min-plus system theory, as applied in this book
to communication networks, and traditional system theory, applied to electronic cir-
cuits.

Let us begin with a very simple circuit, such as the RC cell represented in Fig-
ure 1. If the input signal is the voltaget) € R, then the outpuy(t) € R of this
simple circuit is the convolution of by the impulse response of this circuit, which

XV

is hereh(t) = exp(—t/RC)/RC fort > 0:

y(t) = (h© 2)(t) :/O h(t — s)a(s)ds.

Consider now a node of a communication network, which is idealized as a
(greedy) shaper. A (greedy) shaper is a device that forces an input figuo have
an outputy(t) that conforms to a given set of rates according to a traffic envetope
(the shaping curve), at the expense of possibly delaying bits in the buffer. Here the
input and output ‘signals’ are cumulative flow, defined as the number of bits seen on
the data flow in time intervgD, ¢]. These functions are non-decreasing with time
Parametet can be continuous or discrete. We will see in this book thamdy are
linked by the relation

y(t) = (o @ z)(t) = inf {o(t—s)+x(s)}.

s€R such that 0<s<t

This relation defines the min-plus convolution betweesnd.

(1) C—F y(t)
- C O -
X(1) —&y(+>
— (&

(b)

Figure 1. An RC circuit (a) and a greedy shaper (b), which are two elementary
linear systems in their respective algebraic structures.

Convolution in traditional system theory is both commutative and associative,
and this property alows to easily extend the analysis from small to large scale cir-
cuits. For example, the impul se response of the circuit of Figure 2(a) is the convo-
[ution of the impulse responses of each of the elementary cells:

t
h(t) = (h1 @ ha)(t) = / hi(t — s)ha(s)ds.
0
The same property applies to greedy shapers, as we will see in Chapter 1. The
output of the second shaper of Figure 2(b) isindeed equal to y(t) = (o ® z)(¥),
where

Xvi INTRODUCTION

a(t) = (o1 @ o2)(t) =

{o1(t = s) + 02(s)} -

inf
s€R such that 0<s<t

This will lead us to understand the phenomenon known as “pay burst only once’
aready mentioned earlier in thisintroduction.

+O0—\/\/\ I—(»— g @TO +
x(1) he —" he —" y(t)
- C O O -

SO O
—> O1 02

Figure 2: The impulse response of the concatenation of two linear circuit is
the convolution of the individual impulse responses (a), the shaping curve of
the concatenation of two shapers is the convolution of the individual shaping
curves (b).

There are thus clear anal ogies between “ conventional” circuit and system theory,
and network calculus. There are however important differences too.

A first one is the response of a linear system to the sum of the inputs. Thisis
a very common situation, in both electronic circuits (take the example of a linear
low-pass filter used to clean a signa =(t) from additive noise n(t), as shown in
Figure 3(a)), and in computer networks (take the example alink of a buffered node
with output link capacity C, where one flow of interest x(¢) is multiplexed with
other background traffic n(¢), as shown in Figure 3(b)).

Since the electronic circuit of Figure 3(a) is alinear system, the response to the
sum of two inputs is the sum of the individual responses to each signal. Call y(t)
the response of the system to the pure signal x(t), ¥, (¢) the response to the noise
n(t), and y;.¢(t) the response to the input signal corrupted by noise z(t) + n(t).
Then y;0:(t) = y(t) + yn(t). Thisuseful property isindeed exploited to design the
optimal linear system that will filter out noise as much as possible.

If traffic is served on the outgoing link as soon as possible in the FIFO order, the
node of Figure 3(b) is equivalent to a greedy shaper, with shaping curve o (t) = Ct
for t > 0. It is therefore aso a linear system, but this time in min-plus algebra.
This means that the response to the minimum of two inputs is the minimum of the
responses of the system to each input taken separately. However, this also mean
that the response to the sum of two inputs is no longer the sum of the responses of

XVii

n()" Y T Oy
. y'rof(‘l') .
0] h T O

@

(b)

n(t)

\

x(t)

Figure 3: The response y;.:(t) of a linear circuit to the sum of two inputs
x + n is the sum of the individual responses (a), but the response y;:(t) of
a greedy shaper to the aggregate of two input flows = + n is not the sum of
the individual responses (b).

the system to each input taken separately, because now xz(t) + n(¢) is a nonlinear
operation between the two inputs z(¢) and n(¢): it plays the role of amultiplication
in conventional system theory. Therefore the linearity property does unfortunately
not apply to the aggregate x(¢) + n(t). Asaresult, little is known on the aggregate
of multiplexed flows. Chapter 6 will learn us some new results and problems that
appear simple but are till open today.

In both electronics and computer networks, nonlinear systems are aso fre-
quently encountered. They are however handled quite differently in circuit theory
and in network calculus.

Consider an elementary nonlinear circuit, such asthe BJT amplifier circuit with
only one transistor, shown in Figure 4(a). Electronics engineers will analyze this
nonlinear circuit by first computing a static operating point y* for the circuit, when
the input z* is a fixed constant voltage (this is the DC analysis). Next they will
linearize the nonlinear element (i.e the transistor) around the operating point, to
obtain aso-called small signal model, which alinear model of impulse response i (t)
(thisisthe AC analysis). Now x;;,, (t) = x(t) —x* isatime varying function of time
within asmall range around z*, so that y;;,, (t) = y(t) — y* isindeed approximately
given by vy, (t) ~ (h ® x4,)(t). Such a model is shown on Figure 4(b). The
difficulty of athorough nonlinear analysis is thus bypassed by restricting the input
signal in a small range around the operating point. This alows to use a linearized
model whose accuracy is sufficient to evaluate performance measures of interest,
such as the gain of the amplifier.

In network calculus, we do not decompose inputs in a small range time-varying
part and another large constant part. We do however replace nonlinear elements by
linear systems, but the latter ones are now alower bound of the nonlinear system. We

Xviii INTRODUCTION

Vee

+0— xiin(t) yiin (1)
x(t) y(1)

Buffered
window flow Network
Controller

—— but — -
x(1) y() x(t) yiin(t)

© (@

Figure 4: An elementary nonlinear circuit (a) replaced by a (simplified) linear
model for small signals (b), and a nonlinear network with window flow control
(c) replaced by a (worst-case) linear system (d).

will see such an example with the notion of service curve, in Chapter 1: anonlinear
systemy(t) = II(x)(t) isreplaced by alinear system y;;,,(¢t) = (6®x)(¢), where
denotes this service curve. This model is such that y;;,, (t) < y(¢) for @l ¢ > 0, and
all possible inputs z(t). Thiswill also alow us to compute performance measures,
such as delays and backlogs in nonlinear systems. An example is the window flow
controller illustrated in Figure 4(c), which we will analyze in Chapter 4. A flow z is
fed viaawindow flow controller in anetwork that realizes some mapping y = I1(z).
The window flow controller limits the amount of data admitted in the network in
such away that the total amount of datain transit in the network is always less than
some positive number (the window size). We do not know the exact mapping II,
we assume that we know one service curve 3 for this flow, so that we can replace
the nonlinear system of Figure 4(c) by the linear system of Figure 4(d), to obtain
deterministic bounds on the end-to-end delay or the amount of datain transit.

Thereader familiar with traditional circuit and system theory will discover many
other analogies and differences between the two system theories, while reading this
book. We should insist however that no prerequisite in system theory is needed to
discover network calculus asiit is exposed in this book.

XiX

Acknowledgement

We gratefully acknowledge the pioneering work of Cheng-Shang Chang and René
Cruz; our discussions with them have influenced this text. We thank Anna Charny,
Silvia Giordano, Olivier Verscheure, Frédéric Worm, Jon Bennett, Kent Benson,
Vicente Cholvi, William Courtney, Juan Echagué, Felix Farkas, Gérard Hébuterne,
Milan Vojnovi¢ and Zhi-Li Zhang for the fruitful collaboration. The interaction
with Rajeev Agrawal, Matthew Andrews, Francois Baccelli, Guillaume Urvoy and
Lothar Thiele is acknowledged with thanks. We are grateful to Holly Cogliati for
helping with the preparation of the manuscript.

XX

INTRODUCTION

Part |

A First Coursein Network
Calculus

Chapter 1

Network Calculus

In this chapter we introduce the basic network calculus concepts of arrival, ser-
vice curves and shapers. The application given in this chapter concerns primarily
networks with reservation services such as ATM or the Internet integrated services
(“Intserv”). Applications to other settings are given in the following chapters.

We begin the chapter by defining cumulative functions, which can handle both
continuous and discrete time models. We show how their use can give afirst insight
into playout buffer issues, which will be revisited with more detail in Chapter 5.
Then the concepts of L eaky Buckets and Generic Cell Rate algorithms are described
in the appropriate framework, of arrival curves. We address in detail the most im-
portant arrival curves: piecewise linear functions and stair functions. Using the stair
functions, we clarify the relation between spacing and arrival curve.

We introduce the concept of service curve as a common model for a variety
of network nodes. We show that all schedulers generally proposed for ATM or the
Internet integrated services can be modeled by a family of simple service curves
called the rate-latency service curves. Then we discover physical properties of net-
works, such as “pay bursts only once” or “greedy shapers keep arrival constraints’.
We also discover that greedy shapers are min-plus, timeinvariant systems. Then we
introduce the concept of maximum service curve, which can be used to account for
constant delays or for maximum rates. We illustrate all along the chapter how the
results can be used for practical buffer dimensioning. We give practical guidelines
for handling fixed delays such as propagation delays. We also address the distortions
due to variability in packet size.

4 CHAPTER 1. NETWORK CALCULUS

1.1 Modelsfor Data Flows

1.1.1 Cumulative Functions, Discrete Time versus Continuous
Time Models

It is convenient to describe data flows by means of the cumulative function R(t),
defined as the number of bits seen on the flow in timeinterval [0, ¢]. By convention,
we take R(0) = 0, unless otherwise specified. Function R is aways wide-sense
increasing, that is, it belongs to the space F defined in Section 3.1.3 on Page 128.
We can use a discrete or continuous time model. In real systems, there is always a
minimum granularity (bit, word, cell or packet), therefore discrete time with afinite
set of valuesfor R(t) could alwaysbe assumed. However, it is often computationally
simpler to consider continuous time, with a function R that may be continuous or
not. If R(t) isacontinuous function, we say that we have a fluid model Otherwise,
we take the convention that the function is either right or |eft-continuous (this makes
little difference in practice).! Figure 1.1.1 illustrates these definitions.

Convention: A flow is described by a wide-sense increasing function R(t); un-
less otherwise specified, in this book, we consider the following types of models:

e discretetime:t e N={0,1,2,3,...}
e fluid model: t € Rt = [0, +00) and R isacontinuous function

e general, continuous time model: ¢t € R™ and R is aleft- or right-continuous
function

If we assume that R(t) has a derivative 4% = r(t) such that R(t) = [, r(s)ds
(thus we have a fluid model), then r is called the rate function. Here, however, we
will see that it is much simpler to consider cumulative functions such as R rather
than rate functions. Contrary to standard algebra, with min-plus algebra we do not
need functionsto have “nice” properties such as having a derivative.

It is always possible to map a continuous time model R(t) to a discrete time
model S(n),n € N by choosing atime slot § and sampling by

S(n) = R(nod) (1.1

In general, thisresultsin aloss of information. For the reverse mapping, we use the
following convention. A continuous time model can be derived from S(n),n € N
by letting?

R(0) = 5(15]) (12

11t would be nice to stick to either left- or right-continuous functions. However, depending on the
model, there is no best choice: see Section 1.2.1 and Section 1.7
2[x] (“ceiling of ") is defined as the smallest integer > ; for example [2.3] = 3 and [2] = 2

1.1. MODELS FOR DATA FLOWS 5

>

T T T T T T T T T T T T > 11 T T T T T T T 17T
123456 7 89 1011121314 1234567 89 1011121314

1234567 89 1011121314

Figure 1.1: Examples of Input and Output functions, illustrating our terminol-
ogy and convention. R; and R} show a continuous function of continuous
time (fluid model); we assume that packets arrive bit by bit, for a duration
of one time unit per packet arrival. R, and R} show continuous time with
discontinuities at packet arrival times (times 1, 4, 8, 8.6 and 14); we assume
here that packet arrivals are observed only when the packet has been fully
received; the dots represent the value at the point of discontinuity; by con-
vention, we assume that the function is left- or right-continuous. Rs and R3
show a discrete time model; the system is observed only at times 0, 1, 2...

6 CHAPTER 1. NETWORK CALCULUS

The resulting function R’ is aways left-continuous, as we aready required. Fig-
ure 1.1.1illustrates thismapping withd = 1, S = R3 and R’ = R».

Thanks to the mapping in Equation (1.1), any result for a continuous time model
also applies to discrete time. Unless otherwise stated, all results in this book apply
to both continuous and discrete time. Discrete time models are generally used in
the context of ATM; in contrast, handling variable size packetsis usually done with
a continuous time model (not necessarily fluid). Note that handling variable size
packets requires some specific mechanisms, described in Section 1.7.

Consider now a system S, which we view as a blackbox; S receives input data,
described by its cumulative function R(t), and delivers the data after a variable
delay. Call R*(t) the output functionnamely, the cumulative function at the output
of system S. System S might be, for example, a single buffer served at a constant
rate, a complex communication node, or even a complete network. Figure 1.1.1
shows input and output functions for a single server queue, where every packet
takes exactly 3 time units to be served. With output function R; (fluid model) the
assumption is that a packet can be served as soon as a first bit has arrived (cut-
through assumption), and that a packet departure can be observed bit by bit, at a
constant rate. For example, thefirst packet arrives between times 1 and 2, and leaves
between times 1 and 4. With output function R; the assumption is that a packet is
served as soon as it has been fully received and is considered out of the system only
when it is fully transmitted (store and forward assumption). Here, the first packet
arrives immediately after time 1, and leaves immediately after time 4. With output
function R3 (discrete time model), the first packet arrives at time 2 and leaves at
time 5.

1.1.2 Backlogand Virtual Delay

From the input and output functions, we derive the two following quantities of in-
terest.

Definition 1.1.1 (Backlog and Delay). For a lossless system:
e Thebacklog at timet is R(t) — R*(¢).
e Thevirtua delay at timet is

dit)=inf{r >0: R(t) < R*(t+7)}

The backlog is the amount of bits that are held inside the system; if the system
isasingle buffer, it is the queue length. In contrast, if the system is more complex,
then the backlog is the number of bits “in transit”, assuming that we can observe
input and output simultaneously. The virtual delay at time ¢ is the delay that would
be experienced by a bit arriving at time ¢ if all bits received before it are served
beforeit. In Figure 1.1.1, the backlog, called x(¢), is shown as the vertical deviation
between input and output functions. The virtual delay is the horizontal deviation. If

1.1. MODELS FOR DATA FLOWS 7

the input and output function are continuous (fluid model), then it is easy to see that
R* (t+d(t)) = R(t), and that d(t) isthe smallest value satisfying this equation.
InFigure 1.1.1, we see that the values of backlog and virtual delay slightly differ
for the three models. Thus the delay experienced by the last bit of the first packet is
d(2) = 2 time units for the first subfigure; in contrast, it is equal to d(1) = 3 time
units on the second subfigure. This is of course in accordance with the different
assumptions made for each of the models. Similarly, the delay for the fourth packet
on subfigure 2 isd(8.6) = 5.4 time units, which corresponds to 2.4 units of waiting
time and 3 units of service time. In contrast, on the third subfigure, it is equa to
d(9) = 6 units; the difference is the loss of accuracy resulting from discretization.

1.1.3 Example: The Playout Buffer

Cumulative functions are a powerful tool for studying delays and buffers. In order
to illustrate this, consider the ssimple playout buffer problem that we describe now.
Consider a packet switched network that carries bits of information from a source
with a constant bit rate » (Figure 1.2) as is the case for example, with circuit em-
ulation. We take a fluid model, as illustrated in Figure 1.2. We have afirst system
S, the network, with input function R(t) = r¢. The network imposes some variable
delay, because of queuing points, therefore the output R* does not have a constant
rate r. What can be done to recreate a constant bit stream ? A standard mechanism

A

R(1) R*(1) St
—+ S —5 S

~
@'L

S
d(0) - Ad(0+) d(0+) + A

time 1

Figure 1.2: A Simple Playout Buffer Example

isto smooth the delay variation in aplayout buffer. It operates as follows. When the
first bit of data arrives, at time d,.(0), where d,.(0) = lim,_.¢ ;>0 d(t) isthelimit to
the right of function @2, it is stored in the buffer until a fixed time A has elapsed.
Then the buffer is served at a constant rate r» whenever it is not empty. This gives us
asecond system &', with input R* and output S.

Let us assume that the network delay variation is bounded by A. Thisimplies
that for every time, the virtual delay (which istherea delay in that case) satisfies

S|t is the virtual delay for a hypothetical bit that would arrive just after time 0. Other authors often
use the notation d(0+)

8 CHAPTER 1. NETWORK CALCULUS

—A<d(t) - d.(0) <A
Thus, since we have afluid model, we have
r(t—d.(0) — A) < R*(t) <r(t—d,.(0) + A)

whichisillustrated in thefigure by thetwo lines (D1) and (D2) parallel to R(t). The
figure suggests that, for the playout buffer S’ the input function R* is always above
the straight line (D2), which means that the playout buffer never underflows. This
suggestsin turn that the output function S(t) isgiven by S(t) = r(t — d,(0) — A).

Formally, the proof is as follows. We proceed by contradiction. Assume the
buffer starves at sometime, and let ¢, bethefirst time at which this happens. Clearly
the playout buffer is empty at timet;, thus R*(¢;) = S(¢1). Thereisatimeinterval
[t1, t1 + €] during which the number of bits arriving at the playout buffer islessthan
re (see Figure 1.2. Thus, d(t; + €) > d,(0) + A which is not possible. Secondly,
the backlog in the buffer at time ¢ is equal to R*(t) — S(t), which is bounded by the
vertical deviation between (D1) and (D2), namely, 2rA.

We have thus shown that the playout buffer is able to remove the delay variation
imposed by the network. We summarize this as follows.

Proposition 1.1.1. Consider a constant bit rate stream of rate modified by a
network that imposes a variable delay variation and no loss. The resulting flow
is put into a playout buffer, which operates by delaying the first bit of the flow by
A, and reading the flow at rate. Assume that the delay variation imposed by the
network is bounded hsx, then

1. the playout buffer never starves and produces a constant output at rate

2. a buffer size o2 Ar is sufficient to avoid overflow.

We study playout buffersin more detailsin Chapter 5, using the network cal cu-
lus concepts further introduced in this chapter.

1.2 Arrival Curves
1.2.1 Definition of an Arrival Curve

Assume that we want to provide guarantees to data flows. This requires some spe-
cific support in the network, as explained in Section 1.3; as a counterpart, we need to
limit the traffic sent by sources. With integrated services networks (ATM or the in-
tegrated servicesinternet), thisis done by using the concept of arrival curve, defined
below.

Definition 1.2.1 (Arrival Curve). Given a wide-sense increasing functiarde-
fined fort > 0 (hamely,a € F), we say that a flowR is constrained byv if and
onlyifforall s < t:

R(t) — R(s) < at—s)

We say thalk hasa as an arrival curve, or also thaR is a-smooth.

1.2. ARRIVAL CURVES 9

Note that the condition is over a set of overlapping intervals, as Figure 1.3 illus-
trates.

4 bits

t—s g_(t)
bits

R(t) time
time t

Figure 1.3: Example of Constraint by arrival curve, showing a cumulative
function R(t) constrained by the arrival curve «(t).

Affine Arrival Curves. For example, if a(t) = rt, then the constraint means
that, on any time window of width 7, the number of bits for the flow is limited by
r7. We say in that case that the flow is peak rate limited. This occurs if we know
that the flow is arriving on alink whose physical bit rate islimited by r b/s. A flow
where the only constraint is a limit on the peak rate is often (improperly) called a
“constant bit rate” (CBR) flow, or “deterministic bit rate” (DBR) flow.

Having a(t) = b, with b aconstant, as an arrival curve means that the maximum
number of bits that may ever be sent on the flow is at most b.

More generaly, because of their relationship with leaky buckets, we will often
use affinearrival curves -y, ;, defined by: ~, ,(t) = rt 4+ b for ¢t > 0 and 0 otherwise
(see Section 3.1.3 for anillustration). Having +,-, asan arrival curve allows asource
to send b bits at once, but not more than r b/s over the long run. Parameters b and r
are called the burst tolerance (in units of data) and the rate (in units of data per time
unit). Figure 1.3 illustrates such a constraint.

Stair Functionsas Arrival Curves:. In the context of ATM, we also use arrival
curves of the form kvr ., where vy ;- is the stair functions defined by vy - (t) =
[H2] for ¢ > 0 and 0 otherwise (see Section 3.1.3 for an illustration). Note that
vr.r(t) = vpo(t + 7), thusvp - resultsfrom vy o by atime shift to the left. Param-
eter T' (the“interval”) and 7 (the “tolerance”) are expressed in time units. In order to
understand the use of vz -, consider aflow that sends packets of afixed size, equal
to & unit of data (for example, an ATM flow). Assume that the packets are spaced by
at least T' time units. An example is a constant bit rate voice encoder, which gener-
ates packets periodically during talk spurts, and is silent otherwise. Such aflow has
kvr,o asan arrival curve.

10 CHAPTER 1. NETWORK CALCULUS

Assume now that the flow is multiplexed with some others. A simple way to
think of this scenario is to assume that the packets are put into a queue, together
with other flows. This is typically what occurs at a workstation, in the operating
system or at the ATM adapter. The queue imposes a variable delay; assume it can
be bounded by some value equal to 7 time units. We will see in the rest of this
chapter and in Chapter 2 how we can provide such bounds. Call R(¢) the input
function for the flow at the multiplexer, and R*(¢) the output function. We have
R*(s) < R(s —), from which we derive:

R*(t) — R*(s) < R(t) — R(s — 7) < kvpo(t — s+ 1) = kvg..(t — 5)

Thus R* has kvr , as an arrival curve. We have shown that a periodic flow, with
period T', and packets of constant size that suffers a variable delayx 7, has
kvr . as an arrival curveThe parameter 7 is often called the “one-point cell delay
variation”, asit corresponds to a deviation from a periodic flow that can be observed
a one point.

Ingeneral, function vz~ can be used to express minimum spacingetween pack-
ets, as the following proposition shows.

Proposition 1.2.1 (Spacing asan arrival constraint). Consider a flow, with cumu-
lative functionR(t), that generates packets of constant size equél data units,

with instantaneous packet arrivals. Assume time is discrete or time is continuous
and R is left-continuous. Calt,, the arrival time for thenth packet. The following

two properties are equivalent:

1. forallm,n, tymin —tm > nT —7
2. the flow hagvr , as an arrival curve

The conditions on packet size and packet generation mean that R(¢) hastheform
nk, with n € N. The spacing condition implies that the time interval between two
consecutive packetsis > T' — 7, between a packet and the next but oneis > 27 — 7,
etc.

Proof: Assumethat property 1 holds. Consider an arbitrary interval]s, t], and call
n the number of packet arrivalsin the interval. Say that these packets are numbered
m+1,....m+n,0that s < ty41 < ... < tmgn < t, fromwhich we have

t—s > tm-i—n - tm+1
Combining with property 1, we get
t—s>n-1)T—r1

From the definition of vy, it follows that vy . (¢ — s) > n. Thus R(t) — R(s) <
kvr . (t — s), which shows the first part of the proof.

Conversely, assume now that property 2 holds. If timeis discrete, we convert the
model to continuous time using the mapping in Equation 1.2, thus we can consider

1.2. ARRIVAL CURVES 11

that we are in the continuous time case. Consider some arbitrary integers m, n; for
al € > 0, we have, under the assumption in the proposition:

R(tyin +€) = R(tm) = (n+ 1k
thus, from the definition of vz -,
tm-‘rn - tm +e> nl —1

Thisistruefor al e > 0, thust,,, 1, — t,, > nT — 7. O

In the rest of this section we clarify the relationship between arrival curve con-
straints defined by affine and by stair functions. First we need a technical lemma,
which amounts to saying that we can always change an arrival curve to be left-
continuous.

Lemma 1.2.1 (Reduction to left-continuous arrival curves). Consider a flow
R(t) and a wide sense increasing functiaut), defined fort > 0. Assume that
R is either left-continuous, or right-continuous. Denote witf{t) the limit to the
left of o at ¢ (this limit exists at every point becausds wide sense increasing); we
haveq;(t) = sup,., a(s). If a is an arrival curve forR, then so isy.

Proof: Assumefirstthat R isleft-continuous. For somes < t, lett,, beasequence
of increasing times converging towards¢, with s < ¢,, < t. Wehave R(t,,)—R(s) <
alty, —s) < ai(t — s). Now lim,, 1 o, R(t,,) = R(t) since we assumed that R is
left-continuous. Thus R(t) — R(s) < ay(t — s).

If in contrast R is right-continuous, consider a sequence s,, converging towards
s from above. We have similarly R(t) — R(sn) < a(t — s,) < oyt — s) and
lim,,— 100 R(sn) = R(s), thus R(t) — R(s) < «ay(t — s) aswell. O

Based on thislemma, we can always reduce an arrival curveto beleft-continuous®.
Notethet ~, ;, and vy . areleft-continuous. Also remember that, in thisbook, we use
the convention that cumulative functions such as R(t) are left continuous; thisis a
pure convention, we might as well have chosen to consider only right-continuous
cumulative functions. In contrast, an arrival curve can always be assumed to be | eft-
continuous, but not right-continuous.

In some cases, there is equivalence between a constraint defined by ~,, and
vr,r. For example, for an ATM flow (namely, aflow where every packet has afixed
size equal to one unit of data) a constraint +,., withr = = and b = 1 is equivalent
to sending one packet every T' time units, thus is equivalent to a constraint by the
arrival curve vy o. In general, we have the following result.

Proposition 1.2.2. Consider either a left- or right- continuous floR(¢), ¢ € R,

or a discrete time flowk(t),t € N, that generates packets of constant size equal to
k data units, with instantaneous packet arrivals. For sdihand r, letr = % and

b= k(7 + 1). Itis equivalent to say thaR is constrained byy,.; or by kv ;.

41f we consider o (t), the limit to theright of o at ¢, then o < - thus o isalways an arrival curve,
however it is not better than «.

12 CHAPTER 1. NETWORK CALCULUS

Proof: Since we can map any discrete time flow to a left-continuous, continuous
time flow, it is sufficient to consider aleft-continuous flow R(t),¢ € R*. Also, by
changing the unit of data to the size of one packet, we can assume without |oss of
generality that k£ = 1. Notefirst, that with the parameter mapping in the proposition,
we have vr » < v, 5, Which shows that if v7 - isan arrival curve for R, then so is
'Yr,b-

Conversely, assume now that R has +,.; as an arrival curve. Then for al s < ¢,
we have R(t) — R(s) < rt + b, and since R(t) — R(s) € N, thisimplies R(t) —
R(s) < |rt + b], Cdl «(t) the right handside in the above equation and apply
Lemmal2.1l Wehave ou(t) = [rt +b— 1] = vp ,(t). O

Note that the equivalence holds if we can assume that the packet size is constant
and equal to the step size in the constraint kvr . In general, the two families of
arrival curve do not provide identical constraints. For example, consider an ATM
flow, with packets of size 1 data unit, that is constrained by an arrival curve of the
form kvr -, for somek > 1. Thisflow might result from the superposition of several
ATM flows. You can convince yourself that this constraint cannot be mapped to a
constraint of the form ~,.;,. We will come back to this example in Section 1.4.1.

1.2.2 Leaky Bucket and Generic Cell Rate Algorithm

Arrival curve constraintsfind their originsin the concept of leaky bucket and generic
cell rate algorithms, which we describe now. We show that leaky buckets correspond
to affine arrival curves v, ;, whilethe generic cell rate algorithm corresponds to stair
functions vy . For flows of fixed size packets, such as ATM cells, the two are thus
equivalent.

Definition 1.2.2 (L eaky Bucket Controller). A Leaky Bucket Controller is a device
that analyzes the data on a fla(¢) as follows. There is a pool (bucket) of fluid of
sizeb. The bucket is initially empty. The bucket has a hole and leaks at a rate of
units of fluid per second when it is not empty.

Data from the flowR(t) has to pour into the bucket an amount of fluid equal
to the amount of data. Data that would cause the bucket to overflow is declared
non-conformant, otherwise the data is declared conformant.

Figure 1.2.2 illustratesthe definition. Fluid in the leaky bucket does not represent
data, however, it is counted in the same unit as data.

Datathat is not able to pour fluid into the bucket is said to be “non-conformant”
data. In ATM systems, non-conformant data is either discarded, tagged with alow
priority for loss (“red” cells), or can be put in a buffer (buffered leaky bucket con-
troller). With the Integrated Services Internet, non-conformant data is in principle
not marked, but simply passed as best effort traffic (namely, normal IP traffic).

We want now to show that a leaky bucket controller enforces an arrival curve
constraint equal to +, . We need the following lemma.

Lemmal.2.2. Consider a buffer served at a constant ratédssume that the buffer
is empty at tim&. The input is described by the cumulative functi®(t). If there

1.2. ARRIVAL CURVES 13

k4 bits R (t)
R(t) _ 4k
R(t) - 3k .
v b 2k
NN
/I\r 1‘2‘34‘5‘()78“)‘10‘11‘12‘13‘14=

Figure 1.4: A Leaky Bucket Controller. The second part of the figure shows
(in grey) the level of the bucket z(t) for a sample input, with » = 0.4 kbits
per time unit and b = 1.5 kbits. The packet arriving at time ¢ = 8.6 is not
conformant, and no fluid is added to the bucket. If b would be equal to 2
kbits, then all packets would be conformant.

is no overflow durind0, ¢], the buffer content at timeis given by

x(t) = sup {R(t) — R(s) —r(t —s)}

s:s<t

Proof: Thelemmacan be obtained asaspecia case of Corollary 1.5.2 on page 40,
however we give here adirect proof. First note that for all s suchthat s < ¢, (t — s)r
is an upper bound on the number of bits output in |s, t], therefore:

R(t) — R(s) —z(t) + z(s) < (t — s)r
Thus
x(t) > R(t) — R(s) + (s) — (t — s)r > R(t) — R(s) — (t — s)r

which provesthat z(t) > supg <, {R(t) — R(s) — r(t — s)}.
Conversely, call t, the latest time at which the buffer was empty before time ¢:

to =sup{s:s <t z(s) =0}

(If z(t) > 0 then ¢, isthe beginning of the busy period at timet). During J¢o, ¢], the
gueue is never empty, therefore it outputs bit at rate r, and thus

z(t) = z(to) + R(t) — R(to) — (t — to)r (1.3)

We assume that R is |eft-continuous (otherwise the proof is alittle more com-
plex); thus z(tp) = 0 and thus z:(¢) < sup,.,«{R(t) — R(s) —r(t — s)} O

Now the content of a leaky bucket behaves exactly like a buffer served at rate
r, and with capacity b. Thus, aflow R(t) is conformant if and only if the bucket
content z(t) never exceeds b. From Lemma 1.2.2, this means that

14 CHAPTER 1. NETWORK CALCULUS

sup{R(t) — R(s) —r(t—s)} <b
s:s<t
which is equivalent to
R(t)—R(s) <r(t—s)+b
for all s < t. We have thus shown the following.

Proposition 1.2.3. A leaky bucket controller with leak rateand bucket siz&forces
a flow to be constrained by the arrival curyg;, namely:

1. the flow of conformant data has; as an arrival curve;

2. ifthe input already has,., as an arrival curve, then all data is conformant.

We will seein Section 1.4.1 a simple interpretation of the leaky bucket param-
eters, namely: r is the minimum rate required to serve the flow, and b is the buffer
required to serve the flow at a constant rate.

Parallel to the concept of leaky bucket is the Generic Cell Rate Algorithm
(GCRA), used with ATM.

Definition 1.2.3 (GCRA (T, 7)). The Generic Cell Rate Algorithm (GCRA) with
parameters T, 7) is used with fixed size packets, called cells, and defines confor-
mant cells as follows. It takes as input a cell arrival timand returng esul t . It

has an internal (static) variableat (theoretical arrival time).

e initially, tat = 0

o when a cell arrives at time, then

if (t <tat - tau)
result = NON- CONFORVANT;
el se {
tat = max (t, tat) + T;
result = CONFORVMANT;
}

Table 1.1 illustrate the definition of GCRA. It illustrates that % isthelong term
rate that can be sustained by the flow (in cells per time unit); while 7 is a tolerance
that quantifies how early cells may arrive with respect to an ideal spacing of T
between cells. We see on the first example that cells may be early by 2 time units
(céllsarriving at times 18 to 48), however this may not be cumultated, otherwise the
rate of = would be exceeded (cell arriving at time 57).

In general, we have the following result, which establishes the relationship be-
tween GCRA and the stair functions vr .

Proposition 1.2.4. Consider a flow, with cumulative functid®(¢), that generates
packets of constant size equalkalata units, with instantaneous packet arrivals.
Assume time is discrete or time is continuous &rid left-continuous. The following
two properties are equivalent:

1.2. ARRIVAL CURVES 15

arrivaltime || 0| 10 | 18 | 28 | 38 | 48 57
tat beforearrival || 0 | 10 | 20 | 30 | 40 | 50 60
result || c | ¢ c c c c | non-c

arrival time 10 15 25| 35
tat before arrival 10 20 20 | 30
result | c| ¢ | nonc| cC c

o

o

Table 1.1: Examples for GCRA(10,2). The table gives the cell arrival times,
the value of the t at internal variable just before the cell arrival, and the
result for the cell (c = conformant, non-c = non-conformant).

1. the flow is conformant to GCRA(7)

2. the flow hagk vr) as an arrival curve

Proof: The proof uses max-plus algebra. Assume that property 1 holds. Denote
with 6,, the value of t at just after the arrival of the nth packet (or cell), and by
convention 6, = 0. Also call ¢,, the arrival time of the nth packet. From the defini-
tion of the GCRA we have 0,, = max(¢,, 0,,—1) + 7. We write this equation for al
m < n, using the notation Vv for max. The distributivity of addition with respect to
V gives.

0p = (p1+T)V (tn,+T)

Op1+T = (0n—2 + 2T) \ (tn—l + 2T)

By + (n— 1)T = (6 +nT) V (t, + nT)

Note that (6p + nT) V (t; + nT) = t; + nT because §y = 0 and t; > 0, thus
the last equation can be simplifiedto 6, + (n — 1)T = t; + nT. Now the iterative
substitution of one equation into the previous one, starting from the last one, gives

On=0n+T)V (tn_1 +2T)V ...V (t1 + nT) (1.9

Now consider the (m + n)th arrival, for some m,n € N, withm > 1. By property
1, the packet is conformant, thus

tmtn = Omin—1—T (1.5

Now from Equation (1.4), 0y n—1 > t;+(m+n—j)T fordl 1 < j <m+n-—1.
For j = m, weobtain 0,,4,_1 > t., + nT. Combining this with Equation (1.5),
we have t,, 1 >t + nT — 7. With proposition 1.2.1, this shows property 2.
Conversely, assume how that property 2 holds. We show by induction on n that
the nth packet is conformant. Thisis always true for n = 1. Assume it is true for
all m < n. Then, with the same reasoning as above, Equation (1.4) holds for n. We
rewrite it as 0, = maxi<j<n{t; + (n — j + 1)T'}. Now from proposition 1.2.1,

16 CHAPTER 1. NETWORK CALCULUS

tnt1 = tj + (TL -7+ 1)T* Tforall < 7 <n, thUSt7l+1 > maxlgjgn{tj + (n —
j+ 1)T'} — 7. Combining the two, we find that ¢,,,1 > 6,, — 7, thusthe (n + 1)th
packet is conformant. |

Note the analogy between Equation (1.4) and Lemma 1.2.2. Indeed, from propo-
sition 1.2.2, for packets of constant size, there is equivalence between arrival con-
straints by affine functions ;. , and by stair functions v . This showsthe following
result.

Corollary 1.2.1. For a flow with packets of constant size, satisfying the GGRA(
is equivalent to satisfying a leaky bucket controller, with ratnd burst tolerance
b given by:

b:(%—kl)&

r=—

T
In the formulasy is the packet size in units of data.

The corollary can also be shown by adirect equivalence of the GCRA algorithm
to aleaky bucket controller.

Take the ATM cell as unit of data. The results above show that for an ATM cell

flow, being conformant to GCRA(T,) is equivalent to having vr » as an arrival
curve. It is also equivalent to having .., as an arrival curve, with r = % andb =
=+ 1.
' Consider a family of I leaky bucket controllers (or GCRAS), with parameters
riy b, for 1 < ¢ < [I. If we apply al of them in parallel to the same flow, then the
conformant data is data that is conformant for each of the controllers in isolation.
The flow of conformant data has as an arrival curve

ot) = min (5, (t) = min (it +b;)

It can easily be shown that the family of arrival curves that can be obtained in
this way is the set of concave, piecewise linear functions, with a finite number of
pieces. We will seein Section 1.5 some examples of functions that do not belong to
this family.

Application to ATM and the Internet Leaky buckets and GCRA are used by
standard bodies to define conformant flows in Integrated Services Networks. With
ATM, a constant bit rate connection (CBR) is defined by one GCRA (or equiva
lently, one leaky bucket), with parameters (T, 7). T is called the ideal cell interval,
and 7 is called the Cell Delay Variation Tolerance (CDVT). Still with ATM, avari-
able bit rate (VBR) connection is defined as one connection with an arrival curve
that corresponds to 2 leaky buckets or GCRA controllers. The Integrated services
framework of the Internet (Intserv) uses the same family of arrival curves, such as

a(t) = min(M + pt,rt + b) (1.6)

1.2. ARRIVAL CURVES 17

where M isinterpreted as the maximum packet size, p asthe peak rate, b asthe burst
tolearance, and r as the sustainable rate (Figure 1.5). In Intserv jargon, the 4-uple
(p, M, r,b) isaso called a T-SPEC (traffic specification).

rate p

rate r

<

v

Figure 1.5: Arrival curve for ATM VBR and for Intserv flows

1.2.3 Sub-additivity and Arrival Curves

In this Section we discover the fundamental relationship between min-plus algebra
and arrival curves. Let us start with a motivating example.

Consider aflow R(t) € Nwitht¢ € N; for exampletheflow isan ATM cell flow,
counted in cells. Time s discrete to simplify the discussion. Assume that we know
that the flow is constrained by the arrival curve 3v; o; for example, the flow is the
superposition of 3 CBR connections of peak rate 0.1 cell per time unit each. Assume
in addition that we know that the flow arrives at the point of observation over alink
with a physical characteristic of 1 cell per time unit. We can conclude that the flow
is also constrained by the arrival curve vy o. Thus, obviously, it is constrained by
a1 = min(3v10,0, v1,0). Figure 1.6 shows the function «;.

\\\\\\\\\1}0\\\\\\\\\\\[im\e\Slqt?; \\\\\\\\\l}ow\\\\\\\\}\ti}’n\e\d?ts

Iy
>

Figure 1.6: The arrival curve a; = min(3v19,0,v1,0) On the left, and its sub-
additive closure (“good” function) a;; on the right. Time is discrete, lines are
put for ease of reading.

Now the arrival curve oy tells us that R(10) < 3 and R(11) < 6. However,
since there can arrive at most 1 cell per time unit , we can also conclude that
R(11) < R(10) + [R(11) — R(10)] < «a1(10) + «1(1) = 4. In other words,

18 CHAPTER 1. NETWORK CALCULUS

the sheer knowledge that R is constrained by «; allows us to derive a better bound
than o itself. Thisis because «; isnot a“good” function, in a sense that we define
now.

Definition 1.2.4. Consider a functiom in cal F'. We say thatv is a “good” function
if any one of the following equivalent properties is satisfied

1. a is sub-additive and(0) = 0

2. a=a®a

. ava=a«a

4. o = a (sub-additive closure af).

The definition uses the concepts of sub-additivity, min-plus convolution, min-
plus deconvolution and sub-additive closure, which are defined in Chapter 3. The
equivalence between the four items comes from Corollaries 3.1.1 on page 144
and 3.1.13 on page 151. Sub-additivity (item 1) meansthat (s +t) < a(s) + a(t).
If « isnot sub-additive, then a.(s) + a(t) may be abetter bound than «(s + ¢), asis
the case with o in the example above. Item 2, 3 and 4 use the concepts of min-plus
convolution, min-plus deconvolution and sub-additive closure, defined in Chapter 3.
We know in particular (Theorem 3.1.10) that the sub-additive closure of a function
« isthe largest “good” function @ such that @ < «. We aso know that a € F if
aeF.

The main result about arrival curvesisthat anyarrival curve can be replaced by
its sub-additive closure, which is a “good” arrival curve. Figure 1.6 shows «a; for
our example above.

Theorem 1.2.1 (Reduction of Arrival Curveto a Sub-Additive One). Saying that
a flow is constrained by a wide-sense increasing funcatios equivalent to saying
that it is constrained by the sub-additive closare

The proof of the theorem leads us to the heart of the concept of arrival curve,
namely, its correspondence with a fundamental, linear relationships in min-plus al-
gebra, which we will now derive.

Lemma 1.2.3. AflowR is constrained by arrival curve ifand only if R < R® «

Proof: Remember that an equation such as R < R ® o means that for all times
t, R(t) < (R ® «)(t). The min-plus convolution R ® « is defined in Chapter 3,
page 134; since R(s) and «(s) are defined only for s > 0, the definition of R @ «
is: (R ® a)(t) = info<s<t(R(s) + a(t — s)). Thus R < R ® « is equivalent to
R(t) < R(s)+a(t—s)fordl 0 < s <t. O

Lemmal.2.4. If a; andasy are arrival curves for a flowR, then so isy; ® as

1.2. ARRIVAL CURVES 19

Proof: ~ We know from Chapter 3 that 1 ® as is wide-sense increasing if oy
and ay are. The rest of the proof follows immediately from Lemma 1.2.3 and the
associativity of ®. O

Proof of Theorem Since « is an arrival curve, so is a ® «, and by iteration, so
is (™ for al n > 1. By the definition of &y, it is also an arrival curve. Thus so is
a = infnzo Oé(").

Conversdly, a < @; thus, if @ isan arrival curve, then sois a. O

Examples We should thus restrict our choice of arrival curves to sub-additive
functions. As we can expect, the functions +,., and vz, introduced in Section 1.2.1
are sub-additive and since their value is 0 for ¢ = 0, they are “good” functions, as
we now show. Indeed, we know from Chapter 1 that any concave function o such
that «(0) = 0 issub-additive. This explains why the functions~y,.;, are sub-additive.

Functions vr . are not concave, but they still are sub-additive. This is because,
from its very definition, the ceiling function is sub-additive, thus

Y < P] < P T = ors (a4 (0

vr o (s41) = [

Let us return to our introductory example with oi; = min(3v19,0, v1,0). Aswe dis-
cussed, a is not sub-additive. From Theorem 1.2.1, we should thus replace oy by
its sub-additive closure a7, which can be computed by Equation (3.13). The com-
putation is simplified by the following remark, which follows immediately from
Theorem 3.1.11:

Lemma1.25. Letvy,; and~, be two “good” functions. The sub-additive closure of
min(y1,72) iIS71 @ 7a.

We can apply the lemmato a; = 3vi0,0 A v1,0, SINCE VT, iS@“good” function.
Thus a1 = 3v10,0 ® v1,0, Which the alert reader will enjoy computing. The result is
plotted in Figure 1.6.

Finaly, let us mention the following equivalence, the proof of whichiseasy and
left to the reader.

Proposition 1.2.5. For a given wide-sense increasing functianwith «(0) = 0,
consider a source defined B(t) = «(t) (greedy source). The source hass an
arrival curve if and only ifo is a “good” function.

VBR arrival curve Now let us examine the family of arrival curves obtained by
combinations of leaky buckets or GCRAS (concave piecewise linear functions). We
know from Chapter 3 that if 7, and - are concave, with v1(0) = ~-(0) = 0,
then 1 ® v2 = 71 A 2. Thus any concave piecewise linear function o such that
a(0) = 0isa“good” function. In particular, if we define the arrival curve for VBR
connections or Intserv flows by

20 CHAPTER 1. NETWORK CALCULUS

a(t) =min(pt + M,rt+0b) ift>0
a(0)=0

(see Figure 1.5) then o isa“good” function.

We have seenin Lemma 1.2.1 that an arrival curve o can always be replaced by
its limit to the left ;. We might wonder how this combines with the sub-additive
closure, and in particul ar, whether these two operations commute (in other words, do
we have (a@); = @ ?). In generd, if « isleft-continuous, then we cannot guarantee
that & isalso | eft-continuous, thus we cannot guarantee that the operations commute.
However, it can be shown that (@), is always a“good” function, thus (@); = (@);.
Starting from an arrival curve o we can thereforeimprove by taking the sub-additive
closure first, then the limit to the left. The resulting arrival curve (@); is a “good”
function that is also left-continuous (a“very good” function), and the constraint by
« isequivalent to the constraint by (&),

Lastly, let us mention that it can easily be shown, using an argument of uniform
continuity, that if « takes only afinite set of values over any bounded time interval,
and if « is left-continuous, then so is @ and then we do have (a); = ag. This
assumption is alwaystrue in discrete time, and in most cases in practice.

1.2.4 Minimum Arrival Curve

Consider now a given flow R(¢), for which we would like to determine a minimal
arrival curve. This problem arises, for example, when R is known from measure-
ments. The following theorem says that there isindeed one minimal arrival curve.

Theorem 1.2.2 (Minimum Arrival Curve). Consider a flonR(t);>o. Then
e functionR @ R is an arrival curve for the flow
e for any arrival curvex that constrains the flow, we have? @ R) < «
e R© Risa“good” function

FunctionR @ R is called theminimum arrival curve for flow R.

The minimum arrival curve uses min-plus deconvolution, defined in Chapter 3.
Figure 1.2.4 shows an example of R @ R for ameasured function R.

Proof: By definition of @, we have (R @ R)(t) = sup,~o{R(t +v) — R(v)}, it
followsthat (R @ R) isan arrival curve. -

Now assume that some « is also an arrival curve for R. From Lemma 1.2.3, we
have R < R ® «). From Rule 14 in Theorem 3.1.12 in Chapter 3, it follows that
R @ R < «,which shows that R @ R isthe minimal arrival curve for R. Lastly,
R @ Risa“good” function from Rule 15 in Theorem 3.1.12. O

Consider a greedy source, with R(t) = «(t), where « is a “good” function.
What is the minimum arrival curve ? Lastly, the curious reader might wonder

5Answer: from the equivalence in Definition 1.2.4, the minimum arrival curve is v itself.

1.2. ARRIVAL CURVES 21

70
60
50
40
30
201

10

100 200 300 400

70

60

50

40

30

20

10

100 200 300 400

10000

8000

6000

4000

2000

100 200 300 400

Figure 1.7: Example of minimum arrival curve. Time is discrete, one time unit
is 40 ms. The top figures shows, for two similar traces, the number of packet
arrivals at every time slot. Every packet is of constant size (416 bytes). The
bottom figure shows the minimum arrival curve for the first trace (top curve)
and the second trace (bottom curve). The large burst in the first trace comes
earlier, therefore its minimum arrival curve is slightly larger.

22 CHAPTER 1. NETWORK CALCULUS

whether R @ R isleft-continuous. The answer isasfollows. Assumethat R is either
right or left-continuous. By lemma 1.2.1, the limit to the left (R @ R), is aso an
arrival curve, and is bounded from above by R © R. Since R @ R isthe minimum
arrival curve, it followsthat (R @ R); = R @ R, thus R @ R isleft-continuous (and
isthus a“very good” function).

In many cases, one is interested not in the absolute minimum arrival curve as
presented here, but in aminimum arrival curve within afamily of arrival curves, for
example, among all ;. functions. For a development aong thisline, see [58].

1.3 Service Curves

1.3.1 Definition of Service Curve

We have seen that one first principle in integrated services networksisto put arrival
curve congtraints on flows. In order to provide reservations, network nodesin return
need to offer some guarantees to flows. Thisis done by packet schedulers[41]. The
details of packet scheduling are abstracted using the concept of service curve, which
we introduce and study in this section. Since the concept of service curve is more
abstract than that of arrival curve, we introduce it on some examples.

A first, simple example of ascheduler isaGeneralized Processor Sharing (GPS)
node [60]. We define now asimple view of GPS; more details are given in Chapter 2.
A GPS node serves severa flowsin parallel, and we can consider that every flow is
alocated a given rate. The guarantee is that during a period of duration ¢, for which
aflow has some backlog in the node, it receives an amount of service at least equal
to rt, where r is its allocated rate. A GPS node is a theoretical concept, which is
not really implementable, becauseit relies on afluid model, while real networks use
packets. We will see in Section 2.1 on page 83 how to account for the difference
between areal implementation and GPS. Consider ainput flow R, with output R*,
that is served in a GPS node, with allocated rate r. Let us also assume that the node
buffer islarge enough so that overflow isnot possible. Wewill seein this section how
to compute the buffer size required to satisfy this assumption. Lossy systems are the
object of Chapter 9. Under these assumptions, for all timet, call ¢y the beginning of
the last busy period for the flow up to time ¢. From the GPS assumption, we have

R*(t) — R*(to) 2 T(t — to)

Assume as usual that R is left-continuous; at time ¢, the backlog for the flow is
0, which is expressed by R(tg) — R*(top) = 0. Combining this with the previous
equation, we obtain:

R*(t) — R(to) > r(t —to)

We have thus shown that, for all time¢: R*(¢) > info<s<:[R(s) + r(t — s)], which
can be written as

R*>R®vp0 (1.7)

1.3. SERVICE CURVES 23

Note that a limiting case of GPS node is the constant bit rate server with rate r,
dedicated to serving a single flow. We will study GPS in more details in Chapter 2.

Consider now a second example. Assume that the only information we have
about a network node is that the maximum delay for the bits of a given flow R is
bounded by some fixed value T, and that the bits of the flow are served in first in,
first out order. We will seein Section 1.5 that thisisused with afamily of schedulers
called “earliest deadline first” (EDF). We can translate the assumption on the delay
bound to d(t) < T for al t. Now since R* is always wide-sense increasing, it
follows from the definition of d(¢) that R*(t + T') > R(t). Conversely, if R*(t +
T) > R(t), thend(t) < T. In other words, our condition that the maximum delay
is bounded by T is equivalent to R*(t + T') > R(t) for al ¢. Thisin turn can be
re-written as

R*(s) > R(s = T)

for all s > T'. We have introduced in Chapter 3 the “impulse” function d7 defined
by ér(t) =0if 0 <t < T and o (t) = +oo if t > T'. It has the property that, for
any wide-sense increasing function z(t), defined fort < 0, (x ® d7)(t) = x(t —1T)
if t > T and (x ® é7)(t) = z(0) otherwise. Our condition on the maximum delay
can thus be written as

R*> R® ot (1.8)

For the two examples above, there is an input-output relationship of the same
form (Equations (1.7) and (1.8)). This suggests the definition of service curve,
which, aswe seein the rest of this section, isindeed able to provide useful resuilts.

B(®)

data

time
>

Figure 1.8: Definition of service curve. The output R* must be above R ® S,
which is the lower envelope of all curves ¢ — R(tg) + 3(t — to).

Definition 1.3.1 (Service Curve). Consider a syster§ and a flow throughS with
input and output functio® and R*. We say tha$ offers to the flow &ervice curve
gifandonlyifg € FandR* > R® 8

Figure 1.8 illustrates the definition.

24 CHAPTER 1. NETWORK CALCULUS

The definition meansthat (5 is awide sense increasing function, with (0) = 0,
and that for all ¢t > 0,

R*(t) > inf (R(s) + B(t — s))

s<t

In practice, we can avoid the use of an infimum if 3 is continuous. The following
proposition is an immediate consequence of Theorem 3.1.8 on Page 139.

Proposition 1.3.1. If 3 is continuous, the service curve property means that for all
t we can findy < ¢ such that

R*(t) > Ri(to) + B(t — to) (1.9

where R;(to) = supy,,,; L(s) is the limit to the left ofR at to. If R is left-
continuous, therk; (tg) = R(to).

For a constant rate server (and also for any strict service curve), the number ¢
in Equation (1.9) is the beginning of the busy period. For other cases, there is not
such asimple definition. However, in some cases we can make sure that ¢, increases
with ¢:

Proposition 1.3.2. If the service curved is convex, then we can find some wide
sense increasing functiar(¢) such that we can choosg = 7(¢) in Equation (1.9).

Note that since a service curve is assumed to be wide-sense increasing, (3, being
convex, is necessarily continuous; thus we can apply Proposition 1.3.1.

Proof: We give the proof when R is left-continuous. The proof for the genera
caseis essentially the same but involves some e cutting. Consider somet; < to and
cal 7, avaueof tq asin Equation (1.9)) at ¢t = ¢;. Also consider any ¢’ < 7. From
the definition of 1, we have

R*(t")+ B(t1 —t') > R* (1) + B(t1 — 1)
and thus
R (') + B(ta —t') = R*(n1) + B(t1 — 1) — B(ts —t') + B(t2 — 1)

Now (3 isconvex, thusfor any four numbersa, b, ¢, d suchthata < ¢ < b,a < d <b
anda + b = c+ d, wehave

B(a) + B(b) = B(c) + B(d)

(the interested reader will be convinced by drawing asmall figure). Applying thisto
a =1t 77’1,1):252 7t/,C:t1 7t/7d:t277'1 glveS

RE(t) + B(ta —t') = R*(11) + Bt — 1)

1.3. SERVICE CURVES 25

and the above equation holds for all ¢ < 7. Consider now the minimum, for a
fixed to, of R*(t') + B(t2 — t') over dl ¢’ < to. The above equation shows that the
minimum is reached for somet’ > ;. O

We will see in Section 1.4 that the combination of a service curve guarantee
with an arrival curve constraint forms the basis for deterministic bounds used in
integrated services networks. Before that, we give the fundamental service curve
examples that are used in practice.

1.3.2 Classical Service Curve Examples

Guaranteed Delay Node Theanalysis of the second examplein Section 1.3.1 can
be rephrased as follows.

Proposition 1.3.3. For a lossless bit processing system, saying that the delay for
any bit is bounded by some fix@ds equivalent to saying that the system offers to
the flow a service curve equal &g

Non Premptive Priority Node Consider anode that servestwo flows, Ry (¢) and
Ry (t). Thefirst flow has non-preemptive priority over the second one (Figure 1.9).
This example explains the general framework used when some traffic classes have
priority over some others, such as with the Internet differentiated services[7]. The
rate of the server is constant, equal to C. Cal R} (t) and R; (t) the outputs for
the two flows. Consider first the high priority flow. Fix some time ¢ and call s the

High priority
Ry®) ——> R*y(t)

R () ——> rate ¢ R*.(D)

Low priority

Figure 1.9: Two priority flows (H and L) served with a preemptive head of the
line (HOL) service discipline. The high priority flow is constrained by arrival
curve a.

beginning of the backlog period for high priority traffic. The servicefor high priority
can be delayed by alow priority packet that arrived shortly before s’, but as soon as
this packet is served, the server is dedicated to high priority aslong asthereis some
high priority traffic to serve. Over theinterval (s, t], the output is C'(t — s)Thus
Ry (t) — Ri(s) > Ot —s) — 1

max

where [£_is the maximum size of alow priority packet. Now by definition of s:

R%,(s) = Ry(s) thus

26 CHAPTER 1. NETWORK CALCULUS

Ry (t) > Ry (s) + C(t —s) — 1L

max

Now we have also
Ry (t) — Ru(s) = Ry (t) — Ry (s) >0
from which we derive

Riy(t) = Ru(s) + [C(t — 5) — %

]+
max

Thefunction v — [Cu — 1%,] iscalled the rate-latency function with rate C' and

max

latency l%‘ [71] (in this book we note it ﬂc i seealso Figure 3.1 on page 130).

Thus the high priority traffic receives this function as a service curve.,

Now let us examine low priority traffic. In order to assure that it does not starve,
we assume in such situations that the high priority flow is constrained by an arrival
curve ay. Consider again some arbitrary time¢. Call s’ the beginning of the server
busy period (note that s’ < s). At time s’, the backlogs for both flows are empty,
namely, Rj;(s') = Ru(s’) and R} (s') = Rp(s"). Over the interval (s,], the
output isC(t — s’). Thus

RL(t) — RL(s') = C(t = &') — [Ry () — Ry (s")]
Now
Ry (t) — Ry(s") = Ry (t) — Ru(s') < Ru(t) — Ru(s') < an(t—)
and obviously R, (t) — Ry (s') > 0 thus
Rp(t) — Ro(s') = Ry(t) — RL(s') = S(t — &)

with S(u) = (Cu — ag(u))™. Thus, if S iswide-senseincreasing, the low-priority

flow receives a service curve equal to function S. Assume further that agr = v, 5,

namely, the high priority flow is constrained by one single leaky bucket or GCRA.

In that case, the service curve S(t) offered to the low-priority flow is equal to the

rate-latency function 8p r(t), with R = C —rand T’ = 5.
We have thus shown the following.

Proposition 1.3.4. Consider a constant bit rate server, with rafg serving two
flows,H and L, with non-preemptive priority given to flo#. Then the high priority

L
flow is guaranteed a rate-latency service curve with @tand Iatencyl% where
1L is the maximum packet size for the low priority flow.

If in addition the high priority flow isy, ,-smooth, withr < C, then the low
priority flow is guaranteed a rate-latency service curve with r@te r and latency
b

C—r"*

This example justifies the importance of the rate-latency service curve. We will
also see in Chapter 2 (Theorem 2.1.1 on page 87) that all practical implementations
of GPS offer a service curve of the rate-latency type.

1.3. SERVICE CURVES 27

Strict service curve An important class of network nodes fits in the following
framework.

Definition 1.3.2 (Strict Service Curve). We say that syste®offers a strict service
curve 3 to a flow if, during any backlogged period of duratianthe output of the
flow is at least equal t@(u).

A GPS node is an example of node that offers a strict service curve of the form
B(t) = rt. Using the same busy-period analysis as with the GPS example in the
previous section, we can easily prove the following.

Proposition 1.3.5. If a node offers3 as a strict service curve to a flow, then it also
offers as a service curve to the flow.

The strict service curve property offers a convenient way of visualizing the ser-
vice curve concept: in that case, 5(u) isthe minimum amount of service guaranteed
during a busy period. Note however that the concept of service curve, as defined in
Definition 1.3.1 is more general. A greedy shaper (Section 1.5.2) is an example of
system that offers its shaping curve as a service curve, without satisfying the strict
service curve property. In contrast, we will find later in the book some propertiesthat
hold only if a strict service curve applies. The framework for a general discussion
of strict service curvesisgivenin Chapter 7.

Variable Capacity Node Consider a network node that offers a variable service
capacity to a flow. In some cases, it is possible to model the capacity by a cumu-
lative function M (¢), where M (t) isthe total service capacity available to the flow
between times 0 and ¢. For example, for an ATM system, think of M (¢) asthe num-
ber of time slots between times 0 and ¢ that are available for sending cells of the
flow. Let us also assume that the node buffer is large enough so that overflow is not
possible. The following proposition is obvious but important in practice

Proposition 1.3.6. If the variable capacity satisfies a minimum guarantee of the
form
M(t)— M(s) > B(t—s) (1.10)
for some fixed functio and for all0 < s < t, theng is a strict service curve,
Thus 3 is also a service curve for that particular flow. The concept of variable
capacity node is also a convenient way to establish service curve properties. For an

application to real time systems (rather than communication networks) see [74].
We will show in Chapter 4 that the output of the variable capacity nodeis given

by
()= igr;fgt{M (t) — M(s) + R(s)}

Lastly, coming back to the priority node, we have:
Proposition 1.3.7. The service curve properties in Proposition 1.3.4 are strict.

The proof is left to the reader. It relies on the fact that constant rate server is a
shaper.

28 CHAPTER 1. NETWORK CALCULUS

1.4 Network CalculusBasics

In this section we see the main simple network calculus results. They are all bounds
for lossless systems with service guarantees.

1.4.1 ThreeBounds

Thefirst theorem says that the backlog is bounded by the vertical deviation between
the arrival and service curves:

Theorem 1.4.1 (Backlog Bound). Assume a flow, constrained by arrival curve
traverses a system that offers a service cutv&he backlogR(t) — R*(t) for all ¢
satisfies:

R(t) — R*(t) < sup{a(s) — B(s)}

s>0

Proof: The proof isastraightforward application of the definitions of service and
arrival curves:

R(t) — R*(t) < R(t) — inf [R(t—s)+ B(s)]

0<s<t

Thus

R(t) — R*(t) < sup [R(t) — R(t —s) + B(s)] < sup [a(s) + B(t — s)]
0<s<t 0<s<t
|
We now use the concept of horizontal deviation, defined in Chapter 3, EQua:
tion (3.21). The definition is a little complex, but is supported by the following
intuition. Call
(s)=inf{r>0:a(s) <B(s+71)}

From Definition 1.1.1, 6(s) isthe virtual delay for a hypothetical system that would
have o asinput and /3 as output, assuming that such a system exists (in other words,
assuming that (o < 3). Then, h(a, 8) is the supremum of all values of §(s). The
second theorem gives a bound on delay for the general case.

Theorem 1.4.2 (Delay Bound). Assume a flow, constrained by arrival curue
traverses a system that offers a service curvg.ofhe virtual delayd(¢) for all ¢
satisfiesd(t) < h(a, 8).

Proof: Consider somefixed ¢ > 0; for al 7 < d(t), we have, from the definition
of virtual delay, R(t) > R*(t + 7). Now the service curve property at time ¢ + 7
implies that there is some s such that

R(t) > R(t + 7 — s0) + B(s0)

1.4. NETWORK CALCULUSBASICS 29

It follows from this latter equationthat t + 7 — s¢ < ¢. Thus
OZ(T — 80) > [R(t) — R(t +7 - S(])} > ﬁ(S())
Thust < §(7—s0) < h(a, 8). Thisistrueforal = < d(t) thusd(t) < h(a, 5). O

Theorem 1.4.3 (Output Flow). Assume a flow, constrained by arrival curse
traverses a system that offers a service curve.dihe output flow is constrained by
the arrival curvea™ = a @ 5.

The theorem uses min-plus deconvolution, introduced in Chapter 3, which we
have aready used in Theorem 1.2.2.

Proof: ~ With the same notation as above, consider R*(t) — R*(t — s), for 0 <
t — s < t. Consider the definition of the service curve, applied at timet — s. Assume
for a second that the inf in the definition of R ® (isamin, that isto say, thereis
somewu > Osuchthat 0 <¢— s —wand

(R B)(t—s)=R({t—s—u)+ B(u)
Thus
R*(t—s)— R(t—s—u) > B(u)
and thus
R*(t)—R*(t—s) < R*(t) — B(u) — R(t — s —u)
Now R*(t) < R(t), therefore
R*(t)—R*(t—s) < R(t) — R(t—s—u) — B(u) < a(s+u) — B(u)

and the latter term is bounded by (« @ 3)(s) by definition of the @ operator.

Now relax the assumption that the the inf in the definition of R ® 8isamin. In
this case, the proof is essentially the same with aminor complication. For all ¢ > 0
thereissomew > O suchthat 0 < ¢t — s — w and

(ReB)(t—s)>R(t—s—u)+6(u)—¢
and the proof continues along the same line, leading to:
R*(t) = R*(t—5) < (0 @ B)(s) + ¢

Thisistruefor al e > 0, which proves the result. O

A simple Example and Interpretation of Leaky Bucket Consider a flow con-
strained by one leaky bucket, thuswith an arrival curve of theform o = ,. 3, served
inanodewith the service curve guarantee 5 1. The alert reader will enjoy applying
the three bounds and finding the results shown in Figure 1.10.

Consider in particular the case T' = 0, thus a flow constrained by one leaky
bucket served at a constant rate R. If R > r then the buffer required to serve the
flow isb, otherwise, it isinfinite. This gives us acommon interpretation of the leaky
bucket parameters» and b: r isthe minimum rate required to serve the flow, and b is
the buffer required to serve the flow at any constant rate > r.

30 CHAPTER 1. NETWORK CALCULUS

ok

data
4 X=b+r

b+rT A

Qo :

Al
»/ K
P TR | JF
Y _ time
0 T

Figure 1.10: Computation of buffer, delay and output bounds for an input flow
constrained by one leaky bucket, served in one node offered a rate-latency
service curve. If r < R, then the buffer bound is x = b +»T, the delay bound
isd=T+ % and the burstiness of the flow is increased by »T'. If r > R, the
bounds are infinite.

Example: VBR flow with rate-latency service curve Consider aVBR flow, de-
fined by T-SPEC (M, p, r, b). Thismeansthat the flow has «(t) = min(M +pt, rt+
b) as an arrival curve (Section 1.2). Assume that the flow is served in one node that
guarantees a service curve equal to the rate-latency function 8 = g r. This exam-
ple is the standard model used in Intserv. Let us apply Theorems 1.4.1 and 1.4.2.
Assumethat R > r, that is, the reserved rate is as large as the sustainable rate of the
flow.

From the convexity of the region between « and 5 (Figure 1.4.1), we see that
the vertical deviation v = sup,~q[a(s) — B(s)] isreached for at an angular point of
either o or 3. Thus B

v = max|[a(T), a(8) — B(0)]
with § = % Similarly, the horizontal distance is reached an angular point. In the
figure, it is either the distance marked as AA’ or BB’. Thus, the bound on delay d
is given by

a(0) M
d= — 4T -0, —+T
max (R + 'R +)
After some max-plus algebra, we can re-arrange these results as follows.

Proposition 1.4.1 (Intserv model, buffer and delay bounds). Consider a VBR
flow, with TSPEG M, p, r, b), served in a node that guarantees to the flow a service
curve equal to the rate-latency functigh= Gr 1. The buffer required for the flow

is bounded by

b— M *
v:b+TT+(ﬁ_T> [(P—R)+—p+r]

The maximum delay for the flow is bounded by
b—M +

T
R +

1.4. NETWORK CALCULUSBASICS 31

data

() I///N p
M B B’

Figure 1.11: Computation of buffer and delay bound for one VBR flow served
in one Intserv node.

We can also apply Theorem 1.4.3 and find an arrival curve o* for the output
flow. We have o* = a @ (Ar ® d7) = (o @ Ar) @ 7 from the properties of @
(Chapter 3). Note that

(f@br)(t) = ft+T)
for al f (shift to the left).

The computation of o« © Agr is explained in Theorem 3.1.14 on Page 152: it
consistsininverting time, and smoothing. Here, we give however adirect derivation,
which is possible since « is concave. Indeed, for a concave o, define ¢ as

to =inf{t > 0:a/(t) < R}

where o' is the left-derivative, and assume that ¢y < +oco. A concave function
always has a left-derivative, except maybe at the ends of the interval where it is
defined. Then by studying the variations of the function u — «(t + v) — Ru we
findthat (a @ Ag)(s) = a(s) if s > tg, and (« @ Ag)(s) = al(ty) + (s — to) R if
s < tp.

departure curve

bits slope = R

arrival
curve

time

Figure 1.12: Derivation of arrival curve for the output of a flow served in a
node with rate-latency service curve g 7.

Putting the pieces all together we see that the output function o* is obtained
from a by

32 CHAPTER 1. NETWORK CALCULUS

e replacing « on [0, to] by the linear function with slope R that has the same
value as a for ¢t = ¢, keeping the same values as a: on [tg, +o0],

e and shifting by T' to the left.

Figure 1.12 illustrates the operation. Note that the two operations can be performed
in any order since ® is commutative. Check that the operation is equivalent to the
construction in Theorem 3.1.14 on Page 152.

If we apply thisto a VBR connection, we obtain the following result.

Proposition 1.4.2 (Intserv model, output bound). With the same assumption as
in Proposition 1.4.1, the output flow has an arrival cuevegiven by:

if bp’%ﬁ < T then o*(t) =b+r(T +1t)
else a*(t):min{ (t+T)(p/\R)+M+%(pr)+,b+r(T+t)}

An ATM Example Consider theexampleillustrated in Figure 1.13. The aggregate
flow has as an arrival curve equal to the stair function 10v5 4. The figureillustrates
that the required buffer is 18 ATM cells and the maximum delay is 10 time slots. We

time slots
wwwwwww (T

10 20 30 40 50

Figure 1.13: Computation of bounds for buffer x and delay d for an ATM ex-
ample. An ATM node serves 10 ATM connections, each constrained with
GCRA(25,4) (counted in time slots). The node offers to the aggregate flow
a service curve Gr r with rate R = 1 cell per time slot and latency 7' = 8
time slots. The figure shows that approximating the stair function 10ves 4 by
an affine function -, ; results into an overestimation of the bounds.

know from Corollary 1.2.1 that a GCRA constraint is equivalent to a leaky bucket.
Thus, each of the 10 connections is constrained by an affine arrival curve ~,.;, with

r = 2—15 =0.04andb =1+ 2% = 1.16. However, if we take as an arrival curve

1.4. NETWORK CALCULUSBASICS 33

for the aggregate flow the resulting affine function 10+, ;, then we obtain a buffer
bound of 11.6 and a delay bound of 19.6. The affine function overestimates the
buffer and delay bounds. Remember that the equival ence between stair function and
affine function is only for a flow where the packet size is equal to the value of the
step, which is clearly not the case for an aggregate of several ATM connections.

A direct application of Theorem 1.4.3 shows that an arrival curve for the output
flow is glven by OéS(t) = Oé(t + T) = U25712(t).

In Chapter 2, we give a dight improvement to the bounds if we know that the
service curveisastrict service curve.

1.4.2 AretheBoundsTight ?

We now examine how good the three bounds are. For the backlog and delay bounds,
the answer issimple:

Theorem 1.4.4. Consider the backlog and delay bounds in Theorems 1.4.1 and
1.4.2. Assume that

e «isa“good” function (that is, namely, is wide-sense increasing, sub-additive
anda(0) = 0)

e (is wide-sense increasing am0) = 0

Then the bounds are tight. More precisely, there is one causal system with input flow
R(t) and output flowR*(¢), such that the input is constrained by offering to the
flow a service curvgg, and which achieves both bounds.

A causal system meansthat R(¢) < R*(¢). The theorem means that the backlog
bound in Theorem 1.4.1 is equal to sup,~,[R(t) — R*(t)], and the delay bound in
Theorem 1.4.1 isequal tosup,~ d(t). Inthe above, d(t) isthe virtual delay defined
in Definition 1.1.1. -

Proof: We build one such system R, R* by defining R = a, R* = min(q,).
The system is causal because R* < o« = R. Now consider some arbitrary time . If
a(t) < B(t) then

R*(t) = R(t) = R(t) + 5(0)

Otherwise,
R*(t) = B(t) = R(0) + B(1)

Inall cases, for al ¢ thereissome s < ¢ such that R*(t) > R(t — s) + B(s), which
shows the service curve property. O
Of course, the bounds are astight as the arrival and service curves are. We have
seen that a source such that R(t) = «(t) is called greedy Thus, the backlog and
delay bounds are worst-case bounds that are achieved for greedy sources.
In practice, the output bound is al so aworst-case bound, even though the detailed
result is somehow less elegant.

34 CHAPTER 1. NETWORK CALCULUS

Theorem 1.4.5. Assume that

1. «is a “good” function (that is, is wide-sense increasing, sub-additive and
a(0) = 0)

2. ais left-continuous
3. fis wide-sense increasing ant{0) = 0
4. a@a is not bounded from above.

Then the output bound in Theorem 1.4.3 is tight. More precisely, there is one causal
system with input flou®(¢) and output flowz* (¢), such that the input is constrained

by a, offering to the flow a service curvg anda™* (given by Theorem 1.4.3) is the
minimum arrival curve for R*.

We know in particular from Section 1.2 that the first three conditions are not
restrictive. Let us first discuss the meaning of the last condition. By definition of
max-plus deconvol ution:

(a@a)(t) = inf{a(t + 5) — a(s)}

One interpretation of @« is as follows. Consider a greedy source, with R(t) =
a(t); then (a@a)(t) isthe minimum number of bits arriving over an interval of du-
ration ¢. Given that the function is wide-sense increasing, the last condition means
that lim;, o (@@a)(t) = 4o0. For example, for a VBR source with T-SPEC
(p, M,r,b) (Figure 1.5), we have («@a)(t) = rt and the condition is satisfied.
The alert reader will easily be convinced that the condition is also true if the arrival
curveisastair function.

The proof of Theorem 1.4.5 is a little technical and is left at the end of this
chapter.

We might wonder whether the output bound o* isa*“good” function. The answer
isno, since a*(0) isthe backlog bound and is positive in reasonable cases. However,
«* issub-additive (the proof is easy and | eft to the reader) thus the modified function
do A o defined as a*(t) for ¢ > 0 and 0 otherwiseisa“good” function. If o isleft-
continuous, dp A o* is even a“very good” function since we know from the proof
of Theorem 1.4.5 that it is|eft-continuous.

1.4.3 Concatenation

So far we have considered elementary network parts. We now come to the main
result used in the concatenation of network elements.

Theorem 1.4.6 (Concatenation of Nodes). Assume a flow traverses systefjs
andS, in sequence. Assume th&@toffers a service curve ¢f;, i = 1, 2 to the flow.
Then the concatenation of the two systems offers a service cupiesnf; to the
flow.

1.4. NETWORK CALCULUSBASICS 35

Proof: Call R; theoutput of node 1, which isalso theinput to node 2. The service
curve property at node 1 gives

Ri>R® B
and at node 2
R'>Ri®F:;>(R®51)®Pr=R (61 ® Fa)

O

Examples: Consider two nodes offering each arate-latency service curve Gg, 1,
1 = 1,2, asiscommonly assumed with Intserv. A simple computation gives

Br.. T, @ BRry, 171 = Bmin(R1,Ra), Ty +Ts

Thus concatenating Intserv nodes amounts to adding the latency components and
taking the minimum of the rates.

We are now also able to give another interpretation of the rate-latency service
curve model. We know that Gr r = (07 ® Ar)(¢); thuswe can view anode offering
arate-latency service curve as the concatenation of a guaranteed delay node, with
delay T" and a constant bit rate or GPS node with rate R.

Pay BurstsOnly Once The concatenation theorem allows usto understand a phe-
nomenon known as “Pay Bursts Only Once’. Consider the concatenation of two
nodes offering each a rate-latency service curve g, 1., ¢ = 1,2, asis commonly
assumed with Intserv. Assume the fresh input is constrained by ~,. ;. Assume that
r < Ry andr < Ry. We are interested in the delay bound, which we know is a
worst case. Let us compare the results obtained as follows.

1. by applying the network service curve;
2. by iterative application of the individual bounds on every node
The delay bound Dg can be computed by applying Theorem 1.4.2:

b
Dy = = + Ty
with R = min;(R;) and Ty =), T; as seen above.
Now apply the second method. A bound on the delay at node 1 is (Theorem
1.4.2):

b
D =—+T
1 R1+ 1

The output of thefirst node is constrained by «o*, given by :

a*(t)=b+rx (t+T1)

36 CHAPTER 1. NETWORK CALCULUS

A bound on the delay at the second buffer is:

b —+ 7"T1
Dy = T:
2 o + 12
And thus) bt s T
Tij
D, +D T
1+ D2 = R1 + R + 1o

It is easy to seethat Dy < D1 + D-. In other words, the bounds obtained by con-
sidering the global service curve are better than the bounds obtained by considering
every buffer in isolation.

Let us conti nue the comparison more closely. The delay through one node has
the form R— + T (for the first node). The element - is interpreted as the part
of the delay due to the burstiness of the input flow, Whereas T is dueto the delay
component of the node. We seethat D, + D5 contains twice an element of the form
Rii, whereas D, contains it only once. We sometimes say that “we pay bursts only

once”. Another difference between Dy and D, + D5 isthe element ”Tl :itisdueto
the increase of burstiness imposed by node 1. We see that thisi ncrease of burstiness
does not result into an increase of the overall delay.

A corollary of Theorem 1.4.6 is also that the end-to-end delay bound does not
depend on the order in which nodes are concatenated.

1.4.4 Improvement of Backlog Bounds
We give two cases where we can slightly improve the backlog bounds.

Theorem 1.4.7. Assume that a lossless node offerstract service curves to a
flow with arrival curvea. Assume thatv(ug) < SB(ug) for someug > 0. Then
the duration of the busy period is uq. Furthermore, for any time, the backlog
R(t) — R*(t) satisfies

R(t) - R*(t) < sup [R() = R(t —u) = Bu)] < sup |a(u) = B(u)]

u:0<u<<ug u:0<u<ug

The theorem says that, for the computation of a buffer bound, it is sufficient to
consider time intervalsless than ug. Theideaisthat the busy period durationisless
than uy.

Proof: Consider agiventimet at which the buffer is not empty, and call s the last
time instant before ¢ at which the buffer was empty. Then, from the strict service
curve property, we have

R*(t) > R*(s) + B(t — s) = (s) + B(t = s)
Thusthe buffer size b(t) = R(t) — R*(t) at timet satisfies

b(t) < R(t) — R(s) — Bt —s) <alt—s)— Bt —s)

1.5. GREEDY SHAPERS 37

Now if t — s > wug, then thereisatimet = s + ug, withs +1 < ¢/ < ¢ such
that b(t') = 0. This contradicts the definition of s. Thuswe can assumethat ¢t — s <
UuQ- O

Theorem 1.4.8. Assume that a lossless node offers a service ctitteea flow with
sub-additive arrival curvex. Assume thap is super-additive, and thata(ug) <
B(up) for someuy > 0. Then for any time, the backlogR(¢) — R*(t) satisfies

R(t) - R*(t) < sup [R(t) — R(t —u) = B(u)] < sup [a(u) — f(u)]

u:0<u<ug u:0<u<ug

Note that the condition that « is super-additive is not a restriction. In contrast,
the condition that g is super-additive is arestriction. It applies in particular to rate-
latency service curves. The theorem does not say anything about the duration of the
busy period, which is consistent with the fact we do not assume here that the service
curveisstrict.

Proof: For an arbitrary time ¢ the backlog at time ¢ satisfies

b(t) < sup [R(t) = R(t — u) — B(u)]

Fors <tdefinek = [©*] and s’ = kuo + 5. Wehave s < s’ < t and
t—up < s (1.12)
Now from the super-additivity of 5:
R(t) — R(s) < [R(t) = R(s") — B(t — s")] + [R(s') — R(s) — B(s" — s)]
Note that for the second part we have
R(s") — R(s) — B(s" — s) < k[a(uo) — B(uo)] < 0

thus
R(t) = R(s) < [R(t) = R(s') = B(t —)]

which shows the theorem. O

1.5 Greedy Shapers

151 Deéfinitions

We have seen with the definition of the leaky bucket and of the GCRA two examples
of devicesthat enforce ageneral arrival curve. We call policerwith curve o adevice
that countsthe bits arriving on an input flow and decides which bits conform with an
arrival curve of o. We call shaper with shaping curves, abit processing device that
forces its output to have o as an arrival curve. We call greedy shapea shaper that

38 CHAPTER 1. NETWORK CALCULUS

delaystheinput bitsin a buffer, whenever sending a bit would viol ate the constraint
o, but outputs them as soon as possible.

With ATM and sometimes with Intserv, traffic sent over one connection, or flow,
ispoliced at the network boundary. Policing is performed in order to guarantee that
users do not send more than specified by the contract of the connection. Traffic
in excess is either discarded, or marked with a low priority for loss in the case of
ATM, or passed as best effort traffic in the case of Intserv. In the latter case, with
IPv4, there is no marking mechanism, so it is necessary for each router along the
path of the flow to perform the policing function again.

Policing devicesinside the network are normally buffered, they are thus shapers.
Shaping is also often needed because the output of a buffer normally does not con-
form any more with the traffic contract specified at the input.

1.5.2 Input-Output Characterization of Greedy Shapers

The main result with greedy shapersis the following.

Theorem 1.5.1 (Input-Output Characterization of Greedy Shapers). Consider
a greedy shaper with shaping curge Assume that the shaper buffer is empty at
time0, and that it is is large enough so that there is no data loss. For an input flow
R, the outputR* is given by

R*=R®qo (1.12)

whereg is the sub-additive closure of.

Proof: Remember first that if o is sub-additive and o(0) = 0, theng = o. In
general, we know that we can replace o by & without changing the definition of the
shaper. We thus assume without loss of generality that ¢ = o.

The proof of the theorem is an application of min-plus algebra. First, let us
consider avirtual system that would take R asinput and have an output S satisfying
the constraints:

(1.13)

S<R
S<S®ao

Such a system would behave as a buffer (the first equation says that the output
is derived from the input) and its output would satisfy the arrival curve constraint
o. However, such a system is not necessarily a greedy shaper; we could have for
example alazy shaper with S(t) = 0 for al ¢ > 0! For this system to be a greedy
shaper, it has to output the bits as soon as possible. Now there is a general result
about systems satisfying conditions 1.13.

Lemma 1.5.1 (A min-plus linear system). Assume that is a “good” function
(that is, is sub-additive ané(0) = 0). Among all functionsS(¢) satisfying condi-
tions 1.13 for some fixed functid® there is one that is an upper bound for all. It is
equaltoR® o

1.5. GREEDY SHAPERS 39

Proof of thelemma: Thelemmaisaspecial case of ageneral result in Chapter 4.
However, it is also possible to give avery simple proof, as follows.

Define S* = R®o. Sinces isa“good” function, it followsimmediately that S*
isasolution to System (1.13). Now, let S’ be some other solution. We have S’ < R
and thus

S <Sy®c=25*

Therefore S* is the maximal solution. O

Notethat thelemma provesthe existence of amaximal solution to System (1.13).
Note also that, in the lemma, function R need not be wide-sense increasing.

Now we can use the lemma by showing that R* = S*. Function R is wide-
sense increasing, thus so is S*. Obvioudly, R* is a solution of System (1.13), thus
R*(t) < S*(¢t) for al t. Now if there would be some ¢ such that R*(¢) # S*(t),
then this would contradict the condition that the greedy shaper attempts to send the
bits out as early as possible. O

The following corollary derivesimmediately.

Coroallary 1.5.1 (Service Curve offered by a Greedy Shaper). Consider a greedy
shaper with shaping curve. Assume that is sub-additive and-(0) = 0. This
system offers to the flow a service curve equal.to

fresh traffic shaper
a-smooth By S B,
He N e -
R R*

Figure 1.14: Reshaping example.

Example: Buffer Sizing at a Re-shaper Re-shaping is often introduced because
the output of a buffer normally does not conform any more with the traffic contract
specified at the input. For example, consider a flow with the arrival curve o(t) =
min(pt + M, rt + b) that traverses a sequence of nodes, which offer a service curve
81 = Br,r. A greedy shaper, with shaping curve o, is placed after the sequence of
nodes (Figure 1.14). The input to the shaper (R in the figure) has an arrival curve
«*, given by Proposition 1.4.2. Corollary 1.5.1 gives a service curve property for
the greedy shaper, thus the buffer B required at the greedy shaper is the vertical
distance v(a*, o). After some agebra, we obtain:

if &2 <1 then b+ T'r
B=9 if M >Tandp>R then M+ 2000 7 (114)
else M+ Tp

40 CHAPTER 1. NETWORK CALCULUS

Corollary 1.5.2 (Buffer Occupancy at a Greedy Shaper). Consider a greedy
shaper with shaping curve. Assume that is sub-additive and(0) = 0. Call
R(t) the input function. The buffer occupancft) at timet is given by

x(t) = sup {R(t) — R(s) —o(t — s)}

0<s<t

Proof: Thebacklog is defined by z(t) = R(t) — R*(t), where R* is the output.
We apply Theorem 1.5.1 and get:
x(t) = R(t) — inf {R(s)+o(t—s)} = R(t)+ sup {—R(s) —o(t—9)}
0<s<t 0<s<t
U

Note that Lemma 1.2.2 isaspecia case of this corollary.

In min-plus algebraic terms, we say that a system is linear and time invariant
if its input-output characterization has the form R* = R ® 3 (where g is not nec-
essarily sub-additive). We can thus say from the theorem that greedy shapers are
min-plus linear and time invariant systems. There are min-plus linear and time in-
variant system that are not greedy shapers. For example, anodeimposing aconstant
delay T is characterized by the input-output relationship

R*=R®or

Compare to the guaranteed delay node (namely, a node imposing a variable delay
bounded by T'), for which the input-output relationship is a service curve property :

R*> R® o7

The rest of this Section illustrates similarly that the input-output characterization
of greedy shapers R* = R ® o is much stronger than the service curve property
described in Corollary 1.5.1.

1.5.3 Propertiesof Greedy Shapers

Consider again Figure 1.14. We have seen in the previous section how we can com-
pute the buffer size required at the greedy shaper. Now if greedy shapers are intro-
duced along a path, then some bits may be delayed at the shaper, thus the end-to-end
delay might increase. However, this is not true, as the following results state that,
from aglobal viewpoint, “greedy shapers come for free”.

Theorem 1.5.2 (Re-Shaping does not increase delay or buffer requirements).
Assume a flow, constrained by arrival curagis input to networksS; and Sz in
sequence. Assume a greedy shaper, with carzex is inserted betweesi; andSs.

Then the backlog and delay bounds given by Theorem 1.4.2 for the system without
shaper are also valid for the system with shaper.

The condition o > o means that re-shaping maybe only partial.

1.5. GREEDY SHAPERS 41

Proof: Call 3; the service curve of S;. The backlog bound in Theorem 1.4.1 is
given by
v(a, f1 ® 0@ P2) =v(a,0® P @ B) (1.15)

Now the last expression is the backlog bound obtained if we put the shaper imme-
diately at the entrance of the network. Clearly, this introduces no backlog, which
shows that the overall backlog is not influenced by the shaper. The same reasoning
appliesto the delay bound. O

If you read carefully, you should not agree with the last paragraph. Indeed, there
is a subtlety. The bounds in Section 1.4 are tight, but since we are using several
bounds together, there is no guarantee that the resulting bound is tight. All we can
say at this point is that the bound computed for the system with shaper is the same
if we put the shaper in front; we still need to show that the bound for such a system
is the same bound as if there would be no shaper. This can be proven in a number
of ways. We give here a computational one. The proof relieson Lemma1.5.2, given
below. O

Lemma 1.5.2. Let« and o be “good” functions. Assume: < o. Then for any
functiong, v(a, o ®) = v(e, 8) andh(a, o ® B) = h(a, §).

Proof: Weusethe reduction to min-plus deconvolution explained in Section 3.1.11.
We have:
v(e,0®) = a0 (0@ B)0)

Now from Theorem 3.1.12 on Page 148: a @ (0 ® 3) = (e @ o) @ (. Also, since
oc>a,wehavea o < a®a. Now a @ a = « because o isa“good” function,
thus

a0(cep)=a0p (1.16)

and finaly v(«, 0 @ 3) = v(a,).

Similarly h(a, 8) = inf{d such that (« @ 8)(—d) < 0} which, combined with
Equation (1.16) provesthat h(a, o ®) = h(a, 3). O

Consider again Figure 1.14. Assume that the first network element and the
greedy shaper are placed in the same node. Theorem 1.5.2 says that the total buffer
required for this combined node isthe same as if there would be no greedy shaper at
the output. Thus, if you can dynamically alocate buffer space from a common pool
to the first network element and the greedy shaper, then the greedy shaper costs no
memory. However, the greedy shaper does need some buffer space, asgiven in Equa-
tion (1.14). Similarly, the theorem says that there is no penalty for the worst-case
delay.

In contrast, placing agreedy shaper has an obvious benefit. The burstiness of the
flow admitted in the next network element is reduced, which also reduces the buffer
required in that element. To be more concrete, consider the example “Pay Bursts
Only Once” in Section 1.4.3. Assume that a re-shaper is introduced at the output
of the first node. Then the input to the second node has the same arrival curve as
the fresh input, namely, ~, , instead of v, y41, . The buffer required for the flow at
node 2 isthen b + 15 instead of b + (11 + T5).

42 CHAPTER 1. NETWORK CALCULUS

The following result is another “physical” property of greedy shapers. It says
that shaping cannot be undone by shaping.

Theorem 1.5.3 (Shaping Conserves Arrival Constraints). Assume a flow with
arrival curve « is input to a greedy shaper with shaping curveAssumes is a
“good” function. Then the output flow is still constrained by the original arrival
curvea.

Pr oof:
R*=R®c<(RRa)®0

since the condition R < R ® « expressesthat « isan arrival curve. Thus
RFR<R®Ro®a=R"®«

O

The output of the greedy shaper has thus min(«, o) as an arrival curve. If «

isalso a“good” function, we know (Lemma 1.2.5) that the sub-additive closure of
min(a, o) isa® o.

Example (ATM Multiplexer): Consider an ATM switch that receives 3 ATM
connections, each constrained by GCRA(10, 0) (periodic connections). The switch
serves the connection in any work conserving manner and outputs them on a link
with rate 1 cell per time slot. What isagood arrival curve for the aggregate output ?

The aggregate input has an arrival curve oo = 3v19,0. Now the server is a greedy
shaper with shaping curve o = v o, thusit keepsarrival constraints. Thus the output
is constrained by 3v19,0 ® v1,0, Which is a*good” function. We have aready met
this examplein Figure 1.6.

1.6 Maximum Service Curve, Variableand Fixed De-
lay

1.6.1 Maximum Service Curves

If we modify the sense of the inequation in the definition of service curve in Sec-
tion 1.3, then we obtain a new concept, called maximum service curyevhich is
useful to (1) account for constant delays and (2) in some cases to establish arela
tionship between delay and backlog.

Definition 1.6.1 (Maximum Service Curve). Consider a systen$ and a flow
through S with input and output functiol® and R*. We say thatS offers to the
flow amaximum service curve~ if and only ify € FandR* < R® ~

Note that the definition is equivalent to saying that + is wide-sense increasing
and that

1.6. MAXIMUM SERVICE CURVE, VARIABLE AND FIXED DELAY 43

R*(t) < R(s) +(t —s)
foral ¢t and al s < ¢, or equivalently
R*(t) — R*(s) < B(s) +~v(t —s)

where B(s) isthe backlog at time s. A greedy shaper with shaping curve o offerso
both as a service curve and a maximum service curve.

In general, the concept of maximum service curve is not as powerful as the
concept of service curve. However, as we see below, it can be useful to account for
maximum rates and for constant propagation delays. We also see in Chapter 6 that
it allows us to find good bounds for aggregate multiplexing.

Thefollowing propositions give two special cases of interest. Their proof is easy
and |eft to the reader.

Proposition 1.6.1 (Minimum Delay). A lossless node offers a maximum service
curve equal tddr if and only if it imposes a minimum virtual delay equalfto

Proposition 1.6.2 (Arrival Constraint on Output). Assume the output of a lossless
node is constrained by some arrival curweThen the node offers as a maximum
service curve.

Like minimum service curves, maximum Service curves can be concatenated:

Theorem 1.6.1 (Concatenation of Nodes). Assume a flow traverses systeshsnd
S in sequence. Assume th&t offers a maximum service curvegf i = 1,2 to
the flow. Then the concatenation of the two systems offers a service cuive 9§
to the flow.

Proof: The proof mimics the proof of Theorem 1.4.6 O

Application: Consider a node with a maximum output rate equal to ¢ and with
internal propagation delay equal to 7T'. It follows from Theorem 1.6.1 and the two
previous propositions that this node offers to any flow a maximum service curve
equal to the rate-latency function (. ¢ (t) = [e(t — T)]".

Maximum service curves do not allow usto derive as strong results as (ordinary)
service curves. However, they can be used to reduce the output bound and, in some
cases, to obtain a minimum delay bound. Indeed, we have the following two results.

Theorem 1.6.2 (Output Flow, generalization of Theorem 1.4.3). Assume a flow,
constrained by arrival curve, traverses a system that offers a service cyhand

a maximum service curve. The output flow is constrained by the arrival curve
o =(a®y)op.

44 CHAPTER 1. NETWORK CALCULUS

Proof: Instead of a computational proof as with Theorem 1.4.3, it is simpler at
this stage to use min-plus algebra. Call R and R* the input and output functions,
and consider R* @ R*, the minimum arriva curve for R*. We have R* < R® v
and R* > R ® (3, thus

R*OR*<(R®7) 2 (R®p)

From Rule 12 in Chapter 3, Theorem 3.1.12, appliedto f = R® v, g = R and
h = 3, we derive
RFoR* <{(R®vy)0oR}0p

Now from the commuitativity of @ and from Rule 13 in Theorem 3.1.12:
{(Rey)oR}={(y®R)0oR} <{y® (RO R)}

Thus
ROR <{y®(ROR)}0B<(y®a)o 3

O

Theorem 1.6.3 (Minimum Delay Bound). Assume a flow, constrained by arrival
curveaq, traverses a system that offers a maximum service curye Agsume that
~v(D) = 0. The virtual delayi(¢) satisfiesi(¢t) > D for all ¢.

Proof: Wehave R*(t) < R(t — D) 4+ (D) thus R*(t) < R(t — D) O

Note that the output bound is improved by the knowledge of the maximum ser-
vice curve since in general we expect o ® « to be less than «. In contrast, the
minimum delay bound gives some new information only in the cases where thereis
alatency part in the maximum service curve, which is the case for the first example
(Minimum Delay), but not in general for the second example (Arrival Constraint
on Output).

Numerical Example: Consider again the example illustrated in Figure 1.13. Let
us first apply Theorem 1.4.3 and compute an arrival curve o for the output. The
details are as follows. We have

ag = 100254 © f1,8 = 100254 @ (A1 ® Jg)
Now from Rule 15 in Chapter 3, we have
af = (10v54 @ 8) @ A1
Now (10vg5 4 @ Js)(t) = 10va54(t + 8) = 10vgs12(¢), and a straightforward
application of the definition of @ shows thet finally o = v25.12.
Assume now that we have more information about the node, and that we can

model is as node S; defined as the concatenation of two schedulers and a fixed
delay element (Figure 1.15). Each scheduler offers to the aggregate flow a service

1.6. MAXIMUM SERVICE CURVE, VARIABLE AND FIXED DELAY 45

curve Br, 1, Withrate Ry = 1 cell per time slot and latency 7 = 2 time slots. The
delay element is alink with maximum rate equal to 1 cell per time slot, and a fixed
propagation and transmission delay equal to 4 time slots. The delay element is thus
the combination of a greedy shaper with shaping curve A, (¢) = ¢ and afixed delay
element ¢,. We can verify that the concatenation of the three elements in node 1
offersaservice curve equal t0 312 ® A\ ® 04 @ f1,2 = B1,5. Now, from the delay
element allows usto say that, in addition, the node also offersto the aggregate flow a
maximum service curvagual to 3; 4. We can apply Theorem 1.6.2 and derive from
that the output is constrained by the arrival curve o given by

a] = (a® Pra) @ Pis

The computation is similar to that of « and involves the computation of 10vg5 4 ®
A1, which is similar to the exampleillustrated in Figure 1.6. Finally, we have:

a7 (t) = (10v54 ® A1)(t +4)

Figure 1.15 shows that o] is abetter bound than the arrival curve o that we would
obtain if we did not know the maximum service curve property.

Assume next that we change the order of the delay element in node S1 and place
it asthe last element of the node. Call S, the resulting node. Then the conclusion of
the previous paragraph remains, since the bounds are insensitive to the order, due to
the commutativity of min-plus convolution. Thus the output of system S, also has
o asan arrival curve. However, in that case, we can also model the delay element
as the combination of a shaper, with shaping curve A\; (corresponding to afixed rate
of 1 cell per time slot), followed by afixed delay element, with constant delay equal
to 4 time sots. The input to the shaper has an arrival curve equa to « @ 5 4, where
a = 10vgs 4 is the fresh arrival curve. Thus, from the properties of shapers, the
output of the shaper is constrained by

ay = (@@ fr4) @A = 10v25 8 @ M1

Since the fixed delay component does not alter the flow, the output of system S, has
o asan arrival curve, Figure 1.15 shows that o is a better bound than .

This fact is true in general: whenever a network element can be modeled as a
shaper, then this model provides stronger bounds than the maximum service.

1.6.2 Delay from Backlog

In genera it is not possible to bound delay from backlog with the framework of
service curves, except in one particular but important case.

Theorem 1.6.4. Assume a lossless node offers to a flow a minimum service Gurve
and a maximum service curve such that3(t) = ~(t — v). Let f be the max-plus
deconvolutiony®-, that is,

£(8) = inffy(s + 1) = ()

46 CHAPTER 1. NETWORK CALCULUS

ok,

Node S, delay =4
maximum rate = 1

el o] JO——[5a]

Node S, delay =4

maximum rate = 1

= ow | [0. JTO

cells

a=10u,

L L
L

time slots

cells

g = 10U 55 10 ()

(1) = (10U 55 4 ® 1))(t+4)

%) = (10U 55 ® 1))

LIS e e e e

time slots
\\

Figure 1.15: Use of maximum service curve to improve output bound. The
figure is for the same example as Figure 1.15. Top: nodes S; and Sa, two
possible implementations of a system offering the overall service curve f; s.
Middle: arrival curve a and overall service curve (3, . Bottom: constraint for
the output. of; (top curve, thick, plain line) is obtained with the only knowl-
edge that the service curve is 1 g. of (middle curve, thick, dashed line) is
obtained assuming the system is S;. o (bottom curve, thin, plain line) is
obtained assuming the system is S..

1.6. MAXIMUM SERVICE CURVE, VARIABLE AND FIXED DELAY 47

Then the backlod3(¢) and the virtual delayi(t) satisfy
fd(t) —v) < B(t)
If in addition v is super-additive, then

Bld(t)) < B(t)

Proof: Fix somet > 0; we haved(t) = inf F; where the set E, is defined by
E,={s>0:R*(t+s) > R(t)}

Since R* and R are wide-sense increasing, F; isan interval. Thus

d(t)=sup{s >0: R*(t +s) < R(t)}
We assumethat R and R* are |eft-continuous. It follows that

R*(t+d(t)) < R(t)
For some arbitrary ¢, we can find some s such that
R*(t+d(t)) > R(s) + Bt —s+d(t)) — €
Now from the maximum service curve property
R*(t) — R(s) < (t —)

Combining the three gives

B(t) = R(t)—R*(t) > B(t—s+d(t))—y(t—s)—€ = y(t—s+d(t)—v)—y(t—s)—€

and thus

B(t) > inf (y(d(t) - v+ u) — 7(u)] (117)
From the definition of f, thelatter termis f(d(t) —v). Finaly, if ~y is super-additive,
then yoy = v O

We can apply the theorem to a practical case:

Corollary 1.6.1. Assume a lossless node offers to a flow a minimum service curve
B8 = B,, and a maximum service curge= f, .+, with v < v. The backlogB(t)
and the virtual delayi(t) satisfy

B(t)

d(t) < —

+v

48 CHAPTER 1. NETWORK CALCULUS

Proof: We apply the theorem and note that - is super-additive, becauseit is con-
Vex. ([

1.6.3 VariableversusFixed Delay

Some network el ementsimpose fixed delays (propagation and transmission), whereas
some other network elements impose variable delays (queueing). In a number of
cases, it isimportant to evaluate separately the total delay and the variable part of
the delay. The total delay isimportant, for example, for determining throughput and
response time; the variable part is important for dimensioning playout buffers (see
Section 1.1.3 for asimple example, and chapter 5 for amore general discussion). We
have seen at the end of end of Section 1.5.2 that a node imposing a constant delay
can be modeled as a min-plus linear system. Beyond this, the concept of maximum
service curveisatool for telling apart variable delay from fixed delay, as follows.
Consider anetwork, made of a series of network elements 1, ..., I, each element
being the combination of afixed delay d; and avariable delay. Assume the variable
delay component offers a service curve ;. A fixed delay component offers 4, both
as a service curve and as a maximum service curve. Define 8 = 61 ® ... ® Gr;
the network offers as end-to-end service curve § ® 64, +...+4,, and as end-to-end
maximum service curve d4, + . +4,. Assume the input flow is constrained by some
arrival curve «; from Theorems 1.4.2 and 1.6.3, the end-to-delay d(¢) satisfies

di+...+dr < d(f) < h(OGB ® 6d1+...+d1)

By simple inspection, h(a, 8 ® 04,+...4d;) = d1 + ... + d5 + h(a, 3), thus the
end-to-end delay satisfies

0 <d(t) — [di + ... +di] < h(a, B)

Intheformula, d; + ... + d; isthefixed part of the delay, and h(«, 3) isthe variable
part. Thus, for the computation of the variable part of the delay, we can simply
ignore fixed delay components.

Similarly, an arrival curve constraint for the output is

a" = (a®0g,4.1d;) D (BR0dyy..4d,) =@ f

thus the fixed delay can be ignored for the computation of the output bound.
For the determination of backlog, the alert reader can easily be convinced that
fixed delays cannot be ignored. In summary:

Proposition 1.6.3. 1. For the computation of backlog and fixed delay bounds,
fixed or variable delay are modeled by introduciftg functions in the ser-
vice curves. As a consequence of the commutativiy, sftich delays can be
inserted in any order along a sequence of buffers, without altering the delay
bounds.

2. For the computation of variable delay bounds, or for an arrival constraint on
the output, fixed delays can be ignored.

1.7. HANDLING VARIABLE LENGTH PACKETS 49

1.7 Handling Variable Length Packets

All resultsin this chapter apply directly to ATM systems, using discrete time mod-
els. In contrast, for variable length packets (asis usually the case with IP services),
there are additional subtleties, which we now study in detail. The main partsin this
section is the definition of a packetizer, and a study of its effect on delay, bursti-
ness and backlog bounds. We also revisit the notion of shaper in a variable length
context. For the rest of this section, time is continuous.

Throughout the section, we will consider some wide sense increasing sequences
of packet arrival timesT; > 0. We assume that for al ¢ theset {i : T; < ¢t} isfinite.

1.7.1 AnExampleof Irregularity Introduced by VariableL ength
Packets

The problem comes from the fact that real packet switching systems normally output
entire packets, rather than a continuous data flow. Consider the example illustrated
in Figure 1.16. It shows the output of a constant bit rate trunk, with rate ¢, that
receives as input a sequence of packets, of different sizes. Call [;,T; the size (in
bits) and the arrival epoch for the ith packet, i = 1,2, Theinput function is

R(t) = Z Lilir,<ey (1.18)

In the formula, we used the indicator function 1;exprywhich isequal to 1 if expris
true, and 0 otherwise.

We assume, as is usual in most systems, that we observe only entire packets
delivered by the trunk. Thisis shown as R’(t) in the figure, which results from the
bit-by-bit output R* by a packetization operation. The bit-by-bit output R* is well
understood; we know from Section 1.5 that R* = R ® \,. However, what is the
effect of packetization ? Do the resultsin Sections 1.4 and 1.5 till hold ?

Certainly, we should expect some modifications. For example, the bit-by-bit out-
put R* in thefigureisthe output of agreedy shaper with curve)., thusit has A, as
an arrival curve, but thisis certainly not true for R’. Worse, we know that a greedy
shaper keeps arrival constraints, thus if R is o-smooth for some o, then so is R*.
However, thisisnot truefor R’. Consider the following example (whichisoriginally
from [31]). Assume that o (t) = lnax + rt With r < ¢. Assume that the input flow
R(t) sends afirst packet of size l; = l,,.x & time 77 = 0, and a second packet of
sizel, attimeT, = %2 Thustheflow R isindeed o-smooth. The departure time for
thefirst packetisT] = ”“TX Assume that the second packet I issmall, specificaly,
l2 < Zlmax; then the two packets are sent back-to-back and thus the departure time
for the second packet is T3 = T} + 2. Now the spacing 7; — T7 islessthan ‘2, thus
the second packet is not conformant, in other words, R’ is not o-smooth. Note that
this example is not possible if all packets are the same size.

Wewill seein this section that thisexampleisquite general: packetizing variable
length packets does introduce some additional irregularities. However, we are able

50 CHAPTER 1. NETWORK CALCULUS

R*(+
I 1 1 LL R(t
L+L+1;— R'(T)
M»:[c)(m)m 41,

T T T

v

Figure 1.16: A real, variable length packet trunk of constant bit rate, viewed
as the concatenation of a greedy shaper and a packetizer. The inputis R(t),
the output of the greedy shaper is R*(t), the final output is the output of the
packetizer is R'(t).

to quantify them, and we will see that the irregularities are small (but may be larger
than the order of a packet length). Most results are extracted from [47]

1.7.2 The Packetizer
We first need afew definitions.

Definition 1.7.1 (cumulative packet lengths). A sequencé of cumulative packet
lengths is a wide sense increasing sequdig®) = 0, (1), L(2), ...) such that

lmax = Sup{L(n + 1) - L(n)}
is finite

In this chapter, we interpret L(n) — L(n — 1) asthe length of the nth packet. We
now introduce a new building block, which was introduced in [11].

Definition 1.7.2 (Function P [11]). Consider a sequence of cumulative packet
lengthsZ with L(0) = 0. For any real numbet:, define

PL(I) = Sug{L(n)l{L(n)gm}} (119)

ne

Figure 1.17 illustrates the definition. Intuitively, PL(x) isthe largest cumulative
packet length that is entirely contained in 2. Function P* isright-continuous; if R is
right-continuous, then so is PX(R(t)). For example, if all packets have unit length,
then L(n) = n and for z > 0: PX(x) = |z]. An equivalent characterization of P
is

PE(x) = L(n) <= L(n) <z < L(n+1) (1.20)

1.7. HANDLING VARIABLE LENGTH PACKETS 51

P(x)

L(S) A
L(3)

L(2)
L(1)

L(4)

»

L()LQR) LG)LMA) L(5)

Figure 1.17: Definition of function P~.

Definition 1.7.3 (Packetizer [11]). Consider a sequencé of cumulative packet
lengths. Anl.-packetizer is the system that transforms the inpb into PL(R(t)).

For the example in Figure 1.16, we have R'(t) = PX(R*(t)) and the system
can thus be interpreted as the concatenation of a greedy shaper and a packetizer.
The following equation follows immediately:

T — lpax < PX(z) <z (1.21)

Definition 1.7.4. We say that a flowR(t) is L-packetized ifPZ(R(t)) = R(t) for
all ¢.

The following properties are easily proven and |eft to the reader.
o (The packetizer isisotone) If x < y then PL(2) < PL(y) foral z,y € R.
o (Pl isidempotent) PL(PL(x)) = PL(x)fordl z € R

o (Optimality of Packetizer) We can characterize a packetizer in a similar way
aswe did for agreedy shaper in Section 1.5. Among all flows x(t) such that

{ x is L-packetized

v n (1.22)

thereis one that upper-bounds all, and itis PL(R(t)).

The proof for thislast item mimics that of Lemma1.5.1; it relies on the prop-
erty that P” isidempotent.

We now study the effect of packetizers on the three bounds found in Section 1.4.
Wefirst introduce a definition.

Definition 1.7.5 (Per-packet delay). Consider a system with- packetized input
and output. CallT;, T/ the arrival and departure time for th&h packet. Assume
there is no packet loss. The per-packet delayuis, (7] — T3)

52 CHAPTER 1. NETWORK CALCULUS

Our main result in this section is the following theorem, illustrated in Fig-
ure 1.18.

Theorem 1.7.1 (Impact of packetizer). Consider a systenbit-by-bit system) with
L-packetized inpuR? and bit-by-bit outputR*, which is thenl-packetized to pro-
duce a final packetized outpit. We callcombined system the system that mapgs
into R'. Assume both systems are first-in-first-out and lossless.

1. Theper-packet delay for the combined system is the maximum virtual delay
for the bit-by-bit system.

2. Call B* the maximum backlog for the bit-by-bit system d@&idhe maximum
backlog for the combined system. We have

B* < B' < B" + lmax

3. Assume that the bit-by-bit system offers to the flow a maximum service curve
~ and a minimum service curv& The combined system offers to the flow a
maximum service curvgand a minimum service cury# given by

6/(t) = [ﬂ(t) - lmax]+

4. If some flowS(t) hasa(t) as an arrival curve, therPZ(S(t)) hasa(t) +
Imax1{s>0} @s an arrival curve.

The proof of the theorem is given later in this section. Before, we discuss the
implications. Item 1 says that appending a packetizer to a node does not increase

Combined System

R(H) R*(t) P R(t)

Bit-by-bit system

Figure 1.18: The scenario and notation in Theorem 1.7.1.

the packet delay at this node. However, as we see | ater, packetization does increase
the end-to-end delay.

Consider again the example in Section 1.7.1. A simple look at the figure shows
that the backlog (or required buffer) is increased by the packetization, as indicated

1.7. HANDLING VARIABLE LENGTH PACKETS 53

by item 2. Item 4 tells us that the final output R’ haso’(t) = o (t) + lmaxli>0 @ an
arrival curve, which is consistent with our observation in Section 1.7.1 that R’ isnot
o-smooth, even though R* is. We will see in Section 1.7.4 that there is a stronger
result, in relation with the concept of “ packetized greedy shaper”.

Item 3 is the most important practical result in this section. It shows that pack-
etizing weakens the service curve guarantee by one maximum packet length. For
example, if asystem offers arate-latency service curve with rate R, then appending
a packetizer to the system has the effect of increasing the latency by lme .

Consider also the example in Figure 1.16. The combination of the trunk and the
packetizer can be modeled as a system offering

e aminimum Service CUrve 3, iy

e amaximum service curve \,

Proof of Theorem 1.7.1

1. For somet suchthat T; < ¢ < T;41 we have R(t) = L(¢) and thus

sup d(t) = d(T3)
te[T;,Tiy1)

now

Combining the two shows that

supd(t) = sup(T] — T;)
¢ i

2. The proof isadirect consequence of Equation (1.21).

3. The result on maximum service curve ~ follows immediately from Equa
tion (1.21). Consider now the minimum service curve property. Fix sometime
t. For T; < s < T;11 wehave R(s) = R(T;) and 3 iswide-senseincreasing,
thus
inf (R(s)+B(t—s))=R(T:)+ G- (t —T3)

T;<s<Tiy1

where §,.(t — T;) = inf~o{B[(t — T;) + €] } isthelimit of 5 to theright. Thus

(R®p)(t) = inf (R(T3) + Br(t = T7))

i such that T; <t

For afixed ¢ thereis only afinite number of ¢ such that T; < ¢, thustheinf in
the previous equation isamin and thereis some ;5 such that

(R@p)(t) = R(T)) + Br(t = Tj)
By hypothesis, R*(t) > (R ® ()(t), thus

54 CHAPTER 1. NETWORK CALCULUS

R'(t) > R*(t) — lmax > R(Tj) + Bo(t — T;) — Imax
On the other hand, R*(t) > R(T;) and R is L-packetized, thus
R'(t) = R(Ty)
Combining the two shows that

R(1)

v

max [R(T;), R(T;) + Br(t = T;) — lmax]
R(T’J) + max [ﬁ'r(t - T}) - lmaX7 0]
R(T;) + 6,.(t = T;)

from which we conclude that R'(t) > info<s<; (R(s) + 8'(t — s))

4. The proof isadirect consequence of Equation (1.21).

Example: concatenation of GPS nodes Consider the concatenation of the the-
oretical GPS node, with guaranteed rate R (see Section 1.3.1 on Page 22) and an
L-packetizer. Assume this system receives a flow of variable length packets. This
models a theoretical node that would work as a GPS node but is constrained to de-
liver entire packets. This is not very redistic, and we will see in Chapter 2 more
realistic implementations of GPS, but this example is sufficient to explain one im-
portant effect of packetizers.

By applying Theorem 1.7.1, we find that this node offers a rate-latency ser-
vice curve ﬂ& s Now concatenate m such identical nodes, asillustrated in Fig-

Rate R, latency (m - 1) I,,,/R

]
LtL T+TT+TLtL

Figure 1.19: The concatenation of several GPS fluid nodes with packetized
outputs

ure 1.19. The end-to-end service curveisthe rate latency-function 5 with

lmax
T=m i
We see on this example that the additional latency introduced by one packetizer is
indeed of the order of one packet length; however, this effect is multiplied by the
number of hops.
For the computation of the end-to-end delay bound, we need to take into account
Theorem 1.7.1, which tells us that we can forget the last packetizer. Thus, a bound

1.7. HANDLING VARIABLE LENGTH PACKETS 55

on end-to-end delay is obtained by considering that the end-to-end path offers a
service curve equal to the latency-function 5 1, with

Imax
T() = (m - 1) R

For example, if the original input flow is constrained by one leaky bucket of rate r
and bucket pool of size b, then an end-to-end delay bound is

b+ (m — 1)lnax
R

The aert reader will easily show that this bound is a worst case bound. This il-
lustrates that we should be careful in interpreting Theorem 1.7.1. It is only at the
last hop that the packetizer implies no delay increase. The interpretation is as fol-
lows. Packetization delays the first bits in a packet, which delays the processing at
downstream nodes. This effect is captured in Equation (1.23). In summary:

(1.23)

Remark 1.7.1. Packetizers do not increase the maximum delay at the node where
they are appended. However, they generally increase the end-to-end delay.

We will see in Chapter 2 that many practical schedulers can be modeled as the
concatenation of a node offering a service curve guarantee and a packetizer, and we
will give a practical generalization of Equation (1.23).

1.7.3 A Relation between Greedy Shaper and Packetizer

We have seen previously that appending a packetizer to a greedy shaper weakens
the arrival curve property of the output. There is however a case where this is not
true. This case is important for the results in Section 1.7.4, but also has practical
applications of its own. Figure 1.20 illustrates the theorem.

—{(P) (©) - (P-)
R, (1) R(t) R*(t) RO(1)

Figure 1.20: Theorem 1.7.2 says that R(!) is o-smooth.

Theorem 1.7.2. Consider a sequenck of cumulative packet lengths and ca@l},
the L-packetizer. Consider a “good” functiom and assume that

{ There is a sub-additive functian, and a numbet > [,,. such that

o(t) = oo(t) + 150 (1.24)

56 CHAPTER 1. NETWORK CALCULUS

Call C, the greedy shaper with shaping curse For any input, the output of the
compositiofiP;, o C, o Py, is o-smooth.

In practical terms, the theorem is used as follows. Consider an L-packetized
flow, passit through a greedy shaper with shaping curve o; and packetize the output;
then the result is o-smooth (assuming that o satisfies condition in Equation (1.24)
in the theorem).

Note that in general the output of C,, o Py, isnot L-packetized, even if o satisfies
the condition in the theorem (finding a counter-example is simple and is | eft to the
reader for her enjoyment). Similarly, if the input to P, o C,, is not L-packetized,
then the output is not o-smooth, in general.

The theorem could also be rephrased by saying that, under condition in Equa-
tion (1.24)

ProCyoPr=Cs0PrLoCso0PL

since the two above operators always produce the same outpuit.

Discussion of Condition in Equation (1.24) Condition Equation (1.24) is satis-
fied in practice if o is concave and ,.(0) > lyax, Where 0,.(0) = infy~go(t) is
the limit to the right of o at 0. This occurs for example if the shaping curve is de-
fined by the conjunction of leaky buckets, all with bucket size at |east aslarge asthe
maximum packet size.

This also sheds some light on the example in Figure 1.16: the problem occurs
because the shaping curve \¢ does not satisfy the condition.

Thealert reader will ask herself whether a sufficient condition for Equation (1.24)
to hold isthat ¢ is sub-additive and ¢,-(0) > l,.x. Unfortunately, the answer is no.
Consider for example the stair function o = l,axv7r. We have 6,.(0) = Iy but if
wetry torewrite o into o (t) = o¢(t) +114~0 Wemust havel = lmax and oo (t) = 0
fort € (0, T]; if weimposethat o is sub-additive, the latter implies 0 = 0 which
is not compatible with Equation (1.24).”

Proof of Theorem 1.7.2: We use the notation in Figure 1.20. We want to show
that R(Y) is o-smooth. We have R* = R ® o. Consider now some arbitrary s and ¢
with s < ¢. From the definition of min-plus convolution, for al ¢ > 0, thereis some
u < s such that

(R®0o)(s) > R(u)+o(s—u)—e¢ (1.25)

Now consider the set E of ¢ > 0 such that we can find one u < s satisfying the
above equation. Two cases are possible: either 0 is an accumulation point for £8
(case 1), or not (case 2).

Consider case 1; there is a sequence (e, s,,), With s,, < s,

6We use the notation P;, o C,, to denote the composition of the two operators, with C,, applied first;
see Section 4.1.3.

“The same conclusion unfortunately also holds if we replace sub-additive by “star-shaped” (Sec-
tion 3.1).

8namely, there is a sequence of elementsin E which convergesto 0

1.7. HANDLING VARIABLE LENGTH PACKETS 57

lim ¢, =0
n—-+o0o

and
(R®0)(s) > R(syp)+0(s—sn) —é€n

Now since s,, < ¢:
(R®0)(t) < R(sn) +o(t —sn)

Combining the two:
(Ro)t) —(R®o)(s) <o(t—sp) —o(s—sp) + €,
Nowt —s, > 0ands — s, > 0thus
o(t —sn) —0o(s —sn) = 00(t — s5n) — 00(s — sn)
We have assumed that o is sub-additive. Now ¢ > s thus
oot — sn) —00(s — 8,) < oot — s)
we have thus shown that, for all n
(RR0o)(t) — (R®o)(s) < oot —s) + €

and thus
(Reo)(t)— (R®o)(s) <ot —s)

Now from Equation (1.21), it follows that
RV (t) = RW(s) < 00(t — 8) + lmax < ot — 5)

which ends the proof for case 1.
Now consider case 2. Thereis some ¢ such that for 0 < € < ¢, we have to take
u = s in Equation (1.25). Thisimplies that

(R®o)(s) = R(s)
Now R is L-packetized by hypothesis. Thus
RW(s) = PY((R®0)(s)) = P*(R(s)) = R(s) = (R® 0)(s)

thus
RMW(t) — RM(5)

now R ® o has o asan arrival curve thus
RV () — R (s) < o(t —)

which ends the proof for case 2. O

58 CHAPTER 1. NETWORK CALCULUS

Example: Buffered Leaky Bucket Controller based on Virtual Finish Times
Theorem 1.7.2 gives us a practical implementation for a packet based shaper. Con-
sider that we want to build a device that ensures that a packet flow satisfies some
concave, piecewise linear arrival curve (and is of course L- packetized). We can
realize such a device as the concatenation of a buffered leaky bucket controller op-
erating bit-by-bit and a packetizer. We compute the output time for the last bit of a
packet (= finish time) under the bit-by-bit leaky bucket controller, and release the
entire packet instantly at this finish time. If each bucket pool is at least as large as
the maximum packet size then Theorem 1.7.2 tells us that the final output satisfies
the leaky bucket constraints.

Counter-example If we consider non-concave arrival curves, then we can find an
arrival curve o that does satisfy o(t) > Ilnax for ¢ > 0 but that does not satisfy
Equation (1.24). In such a case, the conclusion of Theorem 1.7.2 may not hold in
general. Figure 1.21 shows an example where the output RV isnot o-smooth, when
o isadtair function.

- 100

Figure 1.21: A counter example for Theorem 1.7.2. A burst of 10 packets of
size equal to 10 data units arrive at time ¢ = 0, and o0 = 25v;. The greedy
shaper emits 25 data units at times 0 and 1, which forces the packetizer to
create a burst of 3 packets at time 1, and thus R(Y) is not o-smooth.

1.7.4 Packetized Greedy Shaper

We can come back to the questions raised by the examplein Figure 1.16 and give a
more fundamental look at the issue of packetized shaping. Instead of synthesizing
the concatenation of a greedy shaper and a packetizer as we did earlier, we define
the following, consistent with Section 1.5.

1.7. HANDLING VARIABLE LENGTH PACKETS 59

Definition 1.7.6. [Packetized Greedy Shaper] Consider an input sequence of pack-
ets, represented by the functiét{t) as in Equation (1.18). CalL the cumulative
packet lengths. We calbcketized shaper, with shaping curve, a system that forces

its output to haver as an arrival curveand be L-packetized. We cafpacketized
greedy shaper a packetized shaper that delays the input packets in a buffer, when-
ever sending a packet would violate the constrainbut outputs them as soon as
possible.

Example: Buffered Leaky Bucket Controller based on Bucket Replenishment
,,,,, M (Yr.,, b, (1) €aN be implemented by a controller that
observes aset of M fluid buckets, where the mth bucket is of size b,,, and leaks at a
constant rate r,,,. Every bucket receives [; units of fluid when packet i isreleased (I;
isthe size of packet 7). A packet isreleased as soon asthe level of fluid in bucket m
allowsit, that is, has gone down below b,,, — [;, for all m. We say that now we have
defined a buffered leaky bucket controller based on “bucket replenishment”. It is
clear that the output has o as an arrival curve, is L-packetized and sends the packets
as early as possible. Thusit implements the packetized greedy shaper. Note that this
implementation differs from the buffered leaky bucket controller based on virtual
finish times introduced in Section 1.7.3. In the latter, during a period where, say,
bucket m only isfull, fragments of a packet are virtually released at rate r,,,, bucket
m remains full, and the (virtual) fragments are then re-assembled in the packetizer;
in the former, if a bucket becomes full, the controller waits until it empties by at
least the size of the current packet. Thus we expect that the level of fluid in both
systems is not the same, the former being an upper bound. We will see however in
Corollary 1.7.1 that both implementations are equivalent.

In this example, if abucket size is less than the maximum packet size, theniit is
never possible to output a packet: al packets remain stuck in the packet buffer, and
the output is R(t) = 0. In general, we can say that

Proposition 1.7.1. If 0,-(0) < lmax then the the packetized greedy shaper blocks all
packets for ever (namelyg(¢) = 0). Thus in this section, we assume that) >
Imax fOr ¢t > 0.

Thus, for practical cases, we have to assume that the arrival curve o hasa dis-
continuity at the origin at least as large as one maximum packet size.

How does the packetized greedy shaper compare with the concatenation of a
greedy shaper with shaping curve o and a packetizer ? We know from the example
inFigure 1.16 that theoutput has o’ (t) = o(t)+Imax1¢>0 @an arrival curve, but not
o. Now, does the concatenation implement a packetized greedy shaper with shaping
curve o’ ? Before giving ageneral answer, we study afairly general conseguence of
Theorem 1.7.2.

Theorem 1.7.3 (Realization of packetized Greedy Shaper). Consider a sequence
L of cumulative packet lengths and a “good” functienAssume that satisfies the
condition in Equation (1.24). Consider only inputs that dr@acketized. Then the

60 CHAPTER 1. NETWORK CALCULUS

packetized greedy shaper ferand L can be realized as the concatenation of the
greedy shaper with shaping curweand theL-packetizer.

T I Packetized [I
Greedy Shaper
(L)and o

TfT () (PL) s Tft

Figure 1.22: The packetized greedy shaper can be realized as a (bit-by-bit
fluid shaper followed by a packetizer, assuming Equation (1.24) holds. In
practice, this means that we can realize packetized greedy shaping by com-
puting finish times in the virtual fluid system and release packets at their
finish times.

Proof: Call R(t) the packetized input; the output of the bit-by-bit greedy shaper
followed by a packetizer is R™)(t) = PX(R @ o)(t)). Call R(t) the output of the
packetized greedy shaper. Wehave R < Rthus R ® 0 < R ® o and thus

PY(R®o) < PY(R®o0)

But R is o-smooth, thus R ® o = R, and is L-packetized, thus P (R ® o) = R.
Thus the former inequality can be rewritten as R < R(1). Conversely, from Theo-
rem 1.7.2, R1) isalso o-smooth and L-packetized. The definition of the packetized
greedy shaper implies that B > R (for aformal proof, see Lemma 1.7.1) thus
finaly R = R(. O

We have seen that the condition in the theorem is satisfied in particular if o
is concave and o,.(0) > lyax, for example if the shaping curve is defined by the
conjunction of leaky buckets, all with bucket size at least as large as the maximum
packet size. This shows the following.

Corollary 1.7.1. For L-packetized inputs, the implementations of buffered leaky
bucket controllers based on bucket replenishment and virtual finish times are equiv-
alent.

If werelax Equation (1.24) then the construction of the packetized greedy shaper
is more complex:

1.7. HANDLING VARIABLE LENGTH PACKETS 61

Theorem 1.7.4 (1/O characterisation of packetized greedy shapers). Consider
a packetized greedy shaper with shaping curvand cumulative packet length.
Assume that is a “good” function. The outpuR(t) of the packetized greedy shaper
is given by

R = inf {R<1>, R® RO } (1.26)

with RO () = PL((o @ R)(t)) and RO (t) = PL((o @ RE-V)(t)) for i > 2.

Figure 1.23 illustrates the theorem, and shows the iterative construction of the
output on one example. Note that this example is for a shaping function that does
not satisfy Equation (1.24). Indeed, otherwise, we know from Theorem 1.7.3 that
theiteration stops at the first step, namely, R = R(") in that case. We can also check
for examplethat if o = A, (thus the condition in Proposition 1.7.1 is satisfied) then
the result of Equation (1.26) is0.

% ’
I S N
_ g
inf R; R+ 1t 1
o)]
ot ft
FIVO S SR SR S

Figure 1.23: Representation of the output of the packetized greedy shaper
(left) and example of output (right). The data are the same as with Fig-
ure 1.21.

Proof: The proof isadirect application of Lemma1.7.1 (which itself is an appli-
cation of the general method in Section 4.3 on Page 175). O

Lemma 1.7.1. Consider a sequenck of cumulative packet lengths and a “good”
functiono. Among all flowse(t) such that

<R
x is L-packetized (2.27)
z haso as an arrival curve

62 CHAPTER 1. NETWORK CALCULUS

there is one flowR(t) that upper-bounds all. It is given by Equation (1.26).

Proof: Thelemmaisadirect application of Theorem 4.3.1, as explained in Sec-
tion 4.3.2. However, in order to make this chapter self-contained, we give an alter-
native, direct proof, which is quite short.

If 2 isasolution, then it is straightforward to show by induction on ¢ that = (¢) <
RO(t) andthusz < R. Thedifficult part is now to show that R isindeed asolution.
We need to show that the three conditions in Equation (1.27) hold. Firstly, R <
R(t) and by inductionon i, R®%) < R for al i; thus R < R.

Secondly, consider some fixed t; R()(t) is L-packetized for al i > 1. Let
L(ng) := RM(t). Since R (t) < RM(t), RW(t) isin the set

{L(0), L(1), L(2), ..., L(no)}.

This set isfinite, thus, R(t), which is the infimum of elementsin this set, hasto be
one of the L(k) for k < ng. This showsthat R(t) is L-packetized, and this s true
for any timet.

Thirdly, we have, for al ¢

R(t) < RUD(t) = PH((0 ® RV)(t)) < (0@ RY)(1)

thus 4
R < inf(c ® RY)
Now convolution by a fixed function is upper-semi-continuous, which means
that _
infc@ R =0®R
7

Thisisagenera result in Chapter 4 for any min-plus operator. An elementary proof
isasfollows.

inf;(0c ® RW)(t) = infecpoq.en [0(s) + RO (t - 3)]

[0,2], ‘
= 1nfs€[0,t] {infieN [(0(8) —+ R(Z) (t — S)}}
= 1nfs€[0,t] {0‘(8) +Elfi€N [R(L) (t — S)]}
= infse[g,t] [O’(S) + R(t— S)]
= (c®@R)(1)
Thus
R <oc® }_%,
which shows the third condition. Note that R is wide-sense increasing. O

Does a packetized greedy shaper keep arrival constraints? Figure 1.24 shows
a counter-example, namely, a variable length packet flow that has lost its initial
arrival curve constraint after traversing a packetized greedy shaper.

However, if arrival curves are defined by leaky buckets, we have apositive resullt.

1.7. HANDLING VARIABLE LENGTH PACKETS 63

v

v
—
—>

v

|

v

Figure 1.24: The input flow is shown above; it consists of 3 packets of size
10 data units and one of size 5 data units, spaced by one time unit. It is
a-smooth with o = 10v; 9. The bottom flow is the output of the packetized
greedy shaper with ¢ = 25v3. The output has a burst of 15 data units
packets at time 3. It is o-smooth but not a-smooth.

Theorem 1.7.5 (Conservation of concave arrival constraints). Assume anl-
packetized flow with arrival curve is input to a packetized greedy shaper with
cumulative packet length and shaping curve. Assume that ando are concave
with a,.(0) > lmax @ando,.(0) > lmax. Then the output flow is still constrained by
the original arrival curvea.

Proof: Since o satisfies Equation (1.24), it follows from Theorem 1.7.3 that R =
PL(c @ R). Now R is a-smooth thus it is not modified by a bit-by-bit greedy
shaper with shaping curve «, thus R = « ® R. Combining the two and using the
associativity of ® gives R = PL[(c ® o) ® R]. From our hypothesis, o ® o =
min(o,) (see Theorem 3.1.6 on Page 136) and thus o ® « satisfies Equation (1.24).
Thus, by Theorem 1.7.2, R is o ® a-smooth, and thus a-smooth. O

Series decomposition of shapers

Theorem 1.7.6. Consider a tandem aof/ packetized greedy shapers in series; as-
sume that the shaping cureé&” of themth shaper is concave with” (0) > Iax-

For L-packetized inputs, the tandem is equivalent to the packetized greedy shaper
with shaping curver = min,,, ™.

Proof: Wedotheproof for M = 2 asit extends without difficulty to larger values
of M. Call R(t) the packetized input, R’ (t) the output of the tandem of shapers, and
R(t) the output of the packetized greedy shaper with input R(t).

Firstly, by Theorem 1.7.3

R = PY[oy ® PE(c! @ R)]
Now o™ > o for al m thus

R > P*o ® P*(0 ® R)]

64 CHAPTER 1. NETWORK CALCULUS

Again by Theorem 1.7.3, we have R = P(0c ® R). Moreover R is L-packetized
and o-smooth, thus R = PL(R) and R = o ® R. Thusfinaly

R' >R (1.28)

Secondly, R’ is L-packetized and by Theorem 1.7.5, it is o-smooth. Thus the
tandem is a packetized (possibly non greedy) shaper. Since R(t) isthe output of the
packetized greedy shaper, we must have R’ < R. Combining with Equation (1.28)
ends the proof. O

It follows that a shaper with shaping curve o(t) = min,,—1,... pm(Fmt + b),
where b,, > lyax for al m, can be implemented by a tandem of M individua
leaky buckets, in any order. Furthermore, by Corollary 1.7.1, every individual leaky
bucket may independently be based either on virtual finish times or on bucket re-
plenishment.

If the condition in the theorem is not satisfied, then the conclusion may not hold.
Indeed, for the example in Figure 1.24, the tandem of packetized greedy shapers
with curves o and o does not have an a-smooth output, therefore it cannot be equiv-
alent to the packetized greedy shaper with curve min(«, o).

Unfortunately, the other shaper properties seen in Section 1.5 do not generally
hold. For shaping curves that satisfy Equation (1.24), and when a packetized greedy
shaper isintroduced, we need to compute the end-to-end service curve by applying
Theorem 1.7.1.

1.8 Lossless Effective Bandwidth and Equivalent Ca-
pacity

1.8.1 Effective Bandwidth of a Flow

We can apply the results in this chapter to define a function of a flow called the
effective bandwidth. This function characterizes the bit rate required for a given
flow. More precisely, consider a flow with cumulative function R; for a fixed, but
arbitrary delay D, we define the effective bandwidtlep (R) of the flow as the bit
rate required to serve the flow in a work conserving manner, with a virtual delay
<D.

Proposition 1.8.1. The effective bandwidth of a flow is given by

R R
eD(R)fObSSI; P (1.29)

For an arrival curve « we define the effective bandwidth e (o) as the effective
bandwidth of the greedy flow R = «. By a simple manipulation of Equation 1.29,
the following comes.

Proposition 1.8.2. The effective bandwidth of a “good” arrival curve is given by

1.8. EFFECTIVE BANDWIDTH AND EQUIVALENT CAPACITY 65

(1.30)

The alert reader will check that the effective bandwidth of aflow R is aso the
effective bandwidth of its minimum arrival curve R @ R. For example, for a flow
with T-SPEC (p, M, r, b), the effective bandwidth is the maximum of » and the
slopes of lines (QAy) and (QA;) in Figure 1.25; it isthus equal to:

M D -2
ep = max E,T,p 1-— % (131)

Assume « is sub-additive. We define the sustainablerate m asm = lim inf,_, | o <)

S

arrival curve
200

100

50

Q - 005 01 02 05 1 2

Figure 1.25: Computation of Effective Bandwidth for a VBR flow (left); exam-
ple for r = 20 packets/second, M = 10 packets, p = 200 packets per second
and b = 26 packets (right).

and the peak rate by p = sup,- s) Thenm < ep(a) < pforal D. Moreover,

S

if «isconcave, thenlimp_, o ep(a) = m.If aisdifferentiable, e(D) isthe slope

of the tangent to the arrival curve, drawn from the time axisat ¢ = —D (Figure
1.26). It follows also directly from the definition in (1.29) that
€D(Z Oéi) S ZBD(OQ') (132)

In other words, the effective bandwidth for an aggregate flow is less than or egual
to the sum of effective bandwidths. If the flows have all identical arrival curves,
then the aggregate effective bandwidth issimply I x ep(ay). Itisthislatter relation
that is the origin of the term “effective bandwidth”. The difference >, ep(a;) —
ep(>_, a;) isabuffering gain; it tells us how much capacity is saved by sharing a
buffer between the flows.

1.8.2 Equivalent Capacity

Similar results hold if we replace delay constraints by the requirement that a fixed
buffer size is not exceeded. Indeed, the queue with constant rate C, guarantees a
maximum backlog of B (in bits) for aflow R if C > fg(R), with

66 CHAPTER 1. NETWORK CALCULUS

slope = effective slope = equivalent
capacity

blti‘ bandwidth

arrival
curve

v

Figure 1.26: Effective Bandwidth for a delay constraint D and Equivalent Ca-
pacity for a buffer size B

fB(R) = sup w (1.33)
0<s<t S

Similarly, for a“good” function o, we have:

fo(a) = sup a(s) — B

s>0 S

(1.34)

Wecall f5(«) theequivalent capacityby analogy to [44]. Similar to effective band-
width, the equivalent capacity of a heterogeneous mix of flowsisless than or equal
to the sum of equivalent capacities of the flows, provided that the buffers are also
added up; in other words, fp(a) < >, fp,(a;),Witha =", c;and B =), B;.
Figure 1.26 gives agraphical interpretation.

For example, for a flow with T-SPEC (p, M, r,b), using the same method as
above, we find the following equivalent capacity:

(p—1)(b—B)* (1.35)

if B< M then + oo
fB=
else r + T

An immediate computation showsthat f3,(y,,») = . In other words, if we alo-
cate to a flow, constrained by an affine function ~,. ;,, a capacity equal to its sustain-
ablerate r, then abuffer equal toits burst tolerance b is sufficient to ensure loss-free
operation.

Consider now a mixture of Intserv flows (or VBR connections), with T-SPECs
(M;, pi, ri, b;). If we allocate to this aggregate of flows the sum of their sustainable
rates) . r;, then the buffer requirement is the sum of the burst tolerances >, b;,
regardless of other parameters such as peak rate. Conversely, Equation 1.35 also
illustrates that there is no point allocating more buffer than the burst tolerance: if
B > b, then the equivalent capacity is still r.

The above hasillustrated that it is possible to reduce the required buffer or delay
by allocating arate larger than the sustainablerate. In Section 2.2, we described how
this may be done with a protocol such as RSVP.

1.8. EFFECTIVE BANDWIDTH AND EQUIVALENT CAPACITY 67

Note that formulas (1.29) or (1.33), or both, can be used to estimate the capacity
required for a flow, based on a measured arrival curve. We can view them as low-
pass filters on the flow function R.

1.8.3 Example: Acceptance Region for a FIFO Multiplexer

Consider anode multiplexing n flowsof type 1 and n, flows of type 2, where every
flow is defined by a T-SPEC (p;, M;, r;, b;). The node has a constant output rate C'.
We wonder how many flows the node can accept.

If the only condition for flow acceptanceisthat the delay for all flowsis bounded
by some value D, then the set of acceptable values of (n, ny) is defined by

eD(n1a1 + 7120&2) S C

We can use the same convexity arguments as for the derivation of formula (1.31),
applied to the function nya; + naas. Define §; = < 05. The
resultis:

ni M +n2M2
n1M1+nzMz+(n1p1+nzpz)91

€D(n1041 + n2a2) = max n1b1+n2M2+(n1r1+n2p2)92
0>+D
niry + nara

The set of feasible (ny,n) derives directly from the previous equation; it is the
convex part shown in Figure 1.27. The aert reader will enjoy performing the com-
putation of the equivalent capacity for the case where the acceptance condition bears
on abuffer size B.

L] pi | M [orn [b [6 |
1 | 20'000 packets/s | 1 packet | 500 packets/s | 26 packets | 1.3ms
2 | 5000 packets/s | 1 packet | 500 packets/s | 251 packets | 55.5ms

Figure 1.27: Acceptance region for a mix of type 1 and type 2 flows. Maximum
delay D = zz. The parameters for types 1 and 2 are shown in the table,
together with the resulting values of 6;.

Coming back to equation 1.32, we can state in more general terms that the ef-
fective bandwidth is a convex function of function a;, namely:

ep(aa; + (1 —a)az) < aep(ar) + (1 —a)ep(as)

for al a € [0, 1]. The sameistruefor the equivalent capacity function.
Consider now acall acceptance criterion based solely on adelay bound, or based
on a maximum buffer constraint, or both. Consider further that there are I types of

68 CHAPTER 1. NETWORK CALCULUS

connections, and define the acceptance region A as the set of values (ny,...,ny)
that satisfy the call acceptance criterion, where n; is the number of connections
of class i. From the convexity of the effective bandwidth and equivalent capacity
functions, it followsthat the acceptance region A isconvex|n chapter 9 we compare
this to acceptance regions for systems with some positive loss probability.

Sustainable Rate Allocation If we are interested only in course results, then we
can reconsider the previous solution and take into account only the sustainable rate
of the connection mix. The aggregate flow is constrained (among others) by «(s) =
b+rs,withb =3, n;b; andr = . n;r;. Theorem 1.4.1 shows that the maximum
aggregate buffer occupancy is bounded by b as long as C' > r. In other words,
alocating the sustainable rate guarantees a loss-free operation, as long as the total
buffer is equal to the burstiness.

In amore general setting, assume an aggregate flow has o as minimum arrival
curve, and assume that some parameters » and b are such that

SE:I}OOO{(S) —rs—b=0
so that the sustainablerate - with burstiness b isatight bound. It can easily be shown
that if we allocate arate C' = r, then the maximum buffer occupancy is b.

Consider now multiplexing a number of VBR connections. If no buffer is avail-
able, then it is necessary for a loss-free operation to allocate the sum of the peak
rates. In contrast, using a buffer of size b makes it possible to alocate only the sus-
tainable rate. Thisis what we call the buffering gain namely, the gain on the peak
rate obtained by adding some buffer. The buffering gain comes at the expense of
increased delay, as can easily be seen from Theorem 1.4.2.

1.9 Proof of Theorem 1.4.5

Step 1. Consider afixed time ¢ty and assume, in this step, that there is some time
ug that achieves the supremum in the definition of a © 5. We construct some input
and output functions R and R* such that R is constrained by «, the system (R, R*)
iscausal, and a*(tg) = (R* @ R*)(tp). R and R* are given by (Figure 1.28)

R(t) = a(t) if t < ug + to

R(t) = O[(UO + to) if t > Ug + t()
R*(t) = inf[a(t), B(t)] if t < ug + to
R*(t) = R(t) if ¢t > ug +to

It is easy to see, as in the proof of Theorem 1.4.4 that R and R* are wide-sense
increasing, that R* < R and that 3 is a service curve for the flow. Now

R*(UO + to) — R*(UO) = CY(UO + to) — R*(UO) > a(uo + to) — ﬁ(UO) = Oé*(to)

1.9. PROOF OF THEOREM 1.4.5 69

data "

— time
0 u, uytty

Figure 1.28: Step 1 of the proof of Theorem 1.4.5: a system that attains the
output bound at one value t,.

Step 2: Consider now asequence of timestg, ty, ..., t,, ... (NOt necessarily increas-
ing). Assume, in this step, that for all n there is avalue w,, that achieves the supre-
mum in the definition of (a @ 3)(t,,). We prove that there are some functions R and
R* such that R is constrained by «, the system (R, R*) iscausal, has 3 asaservice
curve, and a* (t,,) = (R* @ R*)(t,) foral n > 0.

Webuild R and R* by induction on aset of increasing intervals [0, so], [0, s1],...,
[0, $p,].... Theinduction property is that the system restricted to timeinterval [0, s,,]
iscausal, hasa asan arrival curvefor theinput, has 8 asaservice curve, and satisfies
a*(t;) = (R* @ R*)(t;) fori < n.

The first interva is defined by sg = wg + to; R and R* are built on [0, s¢] as
in step 1 above. Clearly, the induction property is true for n = 0. Assume we have
built the system on interval [0, s,,]. Define now s, 11 = s, + uy + ty + 0py1. We
chose §,, 11 such that

(s 4 0py1) — as) > R(sy) foralls >0 (1.36)

This is possible from the last condition in the Theorem. The system is defined on
J$n, snt1) by (Figure 1.29)

R(t) = R*(t) = R(syp) for s, <t < sy, + Ont1

R(t) = R(sp) + a(t — 8y, — Ony1) for sp + dpg1 <t < Spy1

R*(t) = R(spn) + (@ AB)(t — $Sp — Spg1) fOr Sy + Onp1 <t < Spt1
R*(sn+41) = R(sn+1)

We show now that the arrival curve constraint is satisfied for the system defined
on [0, sp+1]). Consider R(t) — R(v) for ¢ and v in [0, sp41]. If both ¢ < s,, and
v < sp,orifbotht > s, andv > s, then the arrival curve property holds from
our construction and the induction property. We can thus assume that ¢ > s,, and
v < s,. Clearly, we can even assumethat ¢t > s,, + d,,+1, Otherwise the property is
trivially true. Let usrewritet = s, + d,+1 + s. We have, from our construction:

R(t)— R(v) = R(sp+0n+1+8) — R(v) = R(spn) +a(s) — R(v) < R(s,)+a(s)
Now from Equation (1.36), we have:

R(sn) +a(s) < afs+0pt1) < s+ dpt1 + $n —v) = at —v)

70 CHAPTER 1. NETWORK CALCULUS

—r
data R B

P

B
/ 3 uy 4) U o)

0 Uy Sz Uty S S2 time

Figure 1.29: Step 2 of the proof of Theorem 1.4.5: a system that attains the
output bound for all values ¢,,, n € N.

which shows the arrival curve property.
Using the same arguments as in step 1, it is simple to show that the system is
causal, has 3 as a service curve, and that

R*(unt1 +tni1) — R (unt1) = o™ (tny1)

which ends the proof that the induction property isalso true for n + 1.

Step 3: Consider, asin step 2, asequence of timestg, t1, ..., ty,, ... (NOt Necessarily
increasing). We now extend the result in step 2 to the case where the supremum in
the definition of a* = (a @ B)(t,) is not necessarily attained. Assume first that
a*(ty,) isfinitefor al n. For al n and al m € N* there is some u,,, ,, such that

ltn + i) — Blttmn) > 0 (bn) — — (1.37)

m
Now the set of all couples (m, n) isenumerable. Consider some numbering (M (i), N (7)),
¢ € N for that set. Using the same construction as in step 2, we can build by in-
duction on 4 a sequence of increasing intervals [0, s;] and a system (R, R*) that is
causal, has o asan arrival curvefor theinput, has 3 asaservice curve, and such that

* * * 1
R*(si) — R*(si —tn()) > o™ (tny) — 70

Now consider an arbitrary, but fixed n. By applying the previous equations to all ¢
such that N (i) = n, we obtain

(R* @ R*)(tn) > SUDP; such that N(i)=n {a*(tN(i)) -]ul(,‘) }

= o (tn) — inf; guch that N(i)=n Ml(l) }

Now the set of all 57y for i suchthat N (i) = n isN*, thus

1.10. BIBLIOGRAPHIC NOTES 71

1
inf —— =0
i such that N(i)=n { M (1) }

and thus (R* @ R*)(t,) = a*(t,), which ends the proof of step 3 in the case where
a*(ty,) isfinitefor al n.

A similar reasoning can be used if a*(t,,) isinfinite for some ¢,,. In that case
replace Equation (1.37) by a(t,, + tm,n) — B(tmn) > m.

Step 4: Now we conclude the proof. If timeisdiscrete, then step 3 proves the theo-
rem. Otherwise we use adensity argument. The set of nonnegative rational numbers
QT isenumerable; we can thus apply step 3 to the sequence of all elements of Q,
and obtain system (R, R*), with

(R* @ R*)(q) = a*(q) forallg € Q*

Function R* is right-continuous, thus, from the discussion at the end of Theo-
rem 1.2.2, it follows that R* ©® R* isleft-continuous. We now show that o* is also
left-continuous. For al ¢ > 0 we have:

sup o (s) = sup {a(s+v)—B(v)} = sup{supla(s+v)—F(v)]}
s<t (s,v) such that s<t and v>0 v>0 s<t
Now

sup a(s +v) = a(t + v)
s<t

because « is |eft-continuous. Thus

sup o (s) = sup{a(t +v) — B(v)]} = " (t)
s<t v>0
which showsthat « isleft-continuous.

Back to the main argument of step 4, consider some arbitrary ¢ > 0. Theset Q+
is dense in the set of nonnegative real numbers, thus there is a sequence of rational
numbers g, € Q*, withn € N, such that ¢, < ¢t and lim,,_, ;o ¢, = t. From the
left-continuity of R* @ R* and o* we have:

(R" @ R")(t) = lim (R*©R")(qx) = lim a(gn) = a"(t)

n— 00 n— 400

1.10 Bibliographic Notes

Network calculus as has been applied to dimensioning ATM switches in [57]. A
practical algorithm for the determination of the minimum arrival curve for ATM
system is described in [58]. It uses the burstiness function of aflow, defined in [54]
asfollows. For any r, B(r) isthe minimum b such that the flow is ;. ,-smooth, and
isthus the required buffer if the flow is served at a constant rate . Note that B(r) is

72 CHAPTER 1. NETWORK CALCULUS

the Legendre transform of the minimum arrival curve o of the flow, namely, B(r) =
sup,so(o(t) —rt) [58] gives afast agorithm for computing B(r). Interestingly, the
concept is applied also to the distribution of symbolsin atext.

In [74], the concepts of arrival and service curve are used to analyze rea time
processing systems. It is shown that the service curve for a variable capacity node
must be super-additive, and conversely, any super-additive function is a service
curve for a variable capacity node. Compare to greedy shapers, which have a sub-
additive service curve. This shows that, except for constant bit rate trunks, a greedy
shaper cannot be modeled as a variable capacity node, and conversely.

In [9], the authors consider a crossbar switch, and call r; ; the rate assigned to
the traffic from input port ¢ to output port j. Assume that). r; ; < 1 for al j
and >’ ;g <1 for al 4. Using properties of doubly-stochastic matrices (such as
(ri,;) is), they give asimple scheduling agorithm that guarantees that the flow from
port 7 to port j is allocated a variable capacity C' satisfying C; ;(t) — C; ;(s) >
ri;(t —s) — s;,; for some s; ; defined by the algorithm. Thus, the node offers a
service curve equal to the rate-latency function 3, ; s, .-

A dual approach to account for variable length packets is introduced in [11]. It
consistsin replacing the definition of arrival curve (or o-smoothness) by the concept
of g-regularity. Consider a flow of variable length packets, with cumulative packet
length L and call T; the arrival epoch for the ith packet. The flow is said to be g-
regular if T'(j) — T'(¢) > g(L(j) — L(3)) for al packet numbers: < j. A theory
is then devel oped with concepts similar to the greedy shaper. The theory uses max-
plus convolution instead of min-plus convolution. The (b, r) regulator originally
introduced by Cruz [19] is a shaper in this theory, whose output is g-regular, with

g(z) = @Jr. This theory does not exactly correspond to the usual concept of
leaky bucket controllers. More specifically, there is not an exact correspondence
between the set of flows that are g-regular on one hand, and that are o-smooth on
the other. We explain why with an example. Consider the set of flows that are g-
regular, with g(x) = <. The minimum arrival curve we can put on this set of flows
iSo(t) = rt+ lmax [11]. But conversely, if aflow is o-smooth, we cannot guarantee
that it is g-regular. Indeed, the following sequence of packets is a flow that is o-
smooth but not g-regular: the flow has a short packet (length I3 < lhax) &t time
Ty = 0, followed by a packet of maximum size L.« at time 7> = . Infact, if a

. - . o +
flow is o-smooth, then it is ¢’-regular, with ¢'(z) = (E=lmax) ™

T

The strict service curve in Definition 1.3.2 is called “strong” service curve in
[43].

1.11 Exercises

Exercise 1.1. Compute the maximum buffer sixefor a system that is initially
empty, and where the input functionf§t) = j;f r(s)ds, for the following cases.

1. ifr(t) = a (constant)

1.11. EXERCISES 73

2. one on-off connection with peak rate 1 Mb/s, on period 1 sec, off period
seconds, and trunk bit rate= 0.5 Mb/s.

3. ifr(t) = ¢+ csinwt, with trunk bit ratec > 0.

Exercise 1.2. You have a fixed buffer of siZ€, that receives a data input(t).
Determine the output ratethat is required to avoid buffer overflow given that the
buffer is initially empty.

Exercise1.3. 1. For a flow with constant bit rate, give some possible arrival
curves.

2. Consider a flow with an arrival curve given by(t) = B, whereB is con-
stant. What does this mean for the flow ?

Exercise 1.4. We say that a flow i$P, B) constrained if it hasyp g as an
arrival curve.
A trunk system has a buffer size Bfand a trunk bitrate ofP. Fill in the
dots: (1) there is no loss if the input (s .) constrained (2) the output is, .)
constrained.

2. A(P, B) constrained flow is fed into an infinite buffer served at a rate.of
What is the maximum delay ?

Exercise 1.5 (On-Off flows). 1. Assume a data flow is periodical, with period
T, and satisfies the following:(t) = p for 0 < t < Tp, andr(t) = 0 for
To <t<T.

(@) Draw R(t) = fot r(s)ds
(b) Find an arrival curve for the flow. Find the minimum arrival curve for
the flow.
(c) Find the minimungr,) such that the flow iér, b) constrained.
2. A traffic flow uses a link with bitrat@ (bits/s). Data is sent as packets of
variable length. The flow is controlled by a leaky buckeb). What is the

maximum packet size ? What is the minimum time interval between packets of
maximum size ?

Application: P =2 Mb/s, r = 0.2 Mb/s; what is the required burst tolerarice
if the packet length is 2 Kbytes ? What is then the minimum spacing between
packets ?

Exercise 1.6. Consider the following alternative definition of the GCRA:

Definition 1.11.1. The GCRAT, 7) is a controller that takes as input a cell arrival
timet and returnsr esul t . It has internal (static) variableX (bucket level) and
LCT (last conformance time).

e initially, X = 0andLCT = 0

74 CHAPTER 1. NETWORK CALCULUS

e when a cell arrives at time, then

if (X-t + LCT > tau)
result = NON- CONFORIVANT;

el se {
X=mx (X-t + LCT, 0) + T;
LCT =t;
result = CONFORVMANT;
}

Show that the two definitions of GCRA are equivalent.

Exercise 1.7. 1. For the following flows and a GCRA(10, 2), give the confor-
mant and non-conformant cells. Times are in cell slots at the link rate. Draw
the leaky bucket behaviour assuming instantaneous cell arrivals.

(@ 0, 10, 18, 28, 38
(b) 0,10, 15, 25, 35
(c) 0,10, 18, 26, 36
(d) 0, 10,11, 18,28

2. What is the maximum number of cells that can flow back to back with
GCRA(T, CDVT) (maximum “clump” size) ?

Exercise1.8. 1. For the following flows and a GCRA(100, 500), give the con-
formant and non-conformant cells. Times are in cell slots at the link rate.

(a) 0,100, 110, 12, 130, 140, 150, 160, 170, 180, 1000, 1010

(b) 0, 100, 130, 160, 190, 220, 250, 280, 310, 1000, 1030

(c) 0,10, 20, 300, 310, 320, 600, 610, 620, 800, 810, 820, 1000, 1010, 1020,
1200, 1210, 1220, 1400, 1410, 1420, 1600, 1610, 1620

2. Assume that a cell flow has a minimum spacing tifne units between cell
emission times~(is the minimum time between the beginnings of two cell
transmissions). What is the maximum burst size for GERA(? What is the
minimum time between bursts of maximum size ?

3. Assume that a cell flow has a minimum spacing between cellsrog units,

and a minimum spacing between burst§'pfWhat is the maximum burst size
?

Exercise 1.9. For a CBR connection, here are some values from an ATM operator:

peak cell rate (cells/s) 100 1000 10000 100000
CDVT (m croseconds) 2900 1200 400 135

1.11. EXERCISES 75

1. What are th€ P, B) parameters in b/s and bits for each case ? How dbes
compare tor ?

2. If a connection requires a peak cell rate of 1000 cells per second and a cell
delay variation of 1400 microseconds, what can be done ?

3. Assume the operator allocates the peak rate to every connection at one buffer.
What is the amount of buffer required to assure absence of loss ? Numerical
Application for each of the following cases, where a numieof identical
connections with peak cell rate is multiplexed.

case 1 2 3 4
nb of connnections 3000 300 30 3
peak cell rate (c/s) 100 1000 10000 100000

Exercise 1.10. The two questions in this problem are independent.

1. An ATM source is constrained by GCRAE 30 slots,7 = 60 slots), where
time is counted in slots. One slot is the time it takes to transmit one cell on the
link. The source sends cells according to the following algorithm.

e In a first phase, cells are sent at timgd) = 0, t(2) = 15, ¢(3) =
30,...,t(n) = 15(n — 1) as long as all cells are conformant. In other
words, the numbet is the largest integer such that all cells sent at times
t(i) = 15(¢ — 1), i < n are conformant. The sending of cellat time
t(n) ends the first phase.

e Then the source enters the second phase. The subsequenticélis
sent at the earliest time afté(n) at which a conformant cell can be
sent, and the same is repeated for ever. In other words,t¢aJl the
sending time for celk, with & > n; we have thent(k) is the earliest
time aftert(k — 1) at which a conformant cell can be sent.

How many cells were sent by the source in time intej®al51] ?

2. A network node can be modeled as a single buffer with a constant output
rate c (in cells per second). It receivdsATM connections labeled, . . ., I.
Each ATM connection has a peak cell ratg(in cells per second) and a cell
delay variation tolerance; (in seconds) fod < i < I. The total input rate
into the buffer is at least as large (’Ele p; (Which is equivalent to saying
that it is unlimited). What is the buffer size (in cells) required for a loss-free
operation ?

Exercise 1.11. In this problem, time is counted in slots. One slot is the duration to
transmit one ATM cell on the link.

1. An ATM sourced; is constrained by GCRA(= 50 slots,7 = 500 slots),
The source sends cells according to the following algorithm.

76 CHAPTER 1. NETWORK CALCULUS

¢ In a first phase, cells are sent at timgd) = 0, ¢(2) = 10, ¢(3) =
20,...,t(n) = 10(n — 1) as long as all cells are conformant. In other
words, the numbet is the largest integer such that all cells sent at times
t(¢) = 10(¢ — 1), ¢ < n are conformant. The sending of cellat time
t(n) ends the first phase.

e Then the source enters the second phase. The subsequenticélis
sent at the earliest time aftefn) at which a conformant cell can be
sent, and the same is repeated for ever. In other words,¢aJl the
sending time for celk, with & > n; we have thent(k) is the earliest
time aftert(k — 1) at which a conformant cell can be sent.

How many cells were sent by the source in time intej@a01] ?

2. An ATM sourcés, is constrained byoth GCRA(" = 10 slots, = 2 slots)
and GCRAT = 50 slots,7 = 500 slots). The source starts at timieand has
an infinite supply of cells to send. The source sends its cells as soon as it is
permitted by the combination of the GCRAs. We tial) the time at which
the source sends theh cell, with¢(1) = 0. What is the value af(15) ?

Exercise 1.12. Consider a flowR(¢) receiving a minimum service curve guarantee
3. Assume that

e [is concave and wide-sense increasing
e theinf in R ® (is amin

For all ¢, call 7(¢) a number such that
(R® B)(t) = R(7(t)) + B(t — 7())
Show that it is possible to choosesuch that ift; < ¢, thent(t1) < 7(¢2).

Exercise1.13. 1. Find the maximum backlog and maximum delay for an ATM
CBR connection with peak rate and cell delay variatiorr, assuming the
service curve ig(t) = r(t — Tp)™

2. Find the maximum backlog and maximum delay for an ATM VBR connection
with peak rateP, cell delay variationr, sustainable cell ratél/ and burst
tolerancerp (in seconds), assuming the service curve(i$ = r(t — Ty) ™

Exercise 1.14. Show the following statements:

1. Consider a(P, B) constrained flow, served at a rate> P. The output is
also (P, B) constrained.

2. Assumex() has a bounded right-handside derivative. Then the output for a
flow constrained by(), served in a buffer at a constant rate> sup, - a'(t),
is also constrained by().

1.11. EXERCISES 7

Exercise 1.15. 1. Find the the arrival curve constraining the output for an ATM
CBR connection with peak rateé and cell delay variatiornr, assuming the
service curve ig(t) = r(t — Tp)™

2. Find the arrival curve constraining the output for an ATM VBR connection
with peak rateP, cell delay variationr, sustainable cell ratél/ and burst
tolerancerp (in seconds), assuming the service curve(i$ = r(t — Ty) ™+

Exercise 1.16. Consider the figure “Derivation of arrival curve for the output of a
flow served in a node with rate-latency service cupyer”. What can be said it
in the Figure is infinite, namely, if’ (t) > r forall ¢ ?

Exercise 1.17. Consider a series of guaranteed service nodes with service curves
ci(t) = riy(t — T;)*. What is the maximum delay through this system for a flow
constrained bym, b) ?

Exercise 1.18. A flow with T-SPEQp, M, r, b) traverses nodes 1 and 2. Node
offers a service curve;(t) = R;(t — T;)*. What buffer size is required for the flow
atnode 2 ?

Exercise 1.19. A flow with T-SPEQp, M, r, b) traverses nodes 1 and 2. Node
offers a service curve;(t) = R;(t —T;)". A shaper is placed between nodes 1 and
2. The shaper forces the flow to the arrival cup(¢) = min(Rst, bt + m).

1. What buffer size is required for the flow at the shaper ?
2. What buffer size is required at node 2 ? What value do you fifid# 75 ?

3. Compare the sum of the preceding buffer sizes to the size that would be re-
quired if no re-shaping is performed.

4. Give an arrival curve for the output of node 2.

Exercise 1.20. Prove the formula giving of paragraph “Buffer Sizing at a Re-
shaper”

Exercise 1.21. Is Theorem “Input-Output Characterization of Greedy Shapers” a
stronger result than Corollary “Service Curve offered by a Greedy Shaper” ?

Exercise1.22. 1. Explain what is meant by “we pay bursts only once”.
2. Give a summary in at most 15 lines of the main properties of shapers

3. Define the following concepts by using theperator: Service Curve, Arrival
Curve, Shaper

4. What is a greedy source ?

Exercise 1.23. 1. Show that for a constant bit rate trunk with ratehe backlog
at timet is given by

W (t) = sup {R(t) — R*(s) — c(t — s)}

s<t

78 CHAPTER 1. NETWORK CALCULUS

2. What does the formula become if we assume only that, instead a constant bit
rate trunk, the node is a scheduler offerifigas a service curve ?

Exercise 1.24. Is it true that offering a service curvg implies that, during any
busy period of length, the amount of service received rate is at le@&t) ?

Exercise 1.25. AflowS(¢) is constrained by an arrival curve. The flow is fed into
a shaper, with shaping curve We assume that

a(s) = min(m + ps, b+ rs)

and
o(s) = min(Ps, B + Rs)

We assume that > r, m < bandP > R.
The shaper has a fixed buffer size equaktoc> m. We require that the buffer
never overflows.

1. Assume thaB = +oco. Find the smallest oP which guarantees that there is
no buffer overflow. LeP, be this value.

2. We do not assume th&t = +oo any more, but we assume th&tis set to
the valueP, computed in the previous question. Find the valiig, Ry) of
(B, R) which guarantees that there is no buffer overflow and minimizes the
cost functiore(B, R) = aB + R, whereq is a positive constant.

What is the maximum virtual delay(iP, B, R) = (P, By, Ro) ?

Exercise 1.26. We consider a buffer of siz& cells, served at a constant rate of
c cells per second. We pWf identical connections into the buffer; each of the
connections is constrained both by GCRA(r;) and GCRATS, 72). What is the
maximum value oV which is possible if we want to guarantee that there is no cell
loss at all ?

Give the numerical application fof; = 0.5 ms,7, = 4.5 ms, 7, = 5 ms,
5 = 495 ms,c = 10° cells/secondX = 10* cells

Exercise 1.27. We consider a flow defined by its functi®t), with R(¢) = the
number of bits observed since time- 0.

1. The flow is fed into a buffer, served at a rateCall ¢(¢) the buffer content
at timet. We do the same assumptions as in the lecture, namely, the buffer is
large enough, and is initially empty. What is the expressiog(gfassuming
we knowR(t) ?

We assume now that, unlike what we saw in the lecture, the initial buffer
content (at time = 0) is not 0, but some valugy, > 0. What is now the
expression foy(t) ?

1.11. EXERCISES 79

2. The flow is put into a leaky bucket policer, with ratand bucket sizé. This
is a policer, not a shaper, so nonconformant bits are discarded. We assume
that the bucket is large enough, and is initially empty. What is the condition
on R which ensures that no bit is discarded by the policer (in other words,
that the flow is conformant) ?

We assume now that, unlike what we saw in the lecture, the iticket
content (at timet = 0) is not 0, but some valué, > 0. What is now the
condition onR which ensures that no bit is discarded by the policer (in other
words, that the flow is conformant) ?

Exercise 1.28. Consider a variable capacity network node, with capacity curve
M (t). Show that there is one maximum functigin(¢) such that for all0 < s < ¢,
we have

M(t) — M(s) > S*(t—s)

Show thatS* is super-additive.

Conversely, if a functiom is super-additive, show that there is a variable ca-
pacity network node, with capacity curiké(¢), such that for alb < s < ¢, we have
M(t) — M(s) > S*(t — s).

Show that, with a notable exception, a shaper cannot be modeled as a variable
capacity node.

Exercise1.29. 1. Consider a packetized greedy shaper with shaping cuftle=
rt for ¢ > 0. Assume thal.(k) = kM whereM is fixed. Assume that the
input is given byR(t) = 10M for t > 0 and R(0) = 0. Compute the
sequenceR(i)(t) used in the representation of the output of the packetized
greedy shaper, for=1,2,3,

2. Same question igma(t) = (rt +2M)1;t > 0}.
Exercise 1.30. Consider a source given by the function

R(t)=Bfort >0
R(t)=0fort<0

Thus the flow consists of an instantaneous bur$ bfts.
1. What is the minimum arrival curve for the flow ?

2. Assume that the flow is served in one node that offers a minimum service curve
of the rate latency type, with rateand latencyA. What is the maximum delay
for the last bit of the flow ?

3. We assume now that the flow goes through a series of two nvdasd N>,
whereN; offers to the flow a minimum service curve of the rate latency type,
with rater; and latencyA;, for : = 1,2. What is the the maximum delay for
the last bit of the flow through the series of two nodes ?

80 CHAPTER 1. NETWORK CALCULUS

4. With the same assumption as in the previous item, Ba{t) the function
describing the flow at the output of nod§ (thus at the input of nodd/).
What is the worst case minimum arrival curve ®r ?

5. We assume that we insert betwéénand N\, a “reformatter” S. The input
to Sis Ry (t). We call R} (t) the output ofS. ThusR (¢) is now the input to
N>. The function of the “reformatterS is to delay the flowR; in order to
output a flowR) that is a delayed version @t. In other words, we must have
R} (t) = R(t — d) for somed. We assume that the reformattgris optimal
in the sense that it chooses the smallest possiblie the worst case, what is
this optimal value off ?

6. With the same assumptions as in the previous item, what is the worst case

end-to-end delay through the series of nodésS, N> ? Is the reformatter
transparent ?

Exercise 1.31. Leto be a good function. Consider the concatenation of a bit-by-bit
greedy shaper, with curve, and anL-packetizer. Assume tha{0") = 0. Consider
only inputs that ard.-packetized

1. Is this system a packetized shaperdc?
2. Is it a packetized shaper for+ l,,.x ?
3. Is it a packetized greedy shaper tor- [, ?

Exercise 1.32. Assume that is a good function and = o + lug whereuy is the
step function with a step at= 0. Can we conclude that, is sub-additive ?

Exercise 1.33. Is the operator P%) upper-semi-continuous ?

Exercise1.34. 1. Consider the concatenation of &napacketizer and a network
element with minimum service curg@nd maximum service curge Can we
say that the combined system offer a minimum service qit¢g — li,a,)"
and a maximum service curyeas in the case where the concatenation would
be in the reverse order ? .

2. Consider the concatenation of a GPS node offering a guaraiieean
L-packetizer, and a second GPS node offering a guaraihfeeShow that
the combined system offers a rate-latency service curve with Rate-
min(ry,7) and latencys = mafc?ﬁ

Exercise 1.35. Consider a node that offers to a floR(¢) a rate-latency service
curvel = Sg 1. Assume thaR(¢) is L-packetized, with packet arrival times called
T1,T5, ... (and is left-continuous, as usual)

Show that(R ® 3)(t) = ming,eo.4[R(T;) + 8(t — T;)] (and thus, thenf is

attained).

1.11. EXERCISES 81

Exercise 1.36. 1. AssumeiK connections, each with peak rate sustainable
rate m and burst tolerancé, are offered to a trunk with constant service rate
P and FIFO buffer of capacityX. Find the conditions ot for the system to
be loss-free.

2. If Km = P, whatis the condition oiX for K connections to be accepted ?

3. What is the maximum number of connectiop # 2 Mb/s, m = 0.2 Mb/s,
X = 10MBytesp = 1Mbyte andP = 0.1, 1, 2 or 10 Mb/s ?

4. For a fixed buffer siz&(, draw the acceptance region whé&hand P are the
variables.

Exercise 1.37. Show the formulas giving the expressionsfgfR) and fp(«).

Exercise 1.38. 1. What is the effective bandwith for a connection with 2
Mb/s,m = 0.2 Mb/s,b = 100 Kbytes whe) = 1msec, 10 msec, 100 msec,
1s?

2. Plot the effective bandwidth as a function of the delay constraint in the
general case of a connection with parametgrs, b.

Exercise 1.39. 1. Compute the effective bandwidth for a mix of VBR connec-
tions1,...,I.

2. Show how the homogeneous case can be derived from your formula

3. AssumeéX connections, each with peak rgtesustainable raten and burst
toleranceb, are offered to a trunk with constant service rateand FIFO
buffer of capacityX . Find the conditions ot for the system to be loss-free.

4. Assume that there are two classes of connections Ayittonnections in class
1,1 = 1,2, offered to a trunk with constant service rateand FIFO buffer
of infinite capacityX . The connections are accepted as long as their queuing
delay does not exceed some valueDraw the acceptance region, that is, the
set of(K, K») that are accepted by CAC2. Is the acceptance region convex ?
Is the complementary of the acceptance region in the positive orthant convex
? Does this generalize to more than two classes ?

82

CHAPTER 1. NETWORK CALCULUS

Chapter 2

Application of Network
Calculusto the Internet

In this chapter we apply the concepts of Chapter 1 and explain the theoretical un-
derpinnings of integrated and differentiated services. Integrated services define how
reservations can be made for flows. We explain in detail how this framework was
deeply influenced by GPS. In particular, we will seethat it assumesthat every router
can be modeled as a node offering a minimum service curve that is a rate-latency
function. We explain how thisis used in a protocol such as RSVP. We also analyze
the more efficient framework based on service curve scheduling. This allows us to
address in a simple way the complex issue of schedulability.

We explain the concept of Guaranteed Rate node, which corresponds to a ser-
vice curve element, but with some differences, because it uses a max-plus approach
instead of min-plus. We analyze the relation between the two approaches.

Differentiated services differ radically, in that reservations are made per class of
service, rather than per flow. We show how the bounding resultsin Chapter 1 can be
applied to find delay and backlog bounds. We also introduce the “ damper”, which is
away of enforcing a maximum service curve, and show how it can radically reduce
the delay bounds.

2.1 GPSand Guaranteed Rate Nodes

In this section we describe GPS and its derivatives; they form the basis on which the
Internet guaranteed model was defined.

2.1.1 Packet Scheduling

A guaranteed service network offers delay and throughput guarantees to flows, pro-
vided that the flows satisfy some arrival curve constraints (Section 2.2). This re-
quires that network nodes implement some form of packet scheduling, also called

83

84 CHAPTER 2. APPLICATION TO THE INTERNET

service discipline. Packet scheduling is defined as the function that decides, at every
buffer inside a network node, the service order for different packets.

A simple form of packet scheduling is FIFO: packets are served in the order of
arrival. The delay bound, and the required buffer, depend on the minimum arrival
curve of the aggregate flow (Section 1.8 on page 64). If one flow sends a large
amount of traffic, then the delay increases for all flows, and packet loss may occur.
Thus FIFO scheduling requires that arrival curve constraints on all flows be strictly
enforced at al pointsin the network. Also, with FIFO scheduling, the delay bound
isthe samefor al flows. We study FIFO scheduling in more detail in Section 6.

An alternative [23, 41] is to use per flow queuing, in order to (1) provide iso-
lation to flows and (2) offer different guarantees. We consider first the ideal form
of per flow queuing called “ Generalized Processor Sharing” (GPS) [60], which was
already mentioned in Chapter 1.

2.1.2 GPSand aPractical Implementation (PGPS)

A GPS node serves several flowsin parallel, and hasatotal output rate equal to ¢ b/s.
A flow 7 is alocated a given weight, say ¢;. Call R;(t), R} (t) the input and output
functions for flow ¢. The guarantee is that at any time ¢, the service rate offered to
flow i is 0 isflowi has no backlog (namely, if R;(t) = R}(t)), and otherwise is
equal to mc where B(t) isthe set of backlogged flows at time ¢t. Thus

t) = /t Ll{ieB(s)}dS
JO ZjeB(s) (bJ

In the formula, we used the indicator function 1;expry, which is equal to 1 if expr
istrue, and 0 otherwise.

Itfollowsi mmedl ately that the GPS node offersto flow i aservicecurve equal to
Arse, Withr, = Z
for every flow if we knovv some arrival curve properties for al flows; however the
simple property is sufficient to understand the integrated service model.

GPS sdtisfies the requirement of isolating flows and providing differentiated
guarantees. We can compute the delay bound and buffer requirements for every
flow if we know its arrival curve, using the results of Chapter 1. However, a GPS
node isatheoretical concept, which isnot really implementable, because it relieson
afluid model, and assumes that packets are infinitely divisible. How can we make a
practical implementation of GPS ? One simple solution would be to use the virtual
finish times as we did for the buffered leaky bucket controller in Section 1.7.3: for
every packet we would compute its finish time 6 under GPS, then at time 6 present
the packet to amultiplexer that serves packets at arate c. Figure 2.1 (left) showsthe
finish times on an example. It also illustrates the main drawback that this method
would have: at times 3 and 5, the multiplexer would be idle, whereas at time 6 it
would have a burst of 5 packets to serve. In particular, such a scheduler would not
be work conserving.

2.1. GPSAND GUARANTEED RATE NODES 85

This is what motivated researchers to find other practical implementations of
GPS. We study here one such implementation of GPS, called packet by packet
generalized processor sharing (PGPS) [60]. Other implementations of GPS are dis-
cussed in Section 2.1.3.

PGPS emulates GPS as follows. There is one FIFO queue per flow. The sched-
uler handles packets one at atime, until it is fully transmitted, at the system rate
c. For every packet, we compute the finish time that it would have under GPS (we
call this the “GPS-finish-time”). Then, whenever a packet is finished transmitting,
the next packet selected for transmission is the one with the earliest GPS-finish-
time, among all packets present. Figure 2.1 shows one example. We see that, unlike
the simple solution discussed earlier, PGPS is work conserving, but does so at the
expense of maybe scheduling a packet beforeits finish time under GPS.

234567 91011;ﬁmeD 234567891011,
y v flow 0
Yv A 1
Yv A 2
Yv A 3
LA 4 A 4
v A 5
VY Arrival
TDeparture

Figure 2.1: Scheduling with GPS (left) and PGPS (right). Flow 0 has weight
0.5, flows 1 to 5 have weight 0.1. All packets have the same transmission
time equal to 1 time unit.

We can quantify the difference between PGPS and GPS in the following propo-
sition. In Section 2.1.3, we will see how to derive a service curve property.

Proposition 2.1.1 ([60]). The finish time for PGPS is at most the finish time of GPS
plus%, wherec is the total rate and_ is the maximum packet size.

Proof: Call D(n) the finish time of the nth packet for the aggregate input flow
under PGPS, in the order of departure, and 6(n) under GPS. Call ny the number of
the packet that started the busy period in which packet n departs. Note that PGPS
and GPS have the same busy periods, since if we observe only the aggregate flows,
thereis no difference between PGPS and GPS.

There may be some packets that depart before packet n in PGPS, but that
nonetheless have alater departure time under GPS. Call my > nq the largest packet
number for which this occurs, if any; otherwise let my = ny — 1. In this proposi-
tion, we cdl I(m) the length in bits of packet m. Under PGPS, packet m, started

86 CHAPTER 2. APPLICATION TO THE INTERNET

serviceat D(mg) — @ which must be earlier than the arrival times of packets
m = mg + 1, ..., n. Indeed, otherwise, by definition of PGPS, the PGPS scheduler
would have scheduled packets m = mg + 1, ..., n before packet m. Now let us
observe the GPS system. Packets m = mg + 1, ..., n depart no later than packet
n, by definition of my; they have arrived after D(myg) — @ By expressing the

amount of servicein theinterval [D(mg) — l("go),e(n)] we find thus

n

o Um)<e (Q(n) — D(mo) + @)

m=mo+1

Now since packets my, ..., n arein the same busy period, we have

n_ I(m
D(n) = D(mg) + —Zm_m(:rl (m)
By combining the two equations above we find D(n) < 6(n) + l(”:—") which shows
the proposition in the case where my < ny.

If mg = ng — 1, then all packets ny, ..., n depart before packet n under GPS and

thus the same reasoning shows that

n

Z I(m) <c(8(n) —to)

m=ngo

where t, is the beginning of the busy period, and that

T (m
D(n) —to+ Zm_zo ()

Thus D(n) < 6(n) inthat case. O

2.1.3 Guaranteed Rate (GR) Nodes and the Max-Plus Approach

The service curve concept defined earlier can be approached from the dual point of
view, which consists in studying the packet arrival and departure times instead of
the functions R(t) (which count the bits arrived up to time t). This latter approach
|eads to max-plus algebra (which has the same properties as min-plus), is often more
appropriate to account for details due to variable packet sizes, but works well only
when the service curves are of the rate-latency type. It also useful when nodes cannot
be assumed to be FIFO per flow, as may be the case with DiffServ (Section 2.4).
GR aso alowsto show that many schedulers have the rate-latency service curve
property. Indeed, a large number of practical implementations of GPS, other than
PGSP, have been proposed in the literature; let us mention: virtual clock schedul-
ing [45], packet by packet generalized processor sharing [60] and self-clocked fair
queuing [37](see also [28]). For athorough discussion of practical implementations
of GPS, see [77, 28]). These implementations differ in their implementation com-
plexity and in the bounds that can be obtained. It is shown in [29] that all of these

2.1. GPSAND GUARANTEED RATE NODES 87

implementations fit in the following framework, called “ Guaranteed Rate”, which
we define in now. We will also analyze how it relates to the min-plus approach.

Definition 2.1.1 (GR Node[29]). Consider a node that serves a flow. Packets are
numbered in order of arrival. Let,, > 0, d,, > 0 be the arrival and departure times.
We say that a node is thegaaranteed rate (GR) node for this flow, with rate and
delaye, if it guarantees thatl,, < f, + e, wheref,, is defined by Equation (2.1).

{ fo=0 2.1)

fo=max{an, fn_1} + lT foralln >1

The variables f,, (“Guaranteed Rate Clocks’) can be interpreted as the depar-
turestimes from a FIFO constant rate server, with rate . The parameter e expresses
how much the node deviates from it. Note however that a GR node need not be
FIFO. A GR nodeis also called “ Rate-Latency server”.

Theorem 2.1.1 (M ax-PlusRepresentation of GR). Consider a system where pack-
ets are numbered, 2, ... in order of arrival. Calla,,, d,, the arrival and departure
times for packet, andl,, the size of packet. Define by conventiord, = 0. The
system is a GR node with rateand latencye if and only if for all n there is some
k € {1,...,n} such that

dn§e+ak+lk+'7'ﬂ7'+l” 2.2)

Proof: The recursion Equation (2.1) can be solved iteratively, using the same
max-plus method as in the proof of Proposition 1.2.4. Define

G+ +ln

A?:ath " for1<j<n
Then we obtain
fn =max(A}, AT, AT)
Therest followsimmediately. O

Equation (2.2) is the dual of the service curve definition (Equation (1.9) on
Page 87), with 3(t) = r(t — ¢)™. We now elucidate this relationship.

Theorem 2.1.2 (Equivalencewith servicecurve). Consider a node witlh.-packetized
input.

1. If the node guarantees a minimum service curve equal to the rate-latency
functiong = f,,, and if it is FIFO, then it is a GR node with rate and
latencyw.

2. Conversely, a GR node with rateand latencye is the concatenation of a
service curve element, with service curve equal to the rate-latency function
Br.v» and anL-packetizer. If the GR node is FIFO, then so is the service curve
element.

88 CHAPTER 2. APPLICATION TO THE INTERNET
The proof islong and is given at the end of this section.
By applying Theorem 1.7.1, we obtain

Corollary 2.1.1. A GR node offers a minimum service CUBYE imax
The service curve can be used to obtain backlog bounds.

Theorem 2.1.3 (Delay Bound). For an a-smooth flow served in a (possibly non
FIFO) GR node with rate and latencye, the delay for any packet is bounded by

sup[@ —t]+e (2.3)
t>0 T

Proof: By Theorem 2.1.1, for any fixed n, wecanfind a1l < j < n such that

i+ .+l

fon=0a;+ .
The delay for packet n is
dp —an < frn+e—ay
Definet = a,, — a;. By hypothesis
i+ +1, <a(t+)

where a(t+) isthelimit to theright of « at ¢. Thus

t t
dp — ap < —t—l—w—i—egsup[a(+) —t]+e
r t>0 r
Now supt>0[—a£,t) —t] = suptzo[a(f,H —t]. O

Comment: Note that Equation (2.3) is the horizontal deviation between the ar-
rival curve o and the rate-latency service curve with rate » and latency e. Thus, for
FIFO GR nodes, Theorem 2.1.3 follows from Theorem 2.1.1 and the fact that the
packetizer can beignored for delay computations. Theinformationin Theorem 2.1.3
isthat it also holds for non-FIFO nodes.

Concatenation of GR nodes For GR nodes that are FIFO per flow, the concate-
nation result obtained with the service curve approach applies. Specificaly, the con-
catenation of M GR nodes (that are FIFO per flow) with rates r,,, and latencies e,,,
is GR with rate r = min,, r,, and latency e = Y, e, + (M — 1)Lmax where
Linax is the maximum packet size for the flow. The term (M — 1)L=ex s due to
packetizers.

A bound on the end-to-end delay through such a concatenation is thus

2.1. GPSAND GUARANTEED RATE NODES 89

M M—-1 1 o
D = m lmax - — 24
777,2::1 Um ’rnzzl T'm + ming,, " m ()

which isthe formulain [29]. It is a generalization of Equation (1.23) on Page 55.
For GR nodes that are not FIFO per flow, the concatenation result is no longer
true; see [48] for some partial results.

Proof of Theorem 2.1.2 Part 1. Consider aservice curve element S. Assume to
simplify the demonstration that the input and output functions R and R* are right-
continuous. Consider the virtual system S° made of a bit-by-bit greedy shaper with
shaping curve A, followed by a constant bit-by-bit delay element. The bit-by-bit
greedy shaper is a constant bit rate server, with rate r. Thus the last bit of packet
n departs from it exactly at time f,,, defined by Equation (2.1), thus the last bit of
packet n leaves S at d° = f,, + e. The output function of S® isRY = R ® S,...
By hypothesis, R* > R, and by the FIFO assumption, this shows that the delay in
S isupper bounded by thedelay in S§’. Thusd,, < f,, + e.
Part 2: Consider the virtual system S whose output S(t) is defined by

ifd;_1 <t<d;

then S(t) = min{ R(#), max[L(i — 1), L(6) — r(di —)]} &)

See Figure 2.2 for anillustration. It follows immediately that R’ (t) = PL(S(¢)).
Also consider the virtual system S° whose output is

S°(t) = (Bro ® R)(t)

SY isthe constant rate server, delayed by v. Our goal is now to show that S > S°.

Call dY the departure time of the last bit of packet i in Sy (see Figure 2.2 for an
examplewith i = 2). Let u = dY — d;. The definition of GR node meansthat u > 0.
Now since Sy is a shifted constant rate server, we have:

if df — L < s < dY then S%(s) = L(i) — r(d? — s)
r
Alsod) | <d?— L thusSO(d) — &) = L(i — 1) and

if s <df — % then S°(s) < L(i — 1)
It follows that
if di_; +u < s<d then S°(s) < max[L(i — 1), L(i) — r(d} — s)] (2.6)

Consider now some ¢t € (d;—1,d;] and let s = ¢ + u. If S(¢t) = R(t), since
R > S° we then obviously have S(t) > S°(t). Else, from Equation (2.1),
S(t) = max[L(i — 1),L(i) — r(d; — t)]. We have d) — s = d; — t and thus,
combining with Equation (2.6), we derive that S°(s) < S(¢). Now s > ¢, thus fi-
naly S°(t) < S(t). One can also readily see that S isFIFO if d;_; < d; for al
1. U

90 CHAPTER 2. APPLICATION TO THE INTERNET

4 bits R(®) R’(t) L3)

‘ =

S() ‘ | /_

| - L) S0
B |

a d d, d,

,_.
iy

v

Figure 2.2: Arrival and departure functions for GR node. The virtual system
output is S(t).

2.2 Thelntegrated ServicesModel of the IETF
2.2.1 The Guaranteed Service

The Internet supports different reservation principles. Two services are defined: the
“guaranteed” service, and the “ controlled load” service. They differ in that the for-
mer providesreal guarantees, whilethelatter provides only approximate guarantees.
We outline the differences in the rest of this section. In both cases, the principle is
based on “admission control”, which operates as follows.

e |Inorder to receive the guaranteed or controlled load service, aflow must first
perform areservation during a flow setup phase.

e A flow must confirmto an arrival curve of theform «(¢) = min(M + pt, rt +
b), which is called the T-SPEC (see Section 1.2.2 on pagel6). The T-SPEC is
declared during the reservation phase.

o All routersaong the path accept or reject the reservation. With the guaranteed
service, routers accept the reservation only if they are ableto provide aservice
curve guarantee and enough buffer for loss-free operation. The service curve
is expressed during the reservation phase, as explained below.

For the controlled load service, there is no strict definition of what accepting
a reservation means. Most likely, it means that the router has an estimation
module that says that, with good probability, the reservation can be accepted
and little loss will occur; thereis no service curve or delay guarantee.

In the rest of this chapter we focus on the guaranteed service. Provision of the
controlled load service relies on model s with loss, which are discussed in Chapter 9.

2.2.2 Thelntegrated Services Model for Internet Routers

Thereservation phase assumesthat all routers can export their characteristicsusing a
very simple model. The model isbased on the view that an integrated services router

2.2. THEINTEGRATED SERVICES MODEL OF THE IETF 91

implements a practical approximation of GPS, such as PGPS, or more generally, a
GR node. We have shown in Section 2.1.3 that the service curve offered to a flow
by arouter implementing GR is a rate-latency function, with rate R and latency T'
connected by the relationship

c
T'=—=+D 2.7
=+ @7)

with C' = the maximum packet size for the flow and D = % where L is the maxi-
mum packet size in the router across al flows, and ¢ the total rate of the scheduler.
Thisisthe model defined for an Internet node [71].

Fact 2.2.1. The Integrated Services model for a router is that the service curve
offered to a flow is always a rate-latency function, with parameters related by a
relation of the form (2.7).

The values of C and D depend on the specific implementation of a router, see
Corollary 2.1.1 in the case of GR nodes. Note that a router does not necessarily
implement a scheduling method that approximates GPS. In fact, we discuss in Sec-
tion 2.3 a family of schedulers that has many advantages above GPS. If a router
implements a method that largely differs from GPS, then we must find a service
curve that lower-bounds the best service curve guarantee offered by the router. In
some cases, this may mean loosing important information about the router. For ex-
ample, it is not possible to implement a network offering constant delay to flows
by means of a system like SCED+, discussed in Section 2.4.3, with the Integrated
Services router model.

2.2.3 Reservation Setup with RSVP

Consider aflow defined by TSPEC (M, p, r,b), that traversesnodes 1, ..., N. Usu-
aly, nodes 1 and N are end-systemswhile nodesn for 1 < n < N arerouters. The
Integrated Services model assumes that node n on the path of the flow offers arate
latency service curve Bg,, T, , and further assumes that 7, has the form

Cn
T, = 7T D,

where C,, and D,, are constants that depend on the characteristics of node n.

Thereservation is actually put in place by means of aflow setup procedure such
asthe resource reservation protocol (RSVP). At the end of the procedure, node n on
the path has alocated to the flow avalue R,, > r. Thisis equivalent to alocating a
servicecurve g, 1, . From Theorem 1.4.6 on page 34, the end-to-end service curve
offered to the flow is the rate-latency function with rate R and latency 7" given by

R= minn:l...N Rn
N (¢,
T=5 (R—” + Dn)

Let Ciot = >0, Cy, and Dyt = S°N_, D,,. We can re-write the last equation as

n=1

92 CHAPTER 2. APPLICATION TO THE INTERNET

T = Ctot + Diot — XN: Sn (2.8
R n=1
with) .
Sp =0Ch (E - R_n> (2.9

Theterm S, iscalled the “local dlack” term at node 7.
From Proposition 1.4.1 we deduce immediately:

Proposition 2.2.1. If R > r, the bound on the end-to-end delay, under the condi-
tions described above is

b—M (p—R ++M+Ctot
R p—r R

N
+ Dyot — ¥ Sn (2.10)
n=1

We can now describe the reservation setup with RSVP. Some details of flow
setup with RSVP are illustrated on Figure 2.3. It shows that two RSV P flows are
involved: an advertisement (PATH) flow and areservation (RESV) flow. We describe
first the point-to-point case.

e A PATH message is sent by the source; it contains the T-SPEC of the flow
(source T-SPEC), which is not modified in transit, and another field, the AD-
SPEC, which is accumulated along the path. At a destination, the ADSPEC
field contains, among others, the values of Cigt, Dot Used in Equation 2.10.
PATH messages do hot cause any reservation to be made.

o RESV messages are sent by the destination and cause the actual reservations
to be made. They follow the reverse path marked by PATH messages. The
RESV message containsavalue, R’, (as part of the so-called R-SPEC), which
is alower bound on the rate parameters R,, that routers along the path will
haveto reserve. Thevalue of R’ isdetermined by the destination based on the
end-to-end delay objective dobj , following the procedure described below. It
isnormally not changed by the intermediate nodes.

Define function f by

f(R) = i (P i + Dot
In other words, f isthe function that defines the end-to-end delay bound, assuming
al nodes aong the path would reserve R,, = R’. The destination computes R’
as the smallest value > r for which f(R’) < dopj- Such a value exists only if
Dtot < dObj

In the figure, the destination requires a delay variation objective of 600 ms,
which imposes a minimum value of R =622 kb/s. The value of R’ is sent to the
next upstream node in the R-SPEC field of the PATH message. The intermediate

_b-—M p_R/>++M+Ctot

2.2. THEINTEGRATED SERVICES MODEL OF THE IETF 93

Sender A ol 0 Receiver
= R1 R2 B

1. path message
TSPEC=
2K,10Mb/s,512kb/s,
AdSpec=()

»| 2. path
r?aer messr:_lge t 3. path message

,10Mb/s,512kb/s,3§2ﬁnder TSPEC=

- K,10Mb/s,512kb/s,32K
AdSpec=(10.2kb, 0.0 dSpec=(51.2, 0.1)

4. Brequests guaranteed QoS
reservation with delay variation
0.6s; Breserves 622 kb/s

6 5. resv message
7.resv message éég?\yer:]‘?:szggf “Receiver TSPEC=
“Receiver TSPEC= . K,10Mb/s,512kb/s,24K

P
2K, 10Mb/s,512kb/ s, [‘éé%gt:”(gleﬁgf’é)s'- KSPEC =(622 kb/s)
R- SPEC =(622 kb/s)

Figure 2.3: Setup of Reservations, showing the PATH and RESV flows

nodes do not know the complete values Ctgt and Dyqt, hor do they know the total
delay variation objective. Consider the simple case where all intermediate nodes are
true PGPS schedulers. Node . simply checks whether itisabletoreserve R,, = R’
to the flow; this involves verifying that the sum of reserved rates is less than the
scheduler total rate, and that there is enough buffer available (see below). If so, it
passes the RESV message upstream, up to the destination if all intermediate nodes
accept the reservation. If the reservation is rejected, then the node discards it and
normally informs the source. In this simple case, al nodes should set their rate to
R, = R/ thus R = R’, and Equation (2.10) guarantees that the end-to-end delay
bound is guaranteed.

In practice, thereisasmall additional element (use of the dack term), dueto the
fact that the designers of RSV P also wanted to support other schedulers. It works as
follows.

There is another term in the R-SPEC, called the slackterm. Its useisillustrated
on Figure 2.4. In the figure, we see that the end-to-end delay variation requirement,
set by the destination, is 1000 ms. In that case, the destination reserves the minimum
rate, namely, 512 kb/s. Even so, the delay variation objective D,; is larger than
the bound D,,, . given by Formula (2.10). The difference Doy; — Dypqo iSWritten
in the slack term S and passed to the upstream node in the RESV message. The
upstream node is not able to compute Formula (2.10) because it does not have the
value of the end-to-end parameters. However, it can use the slack term toincreaseits
internal delay objective, on top of what it had advertised. For example, a guaranteed
rate node may increase its value of v (Theorem 2.1.1) and thus reduce the internal
resources required to perform the reservation. The figure shows that R1 reduces the
slack term by 100 ms. Thisisequivalent to increasing the D;,,, parameter by 100ms,
but without modifying the advertised D;,;.

94 CHAPTER 2. APPLICATION TO THE INTERNET

0 u Receiver Dl
Sender A RL R2 B =
1. path message T
TSPEC= 2. E:é? _Ir_nSgSESéige 3. path message
2K,10Mb/s,512kb/s,3 ﬁnder TSPEC=
t R,10Mb/s,512kb/ 5,82
AdSpec=() _ K,10Mb/s,512kb/s,32K
AdSpec=(10.2s/kb/s, _
0.05s) AdSpec=(51.2, 0.1)

4. Brequests guaranteed QoS
reservation with delay variation
1.0s; Breserves 512kb/s

5. resv message
A “Receiver TSPEC=
ecelver TSPEC= K,10Mb/s,512kb/ s, 24K
K,10Mb/s,512kb/s,2 RSPEC =(512kb/s , S%
~SPEC =(512kb/s , S:O 288s) !
0.288s) '

6. resv message

6. resv message
"Receiver TSPEC=
2K,10Mb/s,512kb/s,2
R- SPEC =(512 kb/s,
S=0.188s)

Figure 2.4: Use of the slack term

The delays considered here are the total (fixed plus variable) delays. RSVP aso
contains afield used for advertising the fixed delay part, which can be used to com-
pute the end-to-end fixed delay. The variable part of the delay (called delay jitter) is
then obtained by subtraction.

224 A Flow Setup Algorithm

There are many different ways for nodes to decide which parameter they should
alocate. We present here one possible algorithm. A destination computes the worst
case delay variation, obtained if all nodesreserve the sustainablerate r. If the result-
ing delay variation is acceptable, then the destination sets R = r and the resulting
slack may be used by intermediate nodes to add a local delay on top of their ad-
vertised delay variation defined by C' and D. Otherwise, the destination sets R to
the minimum value R,,,;,, that supports the end-to-end delay variation objective and
sets the slack to 0. As aresult, all nodes along the path have to reserve R,,,;,,. AS
in the previous cases, nodes may allocate arate larger than the value of R they pass
upstream, as ameans to reduce their buffer requirement.

Definition 2.2.1 (A Flow Setup Algorithm). e Atadestination systei) com-
pute

Dmax = fT(r) +

If Dopj > Dpae then assign to the flow a ratB; = r and an additional
delay variationd; < Doy — Diaas S€tS1 = Dobj — Dimae — dr and send
reservation requesk;, Sy to stationl — 1.

Else Dobj < Dinas) find the minimun®,.,;,, such thatfr (Ry.i,) + 5ot <

— min

Doy — Dy, if it exists. Send reservation request = R,in, S1 = 0 t0

2.2. THEINTEGRATED SERVICES MODEL OF THE IETF 95

station — 1. If R,,;, does not exist, reject the reservation or increase the
delay variation objectiveD ;.

e Atan intermediate systeinreceive fromi+1 a reservation requesR; 1, S;41.

If S; = 0, then perform reservation for rat&;,; and if successful, send
reservation requesk;, = R;+1,.5; = 0 to stationi — 1.

Else (5; > 0), perform a reservation for rat&; ; ; with some additional delay
variationd; < S;.;. if successful, send reservation requBst= R; 1, S; =
Si+1 — d; to stationi — 1.

The algorithm ensures a constant reservation rate. It is easy to check that the end
to end delay variation is bounded by Dy, .

2.25 Multicast Flows

Consider now a multicast situation. A source S sends to a number of destinations,
along a multicast tree. PATH messages are forwarded along the tree, they are dupli-
cated at splitting points; at the same points, RESV messages are merged. Consider
such apoint, cal it node 4, and assume it receives reservation requests for the same
T-SPEC but with respective parameters R, , S}, and R/, , S/ . The node performs

reservations internally, using the semantics of algorithm 3. Then it has to merge the
reservation requests it will send to node i — 1. Merging uses the following rules:

R-SPEC Merging Rules The merged reservation R, S is given by
R =max(R',R")

S = min(s’, 5"

Let us consider now a tree where algorithm 3 is applied. We want to show that
the end-to-end delay bounds at all destinations are respected.

The rate along the path from a destination to a source cannot decrease with this
algorithm. Thus the minimum rate along the tree towards the destination is the rate
set at the destination, which proves the result.

A few more features of RSVP are:

e statesin nodes need to be refreshed; if they are not refreshed, the reservation
isreleased (“soft states”).

e routing is not coordinated with the reservation of the flow

We have so far looked only at the delay constraints. Buffer requirements can be
computed using the values in Proposition 1.4.1.

96 CHAPTER 2. APPLICATION TO THE INTERNET

2.2.6 Flow Setup with ATM
With ATM, there are the following differences:

e The path isdetermined at the flow setup time only. Different connections may
follow different routes depending on their requirements, and once setup, a
connection aways uses the same path.

o With standard ATM signaling, connection setup isinitiated at the source and
is confirmed by the destination and all intermediate systems.

2.3 Schedulability

So far, we have considered one flow in isolation and assumed that a node is able
to offer some scheduling, or service curve guarantee. In this section we address the
global problem of resource allocation.

When a node performs a reservation, it is necessary to check whether local re-
sources are sufficient. In general, the method for this consists in breaking the node
down into a network of building blocks such as schedulers, shapers, and delay ele-
ments. There are mainly two resources to account for: bit rate (called “bandwidth”)
and buffer. The main difficulty is the allocation of bit rate. Following [33], we will
see in this section that allocating a rate amounts to allocating a service curve. It is
also equivalent to the concept of schedulability.

Consider the simple case of a PGPS scheduler, with outgoing rate C'. If we want
to allocaterate r; to flow ¢, for every 4, then we can alocate to flow i the GPS weight
¢i = & . Assume that

Y om<cC (2.12)

Then we know from Proposition 2.1.1 and Corollary 2.1.1 that every flow 7 is guar-
anteed the rate-latency service curve with rate r; and latency é In other words, the
schedulability condition for PGPS is simply Equation (2.11). However, we will see
now that a schedulability conditions are not always as simple. Note aso that the
end-to-end delay depends not only on the service curve alocated to the flow, but
also onitsarrival curve constraints.

Many schedulers have been proposed, and some of them do not fit in the GR
framework. The most general framework in the context of guaranteed service is
given by SCED (Service Curve Earliest Deadlinefirst) [33],which we describe now.
We give the theory for constant size packets and slotted time; some aspects of the
general theory for variable length packets are known [11], some othersremain to be
done. We assume without |oss of generality that every packet is of size 1 data unit.

2.3.1 EDF Schedulers

As the name indicates, SCED is based on the concept of Earliest Deadline First
(EDF) scheduler. An EDF scheduler assigns adeadline D} to the nth packet of flow

2.3. SCHEDULABILITY 97

1, according to some method. We assume that deadlines are wide-sense increasing
within a flow. At every time dot, the scheduler picks at one of the packets with the
smallest deadline among all packets present. There is a wide variety of methods
for computing deadlines. The “delay based” schedulers [52] set D} = A™ + d;
where A™ isthe arrival time for the nth packet for flow 4, and d; isthe delay budget
allocated to flow 4. If d; isindependent of 4, then we have a FIFO scheduler. We will
see that those are specia cases of SCED, which we view as avery genera method
for computing deadlines.

An EDF scheduler is work conserving, that is, it cannot be idle if there is at
least one packet present in the system. A consequence of this is that packets from
different flows are not necessarily served in the order of their deadlines. Consider for
example adelay based scheduler, and assumethat flow 1 hasalrage delay budget d;,
while flow 2 has asmall delay budget d-. It may be that a packet of flow 1 arriving
at t1 is served before a packet of flow 2 arriving at ¢», even though the deadline of
packet 1, t; + dy islarger than the deadline of packet 2.

We will now derive a general schedulability criterion for EDF schedulers. Call
R;(t), t € N, the arrival function for flow 4. Call Z;(¢) the number of packets of
flow ¢ that have deadlines < ¢. For example, for a delay based scheduler, Z;(t) =
R;(t — d;). Thefollowing is amodified version of [11].

Proposition 2.3.1. Consider an EDF scheduler withflows and outgoing rat€’.
A necessary condition for all packets to be served within their deadlines is

I
foralls <t: Y Zi(t) — Ri(s) < C(t —s) (2.12)

i=1

A sufficient condition is

forall s <t: [Zi(t) — Ri(s)]T < Ot —) (2.13)

™~

i=1

Proof: Wefirst prove the necessary condition. Call R} the output for flow . Since
the scheduler is work conserving, we have S°1_| R} = A¢ ® (3.1_, R;). Now
R > Z,; by hypothesis. Thus

Y Zi(t) < inf C(t—s)+) Ri(s)

s€0,t]

which is equivalent to Equation (2.12)

Now we prove the sufficient condition, by contradiction. Assume that at some
t a packet with deadline ¢ is not yet served. In time slot ¢, the packet served has a
deadline < ¢, otherwise our packet would have been chosen instead. Define s, such
that the time interval [so + 1,¢] is the maximum time interval ending at ¢ that is
within abusy period and for which all packets served have deadlines < .

98 CHAPTER 2. APPLICATION TO THE INTERNET

Now call S the set of flows that have a packet with deadline < ¢ present in the
system at some point in theinterval [so + 1, ¢]. We show that if

if i € S then R} (so) = R;(so) (2.19)

that is, flow ¢ is not backlogged at the end of time slot sq. Indeed, if sg + 1 isthe
beginning of the busy period, then the property is true for any flow. Otherwise, we
proceed by contradiction. Assumethat i € S and that « would have some backlog at
the end of time dot sy. At time sy some packet with deadline > t was served; thus
the deadline of al packets remaining in the queue at the end of time slot s, must
have a deadline > ¢. Since deadlines are assumed wide-sense increasing within a
flow, all deadlines of flow i packets that are in the queue at time sq, or will arrive
later, have deadline > ¢, which contradictsthat i € S.

Further, it follows from the last argument that if 7 € S, then all packets served
before or at t must have adeadline < ¢. Thus

if i € S then R(t) < Z;(t)

Now since there is at least one packet with deadline < ¢ not served at ¢, the
previous inequality is strict for at least one in S. Thus

S ORI <> Zi(t) (2.15)

i€S €S
Observe that all packets served in [so + 1, t] must be from flowsin S. Thus

I

> (Ri(t) = Ri(s0)) = Y_(Ri(t) — Ri(s0))

i=1 €S
Combining with Equation (2.14) and Equation (2.15) gives

I

> (Ri(t) = Ri(s0)) < Y _(Zi(t) — Ri(s0))

i=1 i€S

Now [so + 1, ¢] isentirely in abusy period thust:l(Rg(t) —Ri(s0)) = C(t—s0);
thus

I
Clt=s0) < D (Zi(t)=Ri(s0)) = Y (Zi(t)= Ri(s0))" < Z(Zi(t)—Ri(So))+

i€S €S

which contradicts Equation (2.13). O

A consequence of the proposition that if a set of flows is schedulable for some
deadline allocation algorithm, then it is also schedulable for any other deadline al-
location method that produces later or equal deadlines. Other consequences, of im-
mediate practical importance, are drawn in the next section.

2.3. SCHEDULABILITY 99

2.3.2 SCED Schedulers[69]

Given, for al ¢, a function 3;, SCED defines a deadline alocation algorithm that
guarantees, under some conditions, that flow ¢ does have 3; as a minimum service
curve!. Roughly speaking, SCED sets Z;(t), the number of packets with deadline
uptot, to (R; @ 3;)(t).
Definition 2.3.1 (SCED). Call A7 the arrival time for packet of flow:. Define
functionsR}* by:

Ri(t)= inf [Ri(s)+ Bi(t — s)]

With SCED, the deadline for packewf flow: is defined by
D! = (R?")"'(n) = min{t € N: R*(t) > n}
Functiong; is called the “target service curve” for flowi

Function R} is similar to the min-plus convolution R; ® 3;, but the minimum is
computed over al timesup to A?. Thisallowsto compute a packet deadline as soon
as the packet arrives; thus SCED can be implemented in real time. The deadline
is obtained by applying the pseudo-inverse of R, as illustrated on Figure 2.5. If
Bi = dq,, thenitiseasy to seethat D' = A 4 d;, namely, SCED isthe delay based
scheduler in that case. The following proposition is the main property of SCED. It

Bi (t

R (1)

n(t)

Figure 2.5: Definition of SCED. Packet n of flow i arrives at time A?. Its dead-
line is D*.

showsthat SCED implements a deadline all ocation method based on service curves.

Proposition 2.3.2. For the SCED scheduler, the number of packets with deadline

< tisgivenbyZ;(t) = |(R; ® B;)(t)]
1We use the original work in [69], which is called there “ SCED-B”. For simplicity, we call it SCED.

100 CHAPTER 2. APPLICATION TO THE INTERNET

Proof: ~ Wedrop index 7 in this demonstration. First, we show that Z(t) > | (R ®
B)(t)].Letn = [(R® B)(t)]. Since R® 3 < R and R takes integer values, we
must have R(t) > n and thus A™ < t. Now R™(t) > (R ® ()(t) thus

R'(t) = (R B)(t) = n

By definition of SCED, D™ thisimpliesthat D™ < ¢ which isequivalentto Z(t) >
n.

Conversely, for some fixed but arbitrary ¢, let now n = Z(t). Packet n has a
deadline < ¢, which impliesthat A™ < ¢t andfor al s € [0, A"] :

R(s)+p0(t—s)>n (2.16)
Now for s € [A™,t] we have R(s) > n thus R(s) + B(t — s) > n. Thus Equa
tion (2.16) istruefor al s € [0, t], which meansthat (R ® §)(t) > n. O

Theorem 2.3.1 (Schedulability of SCED, ATM). Consider a SCED scheduler with
I flows, total outgoing rat€’, and target service curvg; for flow:.

1. If
I
> Bi(t) < Ctforallt >0 (2.17)
1=1

then every packet is served before or at its deadline and every fleseives
| ;| as a service curve.

2. Assume that in addition we know that every flaswconstrained by an arrival

curveo;. If
I

> (@i ® Bi)(t) < Ctforallt >0 (2.18)
=1
then the same conclusion holds

Pr oof:

1. Proposition 2.3.2impliesthat Z;(t) < R;(s) + 8;(t — s) for 0 < s < t. Thus

[Z;(t) — Ri(s)]T = max[Z;(t) — Ri(s),0] < Bi(t — s)

By hypothesis, Zle Bi(t —s) < C(t — s) thus by application of Proposi-
tion 2.3.1, we know that every packet is served before or at its deadline. Thus
R} > Z; and from Proposition 2.3.2:

R} > Z; = | 8; ® R;]
Now R; takes only integer valuesthus | 5; ® R;| = |5:] ® R;.

2. By hypothesis, R; = o; ® R; thus Z; = |o; ® 3; ® R;] and we can apply
the same argument, with a; ® (3; instead of 3;. O

2.3. SCHEDULABILITY 101

Schedulability of delay based schedulers A delay based scheduler assigns a de-
lay objective d; to al packets of flow i. A direct application of Theorem 2.3.1 gives
the following schedulability condition.

Theorem 2.3.2 ([52]). Consider a delay based scheduler that ser/éiews, with
delayd; assigned to flow. All packets have the same size and time is slotted. Assume
flowi is o;-smooth, wherey; is sub-additive. CalC the total outgoing bit rate. Any

mix of flows satisfying these assumptions is schedulable if

> ai(t—di) < Ct
If a;(t) € N then the condition is necessary.

Proof: A delay based scheduler is a special case of SCED, with target service
curve B; = d4,. This shows that the condition in the theorem is sufficient. Con-
versely, consider the greedy flows given by R;(t) = a;(t). Thisis possible because
«; isassumed to be sub-additive. Flow R; must be schedulable, thus the output R
satisfies R;(t) > a;(i — d;). Now Y. Ri(t) < ct, which proves that the condition
must hold. O

It is shown in [52] that a delay based scheduler has the largest schedulability
region among al schedulers, given arrival curves and delay budgets for every flow.
Note however that in a network setting, we are interested in the end-to-end delay
bound, and we know (Section 1.4.3) that it is generally less than the sum of per hop
bounds.

The schedulability of delay based schedulers requires that an arrival curve is
known and enforced at every node in the network. Because arrival curves are modi-
fied by network nodes, this motivates the principle of Rate Controlled Service Dis-
ciplines (RCSDs) [40, 78, 28], which implement in every node a packet shaper fol-
lowed by adelay based scheduler. The packet shaper guaranteesthat an arrival curve
is known for every flow. Note that such a combination is not work conserving.

Because of the " pay bursts only once” phenomenon, RCSD might provide end-
to-end delay bounds that are worse than guaranteed rate nodes. However, it is pos-
sible to avoid this by aggressively reshaping flows in every node, which, from The-
orem 2.3.2, alows us to set smaller deadlines. If the arrival curves constraints on
all flows are defined by a single leaky bucket, then it is shown in [63, 62] that one
should reshape aflow to its sustained rate at every node in order to achieve the same
end-to-end delay bounds as GR nodes would.

Schedulability of GR nodes Consider the family of GR nodes, applied to the
ATM case. We cannot give a genera schedulability condition, since the fact that
a scheduler is of the GR type does not tell us exactly how the scheduler operates.
However, we show that for any rate » and delay v we can implement a GR node
with SCED.

102 CHAPTER 2. APPLICATION TO THE INTERNET

Theorem 2.3.3 (GR node as SCED, ATM case). Consider the SCED scheduler
with I flows and outgoing raté’. Let the target service curve for floile equal to
the rate-latency service curve with rateand latencyy;. If

I
Z T S C
=1
then the scheduler is a GR node for each fipwith rater; and delayv;.

Proof: ~ From Proposition 2.3.2:
Zi(t) = [(Ri © Ar)(t — vi)]

thus Z; is the output of the constant rate server, with rate r;, delayed by v;. Now
from Theorem 2.3.1 the condition in the theorem guaranteesthat R, > Z;, thusthe
delay for any packet of flow ¢ is bounded by the delay of the constant rate server
with rate r;, plus v;. O

Note the fundamental difference between rate based and delay based schedulers.
For the former, schedulability isacondition on the sum of therates; it isindependent
of theinput traffic. In contrast, for delay based schedulers, schedulability imposes a
condition on the arrival curves. Note however that in order to obtain a delay bound,
we need some arrival curves, even with delay based schedulers.

Better than Delay Based scheduler A scheduler need not be either rate based or
delay based. Rate based schedulers suffer from coupling between delay objective
and rate alocation: if we want a low delay, we may be forced to alocate a large
rate, which because of Theorem 2.3.3 will reduce the number of flows than can be
scheduled. Delay based schedulers avoid this drawback, but they require that flows
be reshaped at every hop. Now, with clever use of SCED, it is possible to obtain
the benefits of delay based schedulers without paying the price of implementing
shapers.

Assume that for every flow ¢ we know an arrival curve «; and we wish to obtain
an end-to-end delay bound d;. Then the smallest network service curve that should
be allocated to the flow is a; ® d4, (the proof is easy and left to the reader). Thus a
good thing to do is to build a scheduler by allocating to flow 7 the target service
curve a; ® dg4,. The schedulability condition is the same as with a delay based
scheduler, however, there is a significant difference: the service curve is guaranteed
even if some flows are not conforming to their arrival curves. More precisely, if
some flows do not conform to the arrival curve constraint, then the service curveis
still guaranteed, but the delay bound is not.

This observation can be exploited to allocate service curves in a more flexible
way than what is done in Section 2.2 [18]. Assume flow i uses the sequence of
nodes m = 1,..., M. Every node receives a part d;* of the delay budget d;, with
ZM d™ < d;. Then it is sufficient that every node implements SCED with a

m=1"

2.3. SCHEDULABILITY 103

target service curve 5" = 5(1? ® «; for flow i. The schedulability condition at node

mis
> a(t—di) < Cpt
JEE,

where FE,, is the set of flows scheduled at node m and C,,, is the outgoing rate of
node m. If it is satisfied, then flow 7 receives o;; ® 04, as end-to-end service curve
and therefore has a delay bounded by d;. The schedulability condition is the same
as if we had implemented at node m the combination of a delay based scheduler
with delay budget ¢}, and areshaper with shaping curve «;; but we do not have to
implement a reshaper. In particular, the delay bound for flow i at node m is larger
than d; we find again the fact that the end-to-end delay bound is less than the sum
of individual bounds.

In [69], it is explained how to allocate a service curves G/ to every network
element m on the path of the flow, such that 8} ® 32 ® ... = a; ® §;, in order to
obtain a large schedulability set. This generalizes and improves the schedul ability
region of RCSD.

Extension to variable length packets We can extend the previous results to vari-
able length packets; we follow theideas in [11]. Thefirst step isto consider aficti-
tious preemptive EDF scheduler (system 1), that allocates a deadline to every bit. We
define Z! (t) as before, as the number of bits whose deadline is < ¢. A preemptive
EDF scheduler serves the bits present in the system in order of their deadlines. It
is preemptive (and fictitious) in that packets are not delivered entirely, but, in con-
trast, are likely to be interleaved. The results in the previous sections apply with no
change to this system.

The second step is to modify system | by allocating to every bit a deadline
equal to the deadline of the last bit in the packet. Call it system II. We have
ZH(t) = PLi(Z1(t)) where PLi isthe cumulative packet length (Section 1.7) for
flow ¢. From the remarks following Proposition 2.3.1, it follows that if system | is
schedulable, then so issystem I1. System |1 is made of a preemptive EDF scheduler
followed by a packetizer.

The third step consists in defining “packet-EDF’ scheduler (system 1Il); this
is derived from system Il in the same way as PGSP is from GPS. More precisely,
the packet EDF scheduler picks the next packet to serve among packets present in
the system with minimum deadline. Then, when a packet is being served, it is not
interrupted. We also say that system 111 is the non-preemptive EDF scheduler. Then
the departure time of any packet in system 11 is bounded by its departure time in
system Il plus lnﬁ where I, IS the maximum packet size across all flows and C'
is the total outgoing rate. The proof is similar to Proposition 2.1.1 and is left to the
reader (it can aso be found in [11]).

We can apply the three steps above to a SCED scheduler with variable size
packets, called “ Packet-SCED”.

Definition 2.3.2 (Packet SCED). A PSCED schedulers is a non-premptive EDF
schedulers, where deadlines are allocated as follows. @althe arrival time for

104 CHAPTER 2. APPLICATION TO THE INTERNET

packetn of flow:. Define functionsk}* by:

R(t) = inf [Ri(s)+ Bi(t —9)]

s€[0,A7]
With PSCED, the deadline for packebf flow: is defined by
D! = (R (Li(n)) = min{t € N« RI(t) > (Li(n))}

whereL; is the cumulative packet length for flawFunctiong; is called the “target
service curve” for flow.

The following proposition follows from the discussion above.

Proposition 2.3.3. [11] Consider a PSCED scheduler withflows, total outgoing
rate C, and target service curvg; for flow. Call ! .. the maximum packet size
for flowi and letl,,.. = max; [’

max"*

1. If

I
> Bit) < Ctforallt > 0 (2.19)
=1

then every packet is served before or at its deadline btals A bound on
packet delay i&(cv;, 3;)+ 2= . Moreover, every flowreceives; (t—1% .,) —
lmex]+ as a service curve.

2. Assume that, in addition, we know that every flaa/constrained by an ar-
rival curveq;. If

I
D (i @ B)(t) < Ctforall t > 0 (2.20)

i=1

then the same conclusion holds.

Note that the first part of the conclusion means that the maximum packet delay
can be computed by assuming that flow i would receive 3; (not 3;(t — I%..)) asa
service curve, and adding *5*.

Proof: It follows from the three steps above that the PSCED scheduler can be
broken down into a preemptive EDF scheduler, followed by a packetizer, followed
by a delay element. The rest follows from the properties of packetizers and Theo-
rem2.3.1.

2.4. APPLICATION TO DIFFERENTIATED SERVICES 105

2.3.3 Buffer Requirements

As we mentioned at the beginning of this section, buffer requirements have to be
computed in order to accept a reservation. The condition is simply . X; < X
where X is the buffer required by flow ¢ at this network element, and X is the
total buffer alocated to the class of service. The computation of X; is based on
Theorem 1.4.1; it requires computing an arrival curve of every flow as it reaches
the node. Thisisdone using Theorem 1.4.2 and the flow setup algorithm, such asin
Definition 2.2.1.

It is often advantageous to reshape flows at every node. Indeed, in the absence
of reshaping, burstiness is increased linearly in the number of hops. But we know
that reshaping to an initial constraint does not modify the end-to-end delay bound
and does not increase the buffer requirement at the node where it is implemented.
If reshaping is implemented per flow, then the burstiness remains the same at every
node.

2.4 Application to Differentiated Services

2.4.1 Differentiated Services

In addition to the reservation based services we have studied in Section 2.2, the
Internet also proposes differentiated services [7]. The major goal of differentiated
services is to provide some form of better service while avoiding per flow state
information as is required by integrated services. The idea to achieve this is based
on the following principles.

o Traffic classes are defined; inside a network, al traffic belonging to the same
classistreated as one single aggregate flow.

e At the network edge, individual flows (called “micro-flows") are assumed to
conform to some arrival curve, as with integrated services.

If the aggregate flows receive appropriate service curves in the network, and if the
total traffic on every aggregate flow is not too large, then we should expect some
bounds on delay and loss. The condition on microflows is key to ensuring that the
total aggregate traffic remains within some arrival curve constraints. A major diffi-
culty however, as we will see, isto derive bounds for individua flows from charac-
teristics of an aggregate.

Differentiated services is a framework that includes a number of different ser-
vices. The main two services defined today are expedited forwarding (EF)[21, 5]
and assured forwarding (AF)[36]. The goa of EF isto provide to an aggregate some
hard delay guarantees, and no loss. The goal of AF is to separate traffic between
a small number of classes (4); inside each class, three levels of drop priorities are
defined. One of the AF classes could be used to provide alow delay service with no
loss, similar to ER.

106 CHAPTER 2. APPLICATION TO THE INTERNET

microflow i (p;, ;)

(0y. o) ~ b
I -
rate r,
EF aggregate latency e
at node m

Figure 2.6: Network Model for EF. Microflows are individually shaped and
each conform to some arrival curve. At all nodes, microflows R; to R3 are
handled as one aggregate flow, with a guaranteed rate (GR) guarantee.
Upon leaving a node, the different microflows take different paths and be-
come part of other aggregates at other nodes.

In this chapter, we focus on the fundamental issue of how aggregate scheduling
impacts delay and throughput guarantees. In the rest of this section, we use the
network model shown on Figure 2.6. Our problem is to find bounds for end-to-
end delay jitter on one hand, for backlog at all nodes on the other hand, under the
assumptions mentioned above. Delay jitter is is the difference between maximum
and minimum delay; its value determines the size of playout buffers (Section 1.1.3).

2.4.2 An Explicit Delay Bound for EF

We consider EF, the low delay traffic class, as mentioned in Section 2.4.1, and find a
closed form expression for the worst case delay, which isvalid in any topology, in a
lossless network. This bound is based on a general time stopping method explained
in detail in Chapter 6. It was obtained in [13] and [39].

Assumption and Notation (See Figure 2.6)

e Microflow i is constrained by the arrival curve p;t + o; at the network access.
Inside the network, EF microflows are not shaped.

o Nodem acts as a Guaranteed Rate node for the entire EF aggregate, with rate
rn, and latency e,,. Thisistrue in particular if the aggregate is served as one
flow in a FIFO service curve element, with a rate-latency service curve; but
it also holds quite generally, even if nodes are non-FIFO (Section 2.1.3). In
Chapter 6, we explain that the generic node model used in the context of EF
is packet scale rate guarantee, which satisfies this assumption.

Let e be an upper bound on ¢, for all m.

2.4. APPLICATION TO DIFFERENTIATED SERVICES 107

e h isabound on the number of hops used by any flow. Thisistypically 10 or
less, and is much less than the total number of nodes in the network.

e Utilization factors; Define v,,, = 7% Ziam pi, where the notation i > m
means that node m is on the path of microflow . Let v be an upper bound on
al v,,.

o Scaled burstinessfactors: Define 7, = % > _ism 0i- Lt T bean upper bound
ondl 7,,.

e L,ax iSan upper bound on the size (in bits) of any EF packet.

Theorem 2.4.1 (Closed form bound for delay and backlog [13]). If v < 15
then a bound on end-to-end delay variation for EF.i3; with

e+T
Dr=1= (h—1)v
At nodem, the buffer required for serving low delay traffic without loss is bounded
byBreq = T D1 + Liax.

Proof: (Part 1:) Assume that a finite bound exists and call D the least upper
bound. The data that feeds node m has undergone a variable delay in the range
[0, (h — 1)D], thus an arrival curve for the EF aggregate at node m is vr,, (¢t +
(h —1)D) + r,,7. By application of Equation (2.3), the delay seen by any packet
isbounded by e + 7+ (h — 1)Dv; thus D < e + 7 + (h — 1) Dv. If the utilization
factor v islessthan 1, it followsthat D < D;.

(Part 2:) We prove that a finite bound exists, using the time-stopping method.
For any timet > 0, consider the virtual system made of the original network, where
all sources are stopped at time ¢. This network satisfies the assumptions of part 1,
since thereis only afinite number of bitsfor the entire lifetime of the network. Call
D’(t) the worst case delay across all nodes for the virtual network indexed by t.
From the above derivation we see that D’(¢) < D, for all ¢. Letting ¢ tend to +oco
shows that the worst case delay at any node remains bounded by D;.

(Part 3:) By Corollary 2.1.1, the backlog is bounded by the vertical deviation
between the arrival curve vr,, (t + (h — 1) D) + r,,, 7 and the service curve [r,, (t —
em) — Lmax] T, Which after some algebra gives Breq O

The theorem can be slightly improved by avoiding to take maxima for v,,,; this
gives the following result (the proof isleft to the reader):

Corollary 2.4.1. If v < ﬁ then a bound on end-to-end delay variation for EF is

hDj with
em + T
D/ — . m m
el

108 CHAPTER 2. APPLICATION TO THE INTERNET

Improved Bound When Peak Rateis Known: A dlightly improved bound can
be obtained if, in addition, we have some information about the total incoming bit
rate at every node. We add the following assumptions to the previous list.

e Let (), denote a bound on the peak rate of all incoming low delay traffic
traffic at node m. If we have no information about this peak rate, then C,,, =
~+o00. For arouter with large internal speed and buffering only at the output,
C,, isthe sum of the bit rates of all incoming links (the delay bound is better
for asmaller C,,).

e Fan-in: Let I,,, be the number of incident links at node m. Let F' be an upper
bound on LmLmax | [s the maximum time to transmit anumber of EF packets
that simultaneously appear on multiple inputs.

o Redefine 7,,, := max{fntimax L 37 5}, | et bean upper bound on
al 7,,.

o Letu,, = M Note that 0 < wu,, < 1, u,, increases with C,,,, and
if Cp, = 400, then u,,, = 1. Call u = max,,, u,,. The parameter v € [0, 1]
encapsulates how much we gain by knowing the maximum incoming rates

Cyn (u issmal for small values of C,,).

Theorem 2.4.2 (Improved Delay Bound When Peak Rate is Known [13, 39]).
Letv* = minm{(hfl)(cmcj;mfﬂrrm}' If v < v*, a bound on end-to-end delay
variation for EF ish D4 with

e+ur+(1—u)F
1—(h—1)uv

Dy =

Proof: The proof issimilar to the proof of Theorem 2.4.1. Cal D theleast bound,
assuming it exists.

An arrival curve for the flow of EF packets arriving at node m on some incident
link 1 is CL t + Ly, Where C! is the peak rate of the link (this follows from
item4in Theorem 1.7.1). Thus an arrival curve for theincoming flow of EF packets
at node m is C,,t + I,, Lmax- The incoming flow is thus constrained by the T-
SPEC (M, p,r,b) (see Page 16) with M = I, Liyax, p = Cny 7 = TV, b =
T Tm + (b — 1) Dr,, vy, By Proposition 1.4.1, it follows that

ImLmaX(l - um)

T'm

D < + (7 + (h = 1)Dvpy)us,

The condition v < v* impliesthat 1 — (h — 1)y, u,, > 0, thus

I Linax (1—um
Em + Tty + Tnfmax(1ztm)

- 1—(h—Dvpum

2.4. APPLICATION TO DIFFERENTIATED SERVICES 109

The above right-hand-side is an increasing function of w,,,, dueto 7,,, > I"fﬂ
Thus we have abound by replacing w,,, by u:

Iy Linax (1—u)
D é em—|-7'mu—|- e é D2
1—(h—1)rpu

Therest of the proof follows aong lines similar to the proof of Theorem2.4.1. [
Itisalso possibleto derive an improved backlog bound, using Proposition 1.4.1.
Aswith Theorem 2.4.2, we also have the following variant.

Coroallary 2.4.2. If v < v*, a bound on end-to-end delay variation for EFi®),
with

Tm

D), = mi
2 mnin{ 1—(h—1Dvmum

L Linax (1 —tm

Discussion: If we have no information about the peak incoming rate C;, then we
set C; = +oo and Theorem 2.4.2 gives the same bound as Theorem 2.4.2. For finite
values of C,,,, the delay bound is smaller, asillustrated by Figure 2.7.

0.5 “
J
J
0.4 “
0.3
0.2
/
0.1 /
,,,,,,,,,mm, _~ ~ L
0.05 0.1 _— -~

Figure 2.7: The bound D (in seconds) in Theorem 2.4.1 versus the utilization
factor v for h = 10, e = 245008, ... = 1000 b, o; = 100B and p; = 32kb/s
for all flows, r,,, = 149.760Mb/s, and C,,, = 4o (thin line) or C,,, = 2r,, (thick
line).

The bound is valid only for small utilization factors; it explodes at v > ﬁ

which does not mean that the worst case delay does grow to infinity [38]. In some
casesthe network may be unbounded; in some other cases (such asthe unidirectional
ring, thereisalwaysafiniteboundfor all v < 1. Thisissueisdiscussed in Chapter 6,
where we we find better bounds, at the expense of more restrictions on the routes
and the rates. Such restrictions do not fit with the differentiated services framework.

110 CHAPTER 2. APPLICATION TO THE INTERNET

Note also that, for feed-forward networks, we know that there are finite bounds for

v < 1. However we show now that the condition v < hil is the best that can be

obtained, in some sense.

Proposition 2.4.1. [4, 13] With the assumptions of Theorem 2.4.1, i ﬁ then

for any D’ > 0, there is a network in which the worst case delay is at Id2(st

In other words, the worst case queuing delay can be made arbitrarily large; thus
if we want to go beyond Theorem 2.4.1, any bound for differentiated services must
depend on the network topology or size, not only on the utilization factor and the
number of hops.

Proof: We build a family of networks, out of which, for any D’, we can exhibit
an example where the queuing delay is at least D’.

The thinking behind the construction is as follows. All flows are low priority
flows. We create a hierarchical network, where at the first level of the hierarchy we
choose one “fl ow” for which itsfirst packet happens to encounter just onepacket of
every other flow whose route it intersects, while its next packet does not encounter
any queue at all. This causes the first two packets of the chosen flow to come back-
to-back after several hops. We then construct the second level of the hierarchy by
taking a new flow and making sure that its first packet encounters two back-to-back
packets of each flow whose routes it intersects, where the two back-to-back packet
bursts of al these flows come from the output of a sufficient number of networks
constructed as described at the first level of the hierarchy. Repeating this process
recursively sufficient number of times, for any chosen delay value D we can create
deep enough hierarchy so that the queuing delay of the first packet of some flow
encounters aqueuing delay morethan D (becauseit encounters alarge enough back-
to-back burst of packets of every other flow constructed in the previous iteration),
while the second packet does not suffer any queuing delay at all. We now describe
in detail how to construct such a hierarchical network (which is really a family of
networks) such that utilization factor of any link does not exceed a given factor v,
and no flow traverses more than i hops.

Now let us describe the networks in detail. We consider a family of networks
with a single traffic class and constant rate links, all with same bit rate C. The
network is assumed to be made of infinitely fast switches, with one output buffer
per link. Assume that sources are all leaky bucket constrained, but are served in an
aggregate manner, first in first out. Leaky bucket constraints are implemented at the
network entry; after that point, all flows are aggregated. Without loss of generality,
we also assume that propagation delays can be set to 0; this is because we focus
only on queuing delays. As asimplification, in this network, we also assume that all
packets have a unit size. We show that for any fixed, but arbitrary delay budget D,
we can build a network of that family where the worst case queueing delay islarger
than D, while each flow traverses at most a specified number of hops.

A network in our family iscalled A/ (h, v, J) and has three parameters: h (max-
imum hop count for any flow), v (utilization factor) and J (recursion depth). We

2.4. APPLICATION TO DIFFERENTIATED SERVICES 111

focus on the cases where h > 3 and ﬁ < v < 1, which implies that we can
aways find some integer % such that

. 1 kh+1
h—1kh—1

(2.21)

Network N (h, v, J) isillustrated in Figures 2.8 and 2.9; it isacollection of identical
building blocks, arranged in a tree structure of depth J. Every building block has
one internal source of traffic (called “transit traffic”), kh(h — 1) inputs (called the
“building block inputs”), kh(h — 1) datasinks, h — 1 internal nodes, and one output.
Each of the h — 1 internal nodes receivestraffic from kA building block inputs plusit
receivestransit traffic from the previousinternal node, with the exception of thefirst
one which is fed by the internal source. After traversing one internal node, traffic
from the building block inputs diesin a data sink. In contrast, transit traffic is fed to
the next internal node, except for the last one which feeds the building block output
(Figure 2.8). Figure 2.9 illustrates that our network has the structure of a complete

buffer
wéﬁw&

multiplexer JLTL demultiplexer
1 data
source (h-1) kh inputs

\ i i i

% —%ﬁ :%%:)W** 1 output

r— 2 = B4

‘ h-1 internal nodes ‘ (h-1) kh data sinks

Figure 2.8: The internal node (top) and the building block (bottom) used in
our network example.

tree, with depth J. The building blocks are organized in levels j = 1, ..., J. Each of
the inputs of alevel j building block (7 > 2) isfed by the output of one level j — 1
building block. The inputs of level 1 building blocks are data sources. The output of
one j — 1 building block feeds exactly one level j building block input. At level J,

112 CHAPTER 2. APPLICATION TO THE INTERNET

thereis exactly one building block, thus at level J — 1 thereare kh(h — 1) building
blocks, and at level 1 there are (kh(h — 1))7~! building blocks. All data sources

level J -2 IIIIIII!|I|||||| Illllllll\ﬁ||||||| IIIIIII|!|E
il

level J-1 []

level J g

Figure 2.9: The network made of building blocks from Figure 2.8

have the same rate r = #% and burst tolerance b = 1 packet. In the rest of this
section we take as a time unit the transmission time for one packet, so that C' = 1.
Thus any source may transmit one packet every 6 = le time units. Note that a
source may refrain from sending packets, which is actually what causes the large
delay jitter. The utilization factor on every link is v, and every flow uses 1 or h hops.

Now consider the following scenario. Consider some arbitrary level 1 building
block. At time ¢y, assume that a packet fully arrives at each of the building block
inputs of level 1, and at time ¢y + 1, let a packet fully arrive from each data source
inside every level 1 building block (this is the first transit packet). The first transit
packet is delayed by hk — 1 time unitsin the first internal node. Just one time unit
before this packet leaves the first queue, let one packet fully arrive at each input of
the second internal node. Our first transit packet will be delayed again by hk — 1
time units. If we repeat the scenario along all internal nodes inside the building
block, we see that the first transit packet is delayed by (h — 1)(hk — 1) time units.
Now from Equation (2.21), § < (h—1)(hk —1), soit ispossiblefor the data source
to send a second transit packet at time (h — 1)(hk — 1). Let all sources mentioned
so far beidle, except for the emissions already described. The second transit packet
will catch up to the first one, so the output of any level 1 building block is a burst
of two back-to-back packets. We can choose t arbitrarily, so we have a mechanism
for generating bursts of 2 packets.

Now we can iterate the scenario and use the same construction at level 2. The
level-2 data source sends exactly three packets, spaced by 6. Since the internal node
receives hk bursts of two packets originating from level 1, ajudicious choice of the
level 1 starting time letsthefirst level 2 transit packet find aqueue of 2hk — 1 packets
in thefirst internal node. With the same construction asin level 1, we end up with a
total queuing delay of (h — 1)(2hk — 1) > 2(h — 1)(hk — 1) > 26 for that packet.

2.4. APPLICATION TO DIFFERENTIATED SERVICES 113

Now thisdelay is more than 20, and the first three level -2 transit packets are delayed
by the same set of non-transit packets; as aresult, the second and third level-2 transit
packets will eventually catch up to the first one and the output of alevel 2 block is
a burst of three packets. This procedure easily generalizes to al levelsup to J. In
particular, the first transit packet at level J has an end-to-end delay of at least J6.
Since all sources become idle after some time, we can easily create a last level J
transit packet that finds an empty network and thus a zero queuing delay.

Thus there are two packets in network N'(h, v, J), with one packet having a
delay larger than J6, and the other packet has zero delay. This establishes that a
bound on queuing delay, and thus on delay variation in network N'(h, v, J) has to
be at least aslarge as J 6. O

2.4.3 Boundsfor Aggregate Scheduling with Dampers

At the expense of some protocol complexity, the previous bounds can be improved
without losing the feature of aggregate scheduling. It iseven possibleto avoid bound
explosions at al, using the concepts of damper Consider an EDF scheduler (for
example a SCED scheduler) and assume that every packet sent on the outgoing link
carriesafield with the difference d between its deadline and its actual emission time,
if itispositive, and 0 otherwise. A damper isaregulator in the next downstream node
that picksfor the packet an eligibility timethat liesintheinterval [a +d — A, a+d],
where A is a constant of the damper, and « is the arrival time of the packet in the
node where the damper resides. We call A the “damping tolerance”. The packet
is then withheld until its eligibility time [76, 18], see Figure 2.10. In addition, we
assume that the damper operates in a FIFO manner; this means that the sequence of
eligibility times for consecutive packets is wide-sense increasing.

Unlike the scheduler, the damper does not exist in isolation. It is associated with
the next scheduler on the path of apacket. Its effect isto forbid scheduling the packet
before the eligibility time chosen for the packet. Consider Figure 2.10. Scheduler m
works asfollows. When it has an opportunity to send a packet, say at timet, it picks
a packet with the earliest deadline, among all packets that are present in node N,
and whose €eligibility date is > ¢. The timing information d shown in the figure is
carried in a packet header, either asalink layer header information, or as an IP hop
by hop header extension. At the end of a path, we assume that there is no damper at
the destination node.

The following proposition is obvious, but important, and is given without proof.

Proposition 2.4.2. Consider the combinatio§ of a scheduler and its associated
damper. If all packets are served by the scheduler before or at their deadlines, then
S provides a bound on delay variation equalAo

Itispossibletolet A = 0, in which case the delay is constant for all packets. A
bound on the end-to-end delay variation is then the delay bound at the last scheduler
using the combination of a scheduler and a damper (this is called “jitter EDD” in
[76]). In practice, we consider A > 0 for two reasons. Firstly, it is impractical to
assume that we can write the field d with absolute accuracy. Secondly, having some

114 CHAPTER 2. APPLICATION TO THE INTERNET

Switching Fabric

Scheduler k

O N
X X O
Router M Q ’D Router N

To From Damper n Scheduler m
other other

/ router router

Scheduler /
cnecuier Damper /
Departure from / Deadline at /
+-—>
d
‘ ‘ d ‘ ‘ Packet sent
from M o N
Arrival at node N l ‘ | ‘
v >
a a+d-3 a+d

Eligibility time picked by damper /

Figure 2.10: Dampers in a differentiated services context. The model shown
here assumes that routers are made of infinitely fast switching fabrics and
output schedulers. There is one logical damper for each upstream scheduler.
The damper decides when an arriving packet becomes visible in the node.

2.4. APPLICATION TO DIFFERENTIATED SERVICES 115

dlack in the delay variation objective provides better performance to low priority
traffic [18].

Thereis no complicated feasibility condition for adamper, asthereisfor sched-
ulers. The operation of a damper is always possible, as long as there is enough
buffer.

Proposition 2.4.3 (Buffer requirement for a damper). If all packets are served
by the scheduler before or at their deadlines, then the buffer requirement at the
associated damper is bounded by the buffer requirement at the scheduler.

Proof: Call R(t) the total input to the scheduler, and R’(t) the amount of data

with deadline < ¢. Call R*(t) the input to the damper, we have R*(t) < R(t).
Packets do not stay in the damper longer than until their deadline in the scheduler,

thus the output R, (¢) of the damper satisfies Ry (¢t) > R'(t). The buffer requirement

at the scheduler at time ¢ is R(t) — R/(¢); at the damper it is R*(t) — Ry(t) >

R(t) — R'(t). O
Theorem 2.4.3 (Delay and backlog bounds with dampers). Take the same as-
sumptions as in Theorem 2.4.1, we assume that every scheduleat is not an

exit point is associated with a damper in the next downstream node, with damping

toleranceA,,,. Let A be a bound on ali\,,,.
If v < 1, then a bound on the end-to-end delay jitter for low delay traffic is

D=e+(h-1)A1+v)+T1V
A bound on the queuing delay at any scheduler is
Dy =e+v[r+ (h—1)A]

The buffer required at scheduler, for serving low delay traffic without loss is
bounded by
Breq = 7ﬂm-DO

A bound on the buffer required at damperis the same as the buffer required at
schedulem.

Proof: The variable part of the delay between the input of a scheduler and the
input of the next one is bounded by A. Now let us examine the last scheduler, say
m, on the path of a packet. The delay between a source for a flow i 5 m and
scheduler m isaconstant plus avariable part bounded by (h — 1)A. Thusan arriva
curve for the aggregate low-delay traffic arriving at scheduler m is

as(t) =vry(t+ 74+ (h—1)A)
By applying Theorem 1.4.2, a delay bound at scheduler m is given by

Dy =FE+wr+ (h—1)A]

116 CHAPTER 2. APPLICATION TO THE INTERNET

A bound on end-to-end delay variation is (h — 1)A + D, which is the required
formula

The derivation of the backlog bound is similar to that in Theorem 2.4.1. |

The benefit of dampersis obvious: thereis no explosion to the bound, it isfinite
(and small if A issmall) for any utilization factor up to 1 (see Figure 2.11). Further-
more, the bound is dominated by hA, across the whole range of utilization factors
up to 1. A key factor in obtaining little delay variation is to have a small damping
tolerance 0.

Figure 2.11: The bound D (in seconds) in Theorem 2.4.3 the same param-
eters as Figure 2.7, for a damping tolerance A = 5 ms per damper, and
C,, = +oo (thick line). The figure also shows the two curves of Figure 2.7,
for comparison. The bound is very close to hA = 0.05s, for all utilization
factors up to 1.

There is arelation between a damper and a maximum service curve. Consider
the combination of a scheduler with minimum service curve 3 and its associate
damper with damping tolerance A. Call p the fixed delay on the link between the
two. It followsimmediately that the combination offers the maximum service curve
B ® 6,—a and the minimum service curve 8 ® d,,. Thus adamper may be viewed as
away to implement maximum service curve guarantees. This is explored in detail
in[18].

244 StaticEarliest TimeFirst (SETF)

A simpler alternative to the of dampersis proposed by Z.-L. Zhang et a under the
name of Static Earliest Time First (SETF) [80].

Assumptions We take the same assumptions as with Theorem 2.4.1, with the fol-
lowing differences.

2.4. APPLICATION TO DIFFERENTIATED SERVICES 117

o At network access, packets are stamped with their time of arrival. At any node,
they are served within the EF aggregate at one node in order of time stamps.
Thus we assume that nodes offer a GR guarantee to the EF aggregate, as
defined by Equation (2.1) or Equation (2.2), but where packets are numbered
inorder of time stamps (i.€. their order at the network access, not at thisnode).

Theorem 2.4.4. If the time stamps have infinite precision, foralk 1, the end-to-
end delay variation for the EF aggregate is bounded by

I AL

D:(6+T)W

Proof: The proof is similar to the proof of Theorem 2.4.1. Call Dy, the least
bound, assuming it exists, on the end-to-end delay after k hops, k£ < h. Consider a
tagged packet, with label n, and call dj. its delay in k& hops. Consider the node m
that is the hth hop for this packet. Apply Equation (2.2): thereissomelabel £ < n

such that

dp, < e+ag + T (2.22)
where a; and d; arethe arrival and departure times at node m of the packet labeled
J,» and [; its length in bits. Now packets k& to n must have arrived at the network
access before a,, — d;, and after a,,, — Dg,—1. Thus

g+ .. +1n < alap, — am — dg, + Dp—1)

where « is an arrival curve at network access for the traffic that will flow through
node m. We have a(t) < r,,, (vt + 7). By Equation (2.3), the delay d,, — a,, for our
tagged packet is bounded by

Oé(t — dk + thl)

e + sup —t| =e+174+v(Dp_1—dg)
t>0 T'm

thus
diy1 < dg +e+ 717+ v(Dp_1 —di)

The above inequation can be solved iteratively for dy, as a function of Dj,_1; then
take k = h — 1 and assume the tagged packet is one that achieves the worst case k-
hop delay, thus D;,_1 = dj,_, which gives an inequality for D,,_1; last, take k = h
and obtain the end-to-end delay bound as desired. O

Comments; The bound is finite for all values of the utilization factor v < 1,
unlike the end-to-end bound in Theorem 2.4.1. Note that for small values of v, the
two bounds are equivalent.

We have assumed here infinite precision about the arrival time stamped in every
packet. In practice, the timestamp is written with some finite precision; in that case,
Zhang [80] finds a bound which lies between Theorem 2.4.1 and Theorem 2.4.4 (at
the limit, with null precision, the bound is exactly Theorem 2.4.4).

118 CHAPTER 2. APPLICATION TO THE INTERNET

2.5 Bibliographic Notes

The delay bound for EF in Theorem 2.4.2 was originally found in [13], but neglect-
ing the L., term; aformulathat accounts for L., wasfound in [39].
Bounds that account for statistical multiplexing can be found in [55].

2.6 Exercises

Exercise 2.1. Consider a guaranteed rate scheduler, with ré&tend delayv, that
receives a packet flow with cumulative packet lengtihe (packetized) scheduler
output is fed into a constant bit rate trunk with rate> R and propagation delay
T.

1. Find a minimum service curve for the complete system.

2. Assume the flow of packetgisb)-constrained, witth > [,,,.x. Find a bound
on the end-to-end delay and delay variation.

Exercise 2.2. Assume all nodes in a network are of the GR type. A flow with T-
SPEC«(t) = min(rt + b, M + pt) has performed a reservation with rafeacross

a sequence dff nodes. Assume no reshaping is done. What is the buffer requirement
at thehth node along the path, for=1,...H ?

Exercise 2.3. Assume all nodes in a network are made of a shaper followed by a
GR scheduler. A flow with T-SPE&Gt) = min(rt 4+ b, M + pt) has performed a
reservation with rateR across a sequence éf nodes. Assume that the shaper at
every node uses the shaping cutve= v, ;. What is the buffer requirement at the
hth node along the path, for=1,...H ?

Exercise 2.4. Assume all nodes in a network are made of a shaper followed by a
FIFO multiplexer. Assume that floivhas T-SPECq; (t) = min(r;t +b;, M + p;t),

that the shaper at every node uses the shaping czyve v, », for flows. Find the
schedulability conditions for every node.

Exercise 2.5. A network consists of two nodes in tandem. Therewaows of type

1 andn,, flows of type. Flows of type have arrival curvey; (t) = r;t+b;,7 = 1,2.

All flows go through nodes then2. Every node is made of a shaper followed by
an EDF scheduler. At both nodes, the shaping curve for flows ofitiggsomes;
and the delay budget for flows of typés d;. Every flow of type should have a
end-to-end delay bounded 3. Our problem is to find good values @f andds.

1. We assume that = «;. What are the conditions afy andd, for the end-to-
end delay bounds to be satisfied ? What is the setofn,) that are schedu-
lable ?

2. Same question if we sef=)\,

2.6. EXERCISES 119

Exercise 2.6. Consider the scheduler in Theorem 2.3.3. Find an efficient algorithm
for computing the deadline of every packet.

Exercise 2.7. Consider a SCED scheduler with target service curve for figiven
by
Bi = Vry b, @ 04,
Find an efficient algorithm for computing the deadline of every packet.
Hint: use an interpretation as a leaky bucket.

Exercise 2.8. Consider the delay bound in Theorem 2.4.1. Take the same assump-
tions but assume also that the network is feedforward. Which better bound can you
give ?

120

