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Abstract: Numerical modelling is a widespread tool in 
the EMC community.  However, significant demands 
are placed on computational resources. This paper dis-
cusses the problems associated with the implementation 
of a parallel modelling package, particularly in respect 
of the availability of suitable hardware. The use of exist-
ing networks of available computers is considered as a 
solution to this problem and a number of requirements 
for such a distributed design are set out and justified. 
 
 

1. Introduction 
 
Topics of interest to modellers in EMC community in-
clude novel antennas, coupling into complex cavities, 
reverberant chambers, etc.  To model these accurately 
makes significant demands on simulation time and com-
puter memory, particularly if high accuracy is required.  
Many of these problems are prohibitive for modern 
workstations, unless the modeller is prepared to wait a 
long time for the results. 
 
Although workstations are generally not sufficiently 
powerful for the most complex problems, most organisa-
tions have a surfeit of untapped computing power in the 
form of PCs, many of which are idle outside working 
hours. If it were possible to harness this power for simu-
lations it would enable more accurate models to be 
simulated, and models to be run in less time. 
 
This paper discusses the issues raised when trying to 
access this power. 
 
Firstly this paper will provide a simple introduction to 
the Transmission Line Modelling (TLM) technique, 
which will  be used as a vehicle for the discussion of the 
applicability of parallel solvers in the rest of the paper. 
Some of the difficulties presented by TLM will be dis-
cussed and then the further issues raised in implement-
ing the algorithm in parallel will be examined. The pa-
per then discusses key issues in parallelisation and 
strategies for solution. 

2. The Modelling Environment 
 
2.1 Numerical Modelling  
 
There are a number of reasons why one would wish to 
model radiating systems numerically.  Existing hardware 
may need to be modelled so that the fields produced can 
be studied easily.  Sampling fields with a probe is time 
consuming and is less intuitive than the visuals a com-
puter can produce.   Systems which do not yet exist may 
be modelled to save on construction costs of prototypes. 
It is generally cheaper to alter a model than to rebuild 
the piece of equipment.  
 
Modelling may be used to determine how a system will 
perform in a given setting, such as the placement of an 
antenna at different positions on a vehicle, or in deter-
mining the susceptibility of these vehicles to various 
environmental EM fields. 
 
The TLM method is particularly suited to such problems 
as mode stirred chambers, waveguides and patch anten-
nas. This is due to the ease with which areas of metal 
can be modelled in TLM, which is more complex in 
other techniques such as Method of Moments. 
 

2.2 Transmission Line Matrix (TLM) Method. 

 
TLM modelling is achieved by treating the region of 
interest (the workspace) as a collection of rectangular 
sub-regions (nodes) of sufficiently small size that the 
material properties of that area may be considered 
nearly uniform. 
 
Each of these nodes may then be modelled as a cuboid 
with voltages across the faces, with these voltages repre-
senting the electromagnetic field about the node as illus-
trated in Figures 1 and 2.   
 
The node then propagates these signals by means of 
internal transmission lines to its other faces so that a 
signal impinging on one face of the node gets scattered 
to the adjacent and opposite faces in the manner of 



 

Huygens' model of light propagation[1], where each 
point is regarded as the generator of a new wavefront. 
 
 
 
 
 
 
 
 
 
 
Fig. 1 A cuboidal representation of a 3D TLM node 
 
 
 
 
 
 
 
 
 
Fig. 2 A conventional representation of a 3D TLM node 
 
 
 
 
Once the internal scattering is complete, the nodes then 
pass the voltages on to their immediate neighbours, in a 
"connect" phase. 
 
The sequence "scatter, connect" is repeated as many 
times as necessary for the simulation in hand.  Thus this 
technique is a time-domain method. 
 
The internals of the node are represented as a circuit of 
transmission lines connected together in a number of 
possible different ways. These yield a "black box" 
model of the node, which may be held in a matrix speci-
fying how a voltage on one port gets scattered to other 
ports.  There has been a lot of research in this area and 
models that have been created and used successfully 
include shunt and series nodes, symmetric nodes, con-
densed nodes, super symmetric condensed nodes, nodes 
representing space with internal wires, and many others.  
The details of such models are beyond the scope of this 
paper, whose concern is the issues of implementing 
TLM in parallel. 
 
2.3 Problems with TLM  
 
The main problem with this simulation method is that 
the time to run accurate simulations of large problems is 
very long.  "Days" seems to be considered normal in the 
TLM community, though this is no criticism of the tech-
nique itself -- many other techniques can take as long. 
Clearly a reduction in simulation time would allow users 
to make more progress and would open up other tech-
niques where repeated trials are necessary for design 
optimisation.  The use of genetic algorithms or simu-
lated annealing, for example, could lead to new designs 
of antenna. but such techniques would take prohibitively 
long at present, if performed on a single machine.  For 

example, a genetic algorithm may take hundreds of gen-
erations to reach a solution, resulting in thousands of 
simulations even for a small population size. 
 
The problem is exacerbated because we are interested in 
sizable problems, where a problem is considered sizable 
if it has a lot of detail or because it encompasses a large 
space, or possibly both.  If there is a lot of detail then 
the nodes must be very small, so many are needed.  If 
the problem encompasses a large space because meas-
urements points or significant structures that must be 
modelled are far from the antenna, then there is no 
choice but to use a large number of nodes.  To some 
extent non-uniform gridding can help in these cases, at 
some cost to precision in the results. 
 
Having identified a modelling technique and how it 
could be utilised for increased benefit, such implementa-
tion is limited by available computing power.  Super-
computers are beyond most academic institutions and 
commercial entities. An alternative solution which is 
affordable is therefore a justifiable goal. The next sec-
tion addresses one promising approach to this goal. 
 
 

3. Parallel Processing  
 
The aforegoing discussion, in which each of the nodes is 
described as performing the same task, at the same time, 
has demonstrated that TLM is inherently parallel in na-
ture.  Clearly, to have a single processor working though 
the computations for each node in turn is therefore a 
suboptimal solution.  Furthermore, since we have al-
ready discussed the requirements for a speed increase. 
parallel processing is a logical step. 
 
There are a number of different models of parallelism 
that might be considered.  For example, operating sys-
tems such as Unix run many tasks in parallel, and many 
programming languages support threads now, however 
these techniques are not true parallelism because one 
processor is doing all the work, actually in series. Other 
methods involve having many processors share memory 
between them, and these must therefore be located on 
the same bus usually within one enclosure, sharing a 
motherboard.  This involves having hardware designed 
specially for the purpose, the design considering issues 
such as the use of shared resources. Other systems use 
processors which are designed to communicate with 
their immediate neighbours over specialised channels, 
such as Transputers, for example. 
 
3.1  Constraints on Parallelisation  
 
The problem of the cost of supercomputers, mentioned 
above, means that specialised hardware is not an ideal 
solution to solve this problem Buying time on a mas-
sively parallel machine would not grant one full-time 
access to it, impeding the overall progress. However, the 
presence of underutilised machines together with an 
internal network and the internet, offers a practical al-



 

ternative with limited capital outlay.  In many cases 
capital outlay has already occurred. 
 
Such an approach sets constraints on any design of a 
parallel modeller. 
 
The machines on these networks will be diverse, being 
different types of hardware and running different operat-
ing systems or different versions of one operating sys-
tem.  This means that programs designed to make use of 
them must be particularly portable. 
 
There will be a wide variation in performance between 
machines, for example between an Intel 80386 machine 
and an AMD Athlon. 
 
The programs cannot rely on external libraries, because 
one cannot be sure that the libraries will be available, or 
that they are the correct version, or that subsequent ver-
sions will be compatible with the software.  Thus any 
attempt to upgrade, or refusal to upgrade at a remote 
site, would cause the software to be unusable there.  
Attempting to install correct versions of the library may 
not be possible if other software already in use on the 
machine requires that the version be different to support 
some feature.  There may also be conflicts between dif-
ferent libraries. 
 
It cannot be assumed that machines will be well sup-
ported, and so the code must need minimum interven-
tion at a local level.  Continuing requests of the remote 
site administrators for maintenance work to support the 
software will be unwelcome. 
 
The program, being a "guest" on the distant machine, 
must not make it impossible for the rightful owners of 
the machine to use it; the software must not overutilise 
CPU and memory, and it must not impede normal work.  
To achieve this it will be necessary for machines to pro-
vide a service intermittently, resulting in a need to pass 
state information from machine to machine to enable the 
simulation can continue seamlessly. 

 
3.2  Consequences of these constraints  
 
The consequences of these constrains is that we consider 
it inappropriate to use libraries such as MPI, & 
PVM[2,3].  
 
The development of a multi-faceted program may be 
eased by the use of different languages.  For example 
FORTRAN is particularly suited to mathematical com-
putation, whilst for parsing definitions of the problem, it 
may be more appropriate to use yacc, lex and the C pro-
gramming language.  However, such an approach is not 
helpful in a widely distributed program because it cre-
ates too many dependencies on external software, such 
as compilers (which for more obscure languages may 
not even be present -- Solaris no longer ships with even 
a C compiler for example). 

It is necessary to ensure that the simulation runs "out of 
hours", which will be different hours dependent on time-
zone, and may need to be flexible.  Someone may wish 
to allow use of their machine while they are in a meeting 
for example.  In the ideal case the machine could detect 
that it is idling, and could make itself available for the 
distributed modeller without user intervention. 
 
Machines of differing performance necessitates careful 
consideration of the way the problem is shared between 
machines. 
Communication delays will vary between machines, 
because some will share a local network, and others will 
be separated by several routers. 
 
Clearly in such an inhomogeneous, time variant system 
we have a need for load balancing and fault tolerance, 
and a need to minimise communication between ma-
chines. 
 

3.3 Proposed solutions  

 
This section addresses the issues raised in the previous 
section and suggests strategies for their solution. 
 
3.3.1 Special hardware  
Past work on parallel TLM has often used special hard-
ware. A number of papers discuss using Transputers 
Hui, Christopoulos et al [4] have used transputers Tan & 
Fusco [5] have used a DAP So, Eswarappa and Hoeffer 
[6] have used a DECmpp 1200P and a Connection Ma-
chine.  These machines have their own internal net-
works, and present different problems from those dis-
cussed here. 
 
A number of papers discuss using linked machines of 
different types, for example [7], but such heterogeneous 
networks have mainly been workstations used to support 
special hardware. 
 
3.3.2 Segmentation  
If the problem is to be divided up among many ma-
chines there are a number of ways in which this division 
can be undertaken. For example Parsons et al [7] con-
sider networks of workstations, and they considered that 
communication is 'expensive' in terms of time, because 
accessing information across a network is considerably 
slower than if the same information is available in the 
local machine's memory.  The logical extension of that it 
is important to put as much of the workspace volume 
into the memory of each machine as possible, whilst 
minimising the communicating "surfaces" between the 
machines.  They conclude that the volume:surface-area 
ratio must be maximised for each segment of the prob-
lem. 
 
Pollmeier et al [8] discuss machines with different per-
formances, suggesting loading could be pre-computed.  
In our case the performance will be time variant, so this 
result is less applicable to our case. Most other papers 



 

simply divide the space into slices, usually because of 
the processor architecture. 
 
One particularly important aspect of segmentation is 
dynamic load balancing, which is discussed in section 
3.3.4. 
 
3.3.3 Networking  
Given the foregoing discussion it is clear that a  differ-
ent approach will be necessary to satisfy the above  con-
straints.  This does not invalidate these other ap-
proaches, because they were based on different re-
sources being available to these authors. 
 
To ensure generality and to satisfy the described con-
straints it is proposing to use ethernet as the communica-
tions medium between machines, both at a local (LAN) 
level and at the global level where this would be the 
Internet. 
 
The selection of the protocol is an important choice.  
Most of  the internet uses TCP/IP for its traffic.  This is 
a lossless protocol, and communication is transparent on 
it.  Packets are guaranteed to arrive, and to arrive in the 
correct order.  However, the communication between 
nodes in the TLM model works at the neighbourhood 
level, with each node passing information to its immedi-
ate neigbours on a peer to peer basis.  TCP/IP requires 
that the two ends of a communication channel have a 
client/server relationship.  This would mean that each 
node would need to change its role depending on 
whether it initiated the communication or not.  This is 
too complicated to manage in a general sense, and also 
TCP/IP is a rather computationally expensive protocol, 
compared to the User Datagram Protocol. 
 
The User Datagram Protocol (UDP) is not a cli-
ent/server protocol, but it has the disadvantages that it is 
lossy; packets may arrive incomplete or not at all, and 
furthermore they may arrive in the incorrect order.  This 
means that structure must be imposed on the packets to 
correct this when it happens. 
 
Protocol design is a large topic in itself, so in the first 
instance a simple, or even simplistic, ARQ scheme 
(automatic request for retransmission) is being consid-
ered.  Packets are numbered so that sequencing may be 
checked, and the data in the packet is given a 16-bit 
checksum.  Clearly a more efficient protocol may well 
be possible. 
 
3.3.4 Load Balancing  
An important problem in any parallel system is load 
balancing.  
The workload must be spread evenly among the ma-
chines, where "evenly" means that the machines will 
finish at the same time, so none are kept waiting. If the 
problem space can only be divided in 2 this is fairly 
easy. The boundary will move to make the areas propor-
tional to the performance of the processors. Where there 
are four machines the situation can be more compli-

cated, because the boundary between any two proces-
sors could be moved independently of all the other such 
boundaries, e.g. Figure 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3  A potential interprocessor boundary problem.  A, 
B, C, D represent individual processors  
 
If things are kept to the simplest case, where there are 
only orthogonal planar boundaries dividing up the 
space, then some useful analysis can be performed, for 
example consider the case of four processors, as in Fig-
ure 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 4 Four processors with planar boundaries 
 
If scattering, and connecting within one processor is 
considered as one cost, and the connections to external 
processors as another cost 
 
Cost = a . α . β  +  (a + b) . β  +  b . (l- α) . β) + c . α . 

(m - β) + (c + d) . (m - β) + b * (l - α) . (m - β) 

A B 

C D 

β A 
a 

B 
b 

C 
         
c 

D 
 
d 

α 

l 

m



 

So 
 
∂ cost / ∂ α = a . β + (a + c) - b . β - (b + d) + c . (m - 

β) - d . (m - β) 
 
showing that as alpha increases the load on A and C 
increases.  The situation is symmetrical. 
 
Clearly these examples don't take account of the geome-
try being modelled.  For example bulk volumes of metal 
within the workspace will reduce the load on processors, 
because the electromagnetic waves do not propagate 
through the metal, so there is no need  to perform scatter 
and connect operations within a region of bulk metal. 
 
Also, the above discussion assumes that the boundaries 
are kept as planes.  The more interesting case, where a 
region is non-rectangular, introduces more problems.  
However, this is not discussed here. If boundaries are 
moved in this case would could end up with a very 
fragmented space where the cost of communication may 
be greater than that of processing. 
 
Such unusual arrangements may result if it proves sim-
pler to  process one type of dielectric region on one ma-
chine, with a different dielectric region adjacent also 
being modelled.  They may also occur where a change 
in loading on machines results in parts of the boundaries 
being moved, unless the movement of boundaries is 
handled with some sophistication.  So the segmentation 
of the space is non-trivial, and may be amenable to AI 
or optimisation techniques. We believe this is an area 
which could benefit from more research 
 
3.3.5 Characterising Performance. 
The foregoing discussion on load balancing assumes 
that processor performance is known.  For this to be the 
case a measure of performance must be available.  It is 
clear that CPU power effects both calculation and inter-
processor communications, because of the computa-
tional cost of whatever protocol is in use at the time. 
Also the scatter is always followed by connect, so that 
this forms a critical path in the TLM process. 
 
These two costs should be lumped together as a first 
approach, so that a signal goes into a processor, is proc-
essed, and a different signal comes out.  The perform-
ance of the processor is a function of this "trip time". 
 
This distributed computational model with signals tak-
ing trips between different processors is somewhat 
analagous to the foraging that takes place in ant colo-
nies.  In an ant colony worker ants leave the nest in 
search of food, leaving a pheromone trail to record their 
path, which they and other ants may follow.  If the 
source of food is particularly good, then when the ant 
returns to the nest it communicates this to other ants, so 
many set out along the trail, each ant strengthening the 
trail.  The pheromones evaporate with time, so that 
routes to old, depleted sites disappear.  If processor per-
formance is modelled as the quality of a food source, 

this seems to suggest a suitable may of load balancing a 
distributed system. Indeed, Schonderwoerd [9] has used 
them for load balancing. 
 
3.3.6 A Proposed Solution 
Considering the above constraints in turn, the authors 
propose the following system. 
 
The need for diverse platforms means that a language is 
needed that is very portable.  Because this is an experi-
mental setup, and we wish to make changes easily, the 
system is currently being developed in Ruby, a fully 
Object Oriented language created by Yukihiro Matsu-
moto [10].  This language has a good selection of stan-
dard libraries, making dependence on other libraries 
largely unnecessary.  It also works on Unix, Linux, and 
the various varieties of Windows.  Although the lan-
guage does not compile to native code, it still performs 
very well. 
 
The Object Oriented nature of Ruby has meant that test-
ing has been simplified, and that design changes have 
been easier to manage because of encapsulation.  It has 
good support for networking, and the UDP protocol in 
particular. Data is passed using the Marshal module to 
convert the data into strings for transmission, and these 
are broken into numbered packets, handled by a simple 
ARQ scheme [11].  It will be possible to experiment 
with data compression of the strings, to improve the 
performance of the solver. 
 
Functions related to time, such as determining when it is 
"out of hours" and for determining the relative perform-
ance of machines are well supported in the language, 
easing the development of time-variant behaviour. 

 
 

4. Discussion 
 
Success in producing a parallel TLM will mean that 
larger spaces could be modelled, and work on more de-
tailed structures such as the effects of radiation on the 
human head, or on more realistic models of vehicles 
would be achievable.   
 
One of the problems faced by modellers at the moment 
is that to import a model from a CAD system into an 
TLM modeller a lot of simplification must be done.  
This has to be done by hand, and on the basis of know-
ing which details are important.  If all the details could 
be kept, this long and tedious step could be avoided. 
Also, search based design could be applied to more 
problems.  Such techniques as Genetic Algorithms are 
impractical when a single simulation of one model takes 
days, and populations in a genetic algorithm may run 
into the hundreds, and the number of generations needed 
may be thousands to achieve a stable, effective design.  
Parallelism in the genetic algorithm itself can help, in 
that all the individuals in a population could be mod-
elled at the same time. 



 

Although the discussion has laid out some guiding prin-
ciples for a TLM solver, this set of principles has equal 
standing when considering other modelling methods 
such as Method of Moments, Finite Difference time 
domain, Finite Element Analysis, etc. 
 
It is clear that there are still a number of questions open 
in this field, such as: 

• What are suitable protocols for use in distrib-
uted systems? 

• What security measures against deliberate at-
tack on a parallel system can be achieved with-
out sacrificing performance? 

• How can division of the workspace make intel-
ligent use of the characteristics of the problem 
being modelled?  Are artificial intelligence 
techniques useful in this application? 

 
 

5.  Conclusions  
 
This paper has described TLM and its parallel nature 
and some of the problems of implementation of a paral-
lel simulator, in particular load balancing, communica-
tions and reliability. Solutions have been suggested to 
these problems based on the use of the internet to create 
a more powerful system. It has been shown that there is 
scope for further research in this area, particularly in 
communications protocol design, load balancing and 
segmentation with consideration given to the properties 
of the materials being modelled.  
 
An approach using the Ruby programming language, 
based on the UDP protocol using a simple ARQ scheme 
is currently being investigated by the authors.   
 
From the observations discussed in this paper it is clear 
that there is still much work to be done in the field of 
designing a parallel TLM solver.  However, a number of 
directions have been proposed and the potential benefits 
of achieving a flexible parallel solution are not incon-
siderable. 
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