Lab 3: Sending data using WiFi and low power mode. Configuring RaspBerryPi as a local middleware.

> Rodrigo Carbajales and Marco Zennaro ICTP Trieste-Italy

Step Zero

Clean up your desks! :)

Goals of this Lab

- Learn how to send sensor data via WiFi.
- Configure RPi as a local Middleware
- . Go into sleep and low power mode
- Excercises about:
 - sending WiFi data to ThingSpeak online
 - Using RPi as middleware and sending data using GPRS
 - Going into sleep mode and switching off grove

Start!

This example will connect Mbili board using Wee board to an Ap router. It will create a TCP connection with ThingSpeak to post TPH data online.

Wee is a WIFI module based on ESP8266

Create a free account in ThingSpeak.com

https://thingspeak.com

ThingSpeak Channels

Apps

Support - Blog Sign In

Sian Up

Billions and Billions.

The open data platform for the Internet of Things.

Get Started Now

Documentation | Support | GitHub

ThingSpeak Channels Apps

Sign up to start using ThingSpeak

User ID	
Email	Drag the cursor around the area you want to capture.
Time Zone	(GMT-05:00) Eastern Time (US & Canada)
Password	
Password Confirmation	
	Create Account

ThingSpeak

In TS menu you will have

ThingSpeak Channels - Apps Plugins Account -

Create a new channel in Channel option

🖵 ThingSpeak	Channels -	Apps	Plugins	Account -	Support 🗸	Blog	Sign Out
Welcome! You have signed	l up successfully.						X
My Channels					Help		
New Channel					Create a channel it can be for a device, app, or anything that c ThingSpeak. (more help) • Arduino Tutorial • Netduino Plus Tutorial	an send d	ata to

Channel with 5 fields and copy your API KEY

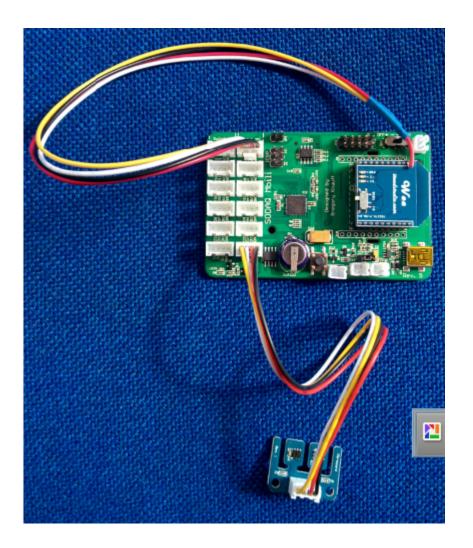
Private View	Public View	Channel Settings	API Keys	Data
Percentage	Complete 1	00%		
Channel ID		7535		
Name	V	Wee_TPH		
Description	V	Ibili board +TPH sens /ifiBee shield + 3.7W ollege of Science an echnology, Universit	H LI-ion @	•
Metadata	٨	larconiLab		
Tags		bili board, Wee Wifi PH sensor	Bee Shield,	
Latitude	-	.958		
Longitude	3	0.063		
Elevation	1	556		
Make Public				

Field 1	TempSHT21 [C]	remove field
Field 2	TempBMP [C]	remove field
Field 3	PressBMP [hPa]	remove field
Field 4	HumSHT21 [%]	remove field
Field 5	Voltage [mV]	remove field
Field 6		add field
Field 7		add field
Field 8		add field
	Save Channel	

5 channels

Channels / Wee TPH

ThingSpeak


• Get Api key

Channels -

Apps

Plugins

- Open Wee_TPH_ThingSpeak.ino
- We need to use WeeESP8266 library. Copy it into libraries folder.
- In Windows it is located in: C:\Users \yourusername\Documents\Arduino\
- Plug Wee shield into Bee port and connect cable as follow.

Check that you include library

#include "ESP8266.h"

And change SSID and Password from your AP router

#define SSID "**SSID_NAME**" #define PASSWORD "**SSID_PASS**"

Here we define the TCP address and port

#define HOST_NAME "api.thingspeak.com" #define HOST_PORT (80)

Change your API Key

//Add your apikey (THINGSPEAK_KEY) from your channel
// GET /update?key=[THINGSPEAK_KEY]&field1=[data 1]&field2=[data 2]...;
String GET = "GET /update?key=WS1NTJF5SLZNRWN2";

Setup Wee to send data, connect to SSID and disable multiple connections using:

```
if (wifi.setOprToStationSoftAP()) {
    Serial.print("to station + softap ok\r\n");
} else {
    Serial.print("to station + softap err\r\n");
}
```

```
if (wifi.joinAP(SSID, PASSWORD)) {
```

```
Serial.print("Join AP success\r\n");
Serial.print("IP:");
Serial.println( wifi.getLocalIP().c_str());
} else {
    Serial.print("Join AP failure\r\n");
}
```

```
if (wifi.disableMUX()) {
```

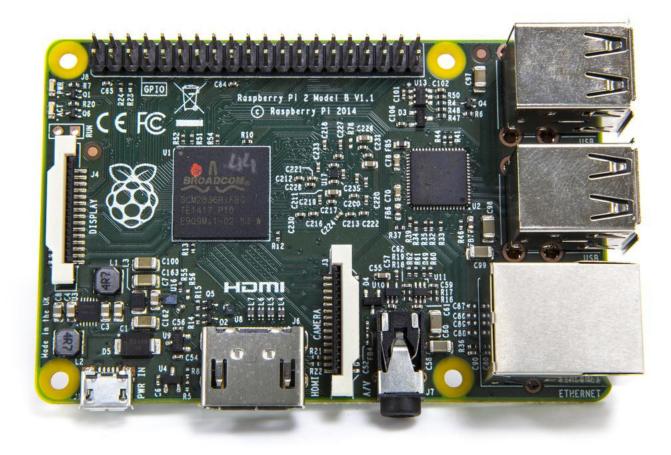
```
Serial.print("single ok\r\n");
} else {
   Serial.print("single err\r\n");
}
```

In the loop you have to create TCP connection to the server, measure and prepare data and send it. Here you have to use your key from ThingSpeak

//----- update the Thingspeak string with 3 values void updateTS(String T1, String T2, String P, String H, String V)

```
//create GET message
String cmd = GET + "&field1=" + T1 +"&field2="+ T2 + "&field3=" + P +"&field4=" + H +"&field5=" + V+"\r\n";
```

```
//convert String to char
char buf[150]; //make buffer large enough for 7 digits
cmd.toCharArray(buf, sizeof(buf));
```


```
wifi.send((const uint8_t*)buf, strlen(buf));
uint32_t len = wifi.recv(buffer, sizeof(buffer), 10000);
if (len > 0) {
    Serial.print("Received:[");
    for(uint32_t i = 0; i < len; i++) {
        Serial.print((char)buffer[i]);
    }
    Serial.print("]\r\n");
```

Open ThingSpeak and check if data is being sent.

Extended

- Try changing delay time. Be careful because a free ThingSpeak account let a maximum update rate of 15 seconds.
- Try adding Battery value in a new field.

Raspberry Pi 2 model B

What is Rpi?

- Raspberry Pi is a small, single-board computer developed for computer science education.
- Because it has an ARMv7 processor, it can run the full range of ARM GNU/Linux distributions, including Snappy Ubuntu Core, as well as Microsoft Windows 10
- Single board computer for \$35

RPi 2 model B. Features

- A 900MHz quad-core ARM Cortex-A7 CPU
- 1GB RAM
- 4 USB ports
- 40 GPIO pins
- Full HDMI port
- Ethernet port
- Combined 3.5mm audio jack and composite video
- Camera interface (CSI)
- Display interface (DSI)
- Micro SD card slot
- VideoCore IV 3D graphics core

Why?

- Run a private ThingSpeak server on a Rapberry Pi:
 - Private data
 - Free
 - Safe, no time changes
 - No limitations, storing and refreshing.
 - No internet needed

Steps to follow

- 1. Install operating system image in a SD card
 - Ej. Raspbian (https://www.raspberrypi.org/ documentation/installation/installing-images/ README.md)
- 2. Install ThinkSpeak server
 - 1. IoTBrindge has steps to follow on his GitHub account
 - 2. <u>https://github.com/iobridge/thingspeak</u>
 - But Angryelectron made an script which install TS by itself
 - 4. <u>http://angryelectron.com/how-to-install-a-</u> <u>thingspeak-server/</u>

This steps take time and sometimes are hard to make them work.

So, in a 8GB SD card we can put an image from a OS with TS running. Use Win32DiskImager program to upload the image.

👒 Win32 Disk Imager	
Image File	Device
Copy MD5 Hash:	
Progress	
Version: 0.9.5 Cancel Read	d Write Exit
Waiting for a task.	.H.

When it is ready plug sd card and chech if ThingSpeak is running on http://<ip-address>:3000

TPH_Volt_GPRS_TS.ino. Send TPH data to ThingSpeak running on a Raspberry pi using a GPRS connection.

APN, APN_USERNAME, and APN_PASSWORD ne ed to be set to the correct values for your particular network

//Network constants
#define APN "internet.mtn"
#define APN_USERNAME ""
#define APN_PASSWORD ""

Setup GPRSBee

//Setup GPRSbee
 setupComms();

Use your API KEY from ThingSpeak

//SpeakThings constants #define URL "api.thingspeak.com/update" //#define URL "184.106.153.149/update" #define WRITE_API_KEY "45BJ3YEW8W8SB09M" //Change to your channel's key

SendURLData() sends data using GPRSBee

```
void sendURLData(String url)
{
    Serial.println("Sending data to Server");
    char result[20] = "";
    gprsbee.doHTTPGET(APN, APN_USERNAME, APN_PASSWORD, url.c_str(), result, sizeof(result));
```

```
Serial.println("Received: " + String(result));
```

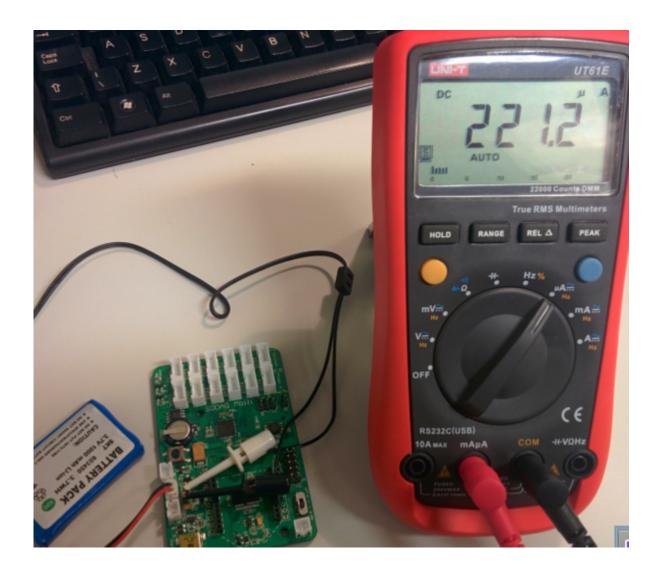
}

Low Power mode

Mbili boards uses 40mA during normal
 operation.

 A rechargeable Li-ion battery will have a typical capacity of 1000 mAh. If used to power Mbili board, it will last for about *25 hours* under normal operation (1000mAh/40mA)

Solutions


• Use a battery with a bigger capacity, or use a battery pack, made up of several batteries.

• Use a solar panel with a battery pack to be charged during daylight.

Put microcontroller into sleep mode cycling the operation.

The ATmega1284 micro-controller in our Mbili board supports several modes of sleep!!! But.....Is it enough?

Low power consumption

- 220uA
- 1000mAh/
 0.22mA
- More than 180 days

RTC interruption

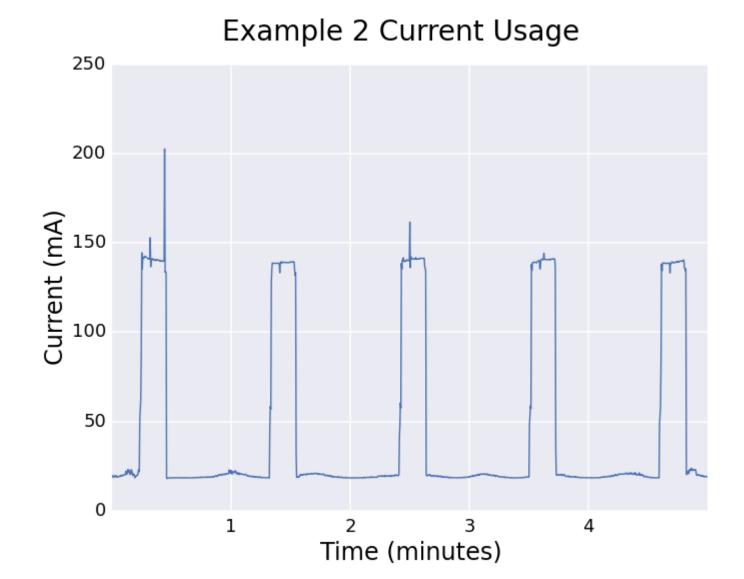
setup()

initialize lloranes configure external interrupt configure MCU sleep mode RTC.enableInterrupts() set the Time for next interrupt

loop()

sample sensor data get current date-time print date-time info initialize SD Card log data to SD Card RTC.clearINTStatus() RTC.enableInterrupts() attachInterrupt() power down penpherals issue Sleep instruction

MCU Sleeping


MCU Wakeup power up peripherals

DS3231 interrupt

disable interrupt set the Time for next interrupt

Sleep mode operation

Serial_TPH_LP.ino. To make Mbili go into sleep mode and wake it up using a RTC interruption we need 3 new libraries

#include <avr/sleep.h>
#include <avr/wdt.h>
#include <Sodaq_PcInt.h>

We define in which pin we will ercieve the interruption

//RTC Interrupt pin #define RTC_PIN A7

In the setup we configure sleeping mode

//Setup sleep mode
 setupSleep();

Use RTC interruption pin as input and attach interruption to this pin. Set sleep mode into SLEEP_MODE_PWR_DOWN

void setupSleep()

```
.
pinMode(RTC_PIN, INPUT_PULLUP);
PcInt::attachInterrupt(RTC_PIN, wakeISR);
```

//Setup the RTC in interrupt mode
rtc.begin();

```
//Set the sleep mode
set_sleep_mode(SLEEP_MODE_PWR_DOWN);
}
```

systemSleep()

Here we schedule the next wake up pulse Clear interruption and put Mbili into sleep mode disabling ADC. Wait for interruption to happen.

//Schedule the next wake up pulse timeStamp + SLEEP_PERIOD
DateTime wakeTime(getNow() + SLEEP_PERIOD);
rtc.enableInterrupts(wakeTime.hour(), wakeTime.minute(), wakeTime.second());

//The next timed interrupt will not be sent until this is cleared
rtc.clearINTStatus();

```
//Disable ADC
ADCSRA &= ~_BV(ADEN);
//Sleep time
noInterrupts();
sleep_enable();
interrupts();
sleep_cpu();
sleep_cpu();
sleep_disable();
//Enbale ADC
ADCSRA |= _BV(ADEN);
Serial.println("Waking-up");
//This method handles any sensor specific wake setup
```

 Upload the code and measure current when the device is in sleeping mode using a battery and Battery pin jumper using a multimeter.

Example 3 extended

Another way to save energy is switching off the Switched row grove to switch on and off sensors and radios. It has a Led associated the turns off when row is switched on

Note that Switched row is off in default mode

Example 3 extended

Open OnOff_test.ino.

To switch on and off switched arrow we use digital pin number 23 which has a led associated.

Check how Led3 blink

Real world example. Tea Factory

- Use GPRSbee to send TPH data to ThingSpeak in low power mode.
- Send moisture sensor (switch on and off)

Thanks

Marco Zennaro and Rodrigo Carbajales <u>mzennaro@ictp.it</u> <u>rcarbaja@ictp.it</u>

http://wireless.ictp.it