
1

Laboratories for Day 3
Laboratory Code

1. Sending data to Thingspeak online using
wifi

Wee_TPH_ThingSpeak.ino and
WeeESP8266 Library

2. Sending data to ThingSpeak private
using GPRS

TPH_Volt_GPRS_TS.ino

3. Sleep mode Serial_TPH_LP.ino and OnOff_test.ino

4. Real world exercise TPH_Volt_GPRS_TS_LP.ino

1. ThingSpeak

1.1. Intro to ThingSpeak

The Internet of Things (IoT) is a system of ‘connected things’. The things generally comprise
of an embedded operating system and an ability to communicate with the internet or with the
neighboring things. One of the key elements of a generic IoT system that bridges the various
‘things’ is an IoT service. An interesting implication from the ‘things’ comprising the IoT systems
is that the things by themselves cannot do anything. At a bare minimum, they should have
an ability to connect to other ‘things’. But the real power of IoT is harnessed when the things
connect to a ‘service’ either directly or via other ‘things’. In such systems, the service plays
the role of an invisible manager by providing capabilities ranging from simple data collection
and monitoring to complex data analytics. The below diagram illustrates where an IoT service
fits in an IoT ecosystem:

Laboratories for Day 3

2

One such IoT application platform that offers a wide variety of analysis, monitoring and
counter-action capabilities is ‘ThingSpeak’. Let us consider ThingSpeak in detail.

What is ThingSpeak

ThingSpeak is a platform providing various services exclusively targeted for building IoT
applications. It offers the capabilities of real-time data collection, visualizing the collected data
in the form of charts, ability to create plugins and apps for collaborating with web services,
social network and other APIs. We will consider each of these features in detail below.

The core element of ThingSpeak is a ‘ThingSpeak Channel’. A channel stores the data that
we send to ThingSpeak and comprises of the below elements:

• 8 fields for storing data of any type - These can be used to store the data from a sensor
or from an embedded device.

• 3 location fields - Can be used to store the latitude, longitude and the elevation. These are
very useful for tracking a moving device.

• 1 status field - A short message to describe the data stored in the channel. To use
ThingSpeak, we need to signup and create a channel. Once we have a channel, we can
send the data, allow ThingSpeak to process it and also retrieve the same. Let us start
exploring ThingSpeak by signing up and setting up a channel.

Laboratories for Day 3

3

1.2. ThingSpeak Setup

Here are the steps required in order to get this example working with the ThingSpeak1 website:

1. Create an account with ThingSpeak2 (Sign-up)3 .

2. Create a new channel.

3. Copy the WRITE API KEY for your new channel (see the API KEYS tab).

4. Configure your new channel (see the Channel Settings tab).

• You must to add four fields to your channel.

• You should name the channel and each of the fields.

• Make sure to save the new channel settings.

• Note: The channel and field names are used for labelling the data in the charts shown
on the private and public view tabs (see the image above). The names have no affect
on the API and can be changed at any time. Here are the settings of the channel used
to test this example:

1 https://thingspeak.com/
2 https://thingspeak.com/
3 https://thingspeak.com/users/sign_up

https://thingspeak.com/
https://thingspeak.com/
https://thingspeak.com/users/sign_up
https://thingspeak.com/
https://thingspeak.com/
https://thingspeak.com/users/sign_up

Laboratories for Day 3

4

Laboratories for Day 3

5

2. Wee WIFIBee Shield module

2.1. Overview

Wee is a WIFI module based on ESP8266 SoC. ESP8266 comes out of nowhere and has
been taking by storm the IoT world. There are many hacking projects about it on the internet
mainly because it is cheap, it costs around 5$.

So far, the most popular ESP8266 breakout version only has GPIO0 and GPIO2 routed to
the header. Compared to it, Wee WIFI module is designed with a standard Bee interface and
has more GPIOs available for developers. In a word, users can take full use of the utility of
ESP8266 SoC by using Wee WIFI module in your projects.

2.2. Features

• Standard Bee interface

• indicators: TX, RX, PWR

• FW/Work Switch

• More GPIOs help developer take full use of the utility of ESP8266 SoC

Laboratories for Day 3

6

Note Work/FW Switch. When burn firmware into ESP8266, you should ensure the switch is in
FW mode. For the normal usage of this module, you should ensure the switch is in work mode.

2.3. Example

Connect Wee and TPH as follow

Wee wifi device is configured using AT commands. So, through the code wee is configured
as follow:

Sending AT Wee answers OK if device is operative.

Sending AT+CWMODE=1 WiFi STA mode 1 for client, 2 AP, 3 it is both client and AP Wee
answers.

AT+CIPMUX=0 Set Single connection.

AT+CWJAP="SSID","Password" Join accespoint.

AT+CIFSR Wee answer IP address.

Laboratories for Day 3

7

Once Wee is connected to the access point we need to open a TCP connection with the
following AT commands:

AT+CIPSTART="TCP","IP_Server",port

Once TCP connection is open we send data using,

AT+CIPSEND=data.length and we receive a '>', after thet we send data to server

Finally, we colse TCP connection

AT+CIPCLOSE

2.4. Sketch Code

#include <Wire.h>

//SODAQ Mbili libraries

#include <Sodaq_BMP085.h>

#include <Sodaq_SHT2x.h>

#include <Sodaq_DS3231.h>

//Node number

#define DEVICE_NUM "1"

//Data header

#define DATA_HEADER "Number,TempSHT21, TempBMP, PressureBMP, HumiditySHT21, Voltage"

//TPH BMP sensor

Sodaq_BMP085 bmp;

//*-- IoT Information

#define SSID "WEEAPRPI2"

#define PASS "weeaprpi2"

#define IP "192.168.4.1"

//These constants are used for reading the battery voltage

#define ADC_AREF 3.3

#define BATVOLTPIN A6

#define BATVOLT_R1 4.7

#define BATVOLT_R2 10

void setup() {

 //start Serial

 Serial.begin(9600);

 //Start wifi Serial

 Serial1.begin(9600);

Laboratories for Day 3

8

 //Initialise sensors

 setupSensors();

 //test Wifi response if OK connect it

 Serial1.println("AT");

 delay(2000);

 if(Serial1.find("OK"))

 {

 Serial.println("Wee OK. Data ready to be sent!");

 connectWiFi();

 delay(1000);

 checkIP();

 }

 else

 {

 Serial.println("Wee not responding to AT command");

 }

}

void loop() {

 String Temp1=String(SHT2x.GetTemperature());

 String Temp2=String(bmp.readTemperature());

 String Press=String(bmp.readPressure() / 100);

 String Hum=String(SHT2x.GetHumidity());

 //Read the voltage

 int mv = getRealBatteryVoltage() * 1000.0;

 String Smv=String(mv);

 String data= DEVICE_NUM ",";

 data += String(Temp1) + ",";

 data += String(Temp2) + ",";

 data += String(Press) + ",";

 data += String(Hum) + ",";

 data += String(Smv);

 TCPconn();

 //Echo the data header to the serial connection

 Serial.println(DATA_HEADER);

 Serial.println(data);

 TCPsend(data);

}

void setupSensors()

Laboratories for Day 3

9

{

 //Initialise the wire protocol for the TPH sensors

 Wire.begin();

 //Initialise the TPH BMP sensor

 bmp.begin();

 //Initialise the DS3231 RTC

 rtc.begin();

}

//----- Connect to server using TCP connection

boolean TCPconn()

{

 //Connect to Server

 String cmd = "AT+CIPSTART=\"TCP\",\"";// Setup TCP connection

 cmd += IP;

 cmd += "\",333";

 Serial1.println(cmd);

 delay(2000);

 if(Serial1.find("Error"))

 {

 Serial.print("Connection to Server failed");

 return false;

 }else

 {

 Serial.println("Connected to server");

 return true;

 }

}

void TCPsend(String dat)

{

 /*Serial.print("AT+CIPSEND=");

 Serial.println(dat.length());*/

 Serial1.print("AT+CIPSEND=");

 Serial1.println(dat.length());

 //if > then post GET message

 if(Serial1.find(">"))

 {

 Serial.print(">");

 Serial.println(dat);

 //Serial1.print("1");

 Serial1.print(dat);

 //check response

 if(Serial1.find("SEND OK"))

 {

Laboratories for Day 3

10

 Serial.println("Post to Server OK");

 }

 else

 {

 Serial.println("Post to Server Error");

 }

 }

 //close connection

 Serial1.println("AT+CIPCLOSE");//close TCP connection

 if(Serial1.find("OK"))

 {

 Serial.println("Closed connection: OK");

 }

 else

 {

 Serial.println("Closed connection Error");

 }

 delay(10000); //

}

boolean connectWiFi()

{

 Serial1.println("AT+CWMODE=1");//WiFi STA mode - if '3' it is both client and AP

 delay(1000);

 Serial1.println("AT+CIPMUX=0");// Set Single connection

 delay(1000);

 //Connect to Router with AT+CWJAP="SSID","Password";

 // Check if connected with AT+CWJAP?

 String cmd="AT+CWJAP=\""; // Join accespoint

 cmd+=SSID;

 cmd+="\",\"";

 cmd+=PASS;

 cmd+="\"";

 Serial1.println(cmd);

 delay(1000);

 if(Serial1.find("ERROR"))

 {

 Serial.println("Connection to SSID ERROR");

 return false;

 }

 else

 {

 Serial.println("Connected to SSID");

 return true;

 }

}

Laboratories for Day 3

11

void checkIP()

{

 Serial1.println("AT+CIFSR"); //ip address

 if (Serial1.available())

 {

 String ip = Serial1.readString();

 Serial.print("IP:");

 Serial.println(ip);

 }

}

float getRealBatteryVoltage()

{

 uint16_t batteryVoltage = analogRead(BATVOLTPIN);

 return (ADC_AREF / 1023.0) * (BATVOLT_R1 + BATVOLT_R2) / BATVOLT_R2 *

 batteryVoltage;

}

3. How To Install a ThingSpeak Server in a private way.

thingspeak.com4 is a platform for The Internet of Things. If the free service is not suitable for
your application (for example, your devices update more than once every 15 seconds), you
might opt to install your own server.

The ThingSpeak source code is open-source and hosted on GitHub5 , but you may not find the
installation as easy as “git clone”. The platform is built using Ruby on Rails6 , and getting up to
speed with Ruby, Gems, Rails, and the permutations and combinations of dependencies and
package mangers may be more than you are willing to tackle just so you can do something
silly like send a Tweet when the temperature in your living room gets too hot.

From https://github.com/iobridge/thingspeak reviewed steps to follow to install ThingSpeak
server on a single board computer, Rpi, BBB or Alix

3.1. Reviewed steps to follow (remember not to put MYSQL
password for ROOT)

sudo apt-get upgrade

sudo apt-get -y install build-essential mysql-server mysql-client libmysqlclient-dev

 libxml2-dev libxslt-dev git-core curl rubygems

4 http://thingspeak.com/
5 http://github.com/iobridge/ThingSpeak
6 http://rubyonrails.org/

http://thingspeak.com/
http://github.com/iobridge/ThingSpeak
http://rubyonrails.org/
https://github.com/iobridge/thingspeak
http://thingspeak.com/
http://github.com/iobridge/ThingSpeak
http://rubyonrails.org/

Laboratories for Day 3

12

gpg --keyserver hkp://keys.gnupg.net --recv-keys

 409B6B1796C275462A1703113804BB82D39DC0E3

\curl -sSL https://get.rvm.io | bash -s stable

source /etc/profile.d/rvm.sh

rvm install 2.1

3.2. It takes time!

git clone https://github.com/iobridge/thingspeak.git

cd thingspeak

bundle install

3.3. It takes time again!

cp config/database.yml.example config/database.yml

rake db:create

rake db:schema:load

rails server webrick

If that’s still too much for you, you can copy-and-paste this three-line version:

wget http://goo.gl/wS4hBf -O thingspeak-install.sh

chmod +x thingspeak-install.sh

./thingspeak-install.sh

During the installation you’ll be asked to set a new root password for MySQL (if not already
installed) and again when the ThingSpeak databases and tables are created.

DO NOT PUT A PASSWORD!!

When the installation is complete you can access your ThingSpeak server at http://
XX.XX.XX.XX:3000. To shut it down, press Ctrl-C. To launch it again in the future, simply run
“rails server”.

3.4. Thingspeak server start automatically on boot

Create /home/user/runthingspeak.sh (replace user by your user name)

cat runthingspeak.sh

#!/bin/bash

cd /home/user/thingspeak && pwd && rails server webrick

http://XX.XX.XX.XX:3000
http://XX.XX.XX.XX:3000

Laboratories for Day 3

13

Compile

chmod +x /home/linaro/runthingspeak.sh

And in /etc/rc.local,

su - user -c /home/user/runthingspeak.sh &

exit 0

or

sudo -u user sh /home/user/runthingspeak.sh &

3.5. Send TPH data to ThinkSpeak using GPRSbee

3.6. Additional Required Components

• GPRSbee Module

• MicroSim

3.7. Additional Required Libraries

• GPRSbee

Library Installation

The GPRSbee library is included with the SODAQ Mbili files that you have already installed.

If necessary, refer to Section 27 of the Getting Started8 guide for details on where to download
from and how to install the SODAQ Mbili files.

3.8. Hardware Setup

You should refer to the board diagram9 , the Grove sockets page10 , and thehttp://
mbili.sodaq.net/gprsbee-connection/[GPRSbee Connection] for additional information..

7 http://mbili.sodaq.net/?page_id=23#step2
8 http://mbili.sodaq.net/?page_id=23
9 http://mbili.sodaq.net/?page_id=13

http://mbili.sodaq.net/?page_id=23#step2
http://mbili.sodaq.net/?page_id=23
http://mbili.sodaq.net/?page_id=13
http://mbili.sodaq.net/?page_id=81
http://mbili.sodaq.net/?page_id=23#step2
http://mbili.sodaq.net/?page_id=23
http://mbili.sodaq.net/?page_id=13

Laboratories for Day 3

14

1. First, plug the TPH Sensor into the Grove I2C socket.

2. Then, install the GPRSbee Module into the Bee socket.

3. Next, using the wiring diagram for the Switched Power Method11 , plug the 1A LiPo battery
and GPRSbee power connectors into their sockets.

4. Finally, plug the 0.5W solar panel into its socket.

Turn on the SODAQ Mbili board, compile and upload the following sketch from the Arduino
IDE onto the SODAQ Mbili board. Leave the USB cable plugged in and open the Serial Monitor
(Ctrl-Shift-M) and ensure that it is set to the 9600 baud rate.

After you open the Serial Monitor (Ctrl-Shift-M), you should see output similar to this:

10 http://mbili.sodaq.net/?page_id=81
11 http://mbili.sodaq.net/gprsbee-connection/#switched

http://mbili.sodaq.net/gprsbee-connection/#switched
http://mbili.sodaq.net/?page_id=81
http://mbili.sodaq.net/gprsbee-connection/#switched

Laboratories for Day 3

15

3.9. Additional Sketch Code

Libarary Includes

In addition to the existing libraries, we must now also include the GPRSbee library in the sketch
using the #include12 compiler directive.

#include <GPRSbee.h>

Globals

The ThingSpeak13 API limits data submission to a maximum of once every 15 seconds.
Additionally, it takes some time to establish the GPRS connection before any data can be
sent. For this reason, we adjust the READ_DELAY constant so that the readings are taken
once per minute (the units are milliseconds).

We then define a series of constants which are used for setting up the GPRS connection
and for sending the data to ThingSpeak14 . The constants APN, APN_USERNAME, and
APN_PASSWORD need to be set to the correct values for your particular network.
Additionally, WRITE_API_KEYneeds to be set to the Write API Key value shown on the API

12 http://arduino.cc/en/Reference/Include
13 https://thingspeak.com/
14 https://thingspeak.com/

http://arduino.cc/en/Reference/Include
https://thingspeak.com/
https://thingspeak.com/
http://arduino.cc/en/Reference/Include
https://thingspeak.com/
https://thingspeak.com/

Laboratories for Day 3

16

KEYS tab of your ThingSpeak15 channel’s page. The other constants are used for formatting
the data sent with the URL.

Note: The constants LABELX define the data labels for each of the fields. For the
ThingSpeak16 API you must use the labels fieldN. However, if you are modifying this example
to work with another site you can change the labels here to suit your needs.

Additional note: You can also submit the data to "184.106.153.149/update”, this can be
useful if your network is unable to resolve the specified URL. You should try this if you
are receiving 603 DNS Error responses (+HTTPACTION:0,603,0). You can see what the
responses you are getting by enabling debugging (see the setupComms() section) and looking
at the output in the Serial Monitor.

//The delay between the sensor readings

#define READ_DELAY 60000

//Network constants

#define APN "internet"

#define APN_USERNAME ""

#define APN_PASSWORD ""

//SpeakThings constants

#define URL "api.thingspeak.com/update"

#define WRITE_API_KEY "XXXXXXXXXXXXXXXX" //Change to your channel's key

//Seperators

#define FIRST_SEP "?"

#define OTHER_SEP "&"

#define LABEL_DATA_SEP "="

//Data labels, cannot change for ThingSpeak

#define LABEL1 "field1"

#define LABEL2 "field2"

#define LABEL3 "field3"

#define LABEL4 "field4"

setup()

In addition to the existing setup code, we make a call to the user defined method
setupComms() which handles the initialisation of the GPRSbee Module.

15 https://thingspeak.com/
16 https://thingspeak.com/

https://thingspeak.com/
https://thingspeak.com/
https://thingspeak.com/
https://thingspeak.com/

Laboratories for Day 3

17

//Setup GPRSbee

setupComms();

takeReading()

In addition to the existing code for taking the sensor readings, we also make a call to the user
defined method createDataURL(). This method returns a String17 containing the target URL
as well as the sensor data in a format that can be sent directly with a HTTP request. We then
send the URLhttp://arduino.cc/en/Reference/string[String] over the GPRS connection with a
call to the user defined method sendURLData().

//Get the data record as a URL

String url = createDataURL();

//Send it over the GPRS connection

sendURLData(url);

setupComms()

Here we initialise the GPRSbee Module. The Bee socket on the SODAQ Mbili is connected to
the second serial port which is accessed through the Serial1 object. We start with initialising
Serial1 with a call to Serial.begin()18 . We then initialise the GPRSbee Module using the
methodgprsbee.init(). The three parameters passed to this method include: the Serial object
that the GPRSbee Module is connected to, the CTS pin (BEECTS), and the power pin
(BEEDTR).

We must also make a call to gprsbee.setPowerSwitchedOnOff(), passing the argument true.
This instructs the GPRSbee library to use the Switched Power Method19 . (The method that
we wired the GPRSbee and battery for in the Hardware Setup section.)

Note: If you need to debug the GPRSbee Module, you can uncomment the line which calls
the method gprsbee.setDiag(). This method connects the output from Serial1 to Serial so that
any data sent over the Serial1 connection is also sent over Serial and is displayed in the Serial
Monitor.

void setupComms()

{

17 http://arduino.cc/en/Reference/string
18 http://arduino.cc/en/Serial/Begin
19 http://mbili.sodaq.net/gprsbee-connection/#switched

http://arduino.cc/en/Reference/string
http://arduino.cc/en/Serial/Begin
http://mbili.sodaq.net/gprsbee-connection/#switched
http://arduino.cc/en/Reference/string
http://arduino.cc/en/Serial/Begin
http://mbili.sodaq.net/gprsbee-connection/#switched

Laboratories for Day 3

18

 //Start Serial1 the Bee port

 Serial1.begin(9600);

 //Intialise the GPRSbee

 gprsbee.init(Serial1, BEECTS, BEEDTR);

 //uncomment this line to debug the GPRSbee with the serial monitor

 //gprsbee.setDiag(Serial);

 //This is required for the Switched Power method

 gprsbee.setPowerSwitchedOnOff(true);

}

3.10. createDataURL()

This method is similar in purpose to the existing user defined method createDataRecord(),
which creates and returns a String20 containing the sensor readings in CSV format. However,
instead of the CSV format, this method constructs a String21 which contains the target URL,
the WRITE API KEY and the data from the sensor readings; all formatted for submission via
a HTTP command to the ThingSpeak22 website.

String createDataURL()

{

 //Construct data URL

 String url = URL;

 //Add key followed by each field

 url += String(FIRST_SEP) + String("key");

 url += String(LABEL_DATA_SEP) + String(WRITE_API_KEY);

 url += String(OTHER_SEP) + String(LABEL1);

 url += String(LABEL_DATA_SEP) + String(SHT2x.GetTemperature());

 url += String(OTHER_SEP) + String(LABEL2);

 url += String(LABEL_DATA_SEP) + String(bmp.readTemperature());

 url += String(OTHER_SEP) + String(LABEL3);

 url += String(LABEL_DATA_SEP) + String(bmp.readPressure() / 100);

 url += String(OTHER_SEP) + String(LABEL4);

 url += String(LABEL_DATA_SEP) + String(SHT2x.GetHumidity());

20 http://arduino.cc/en/Reference/string
21 http://arduino.cc/en/Reference/string
22 https://thingspeak.com/

http://arduino.cc/en/Reference/string
http://arduino.cc/en/Reference/string
https://thingspeak.com/
http://arduino.cc/en/Reference/string
http://arduino.cc/en/Reference/string
https://thingspeak.com/

Laboratories for Day 3

19

 return url;

}

sendURLData()

Here we send the constructed URL String23 using a HTTP GET command. The reply from
the ThingSpeak24 website is normally the entry number of that submission. If the result is 0
the data was not successfully submitted. You may notice that sometimes nothing is received.
This does not necessarily mean that the data was not successfully submitted, it just means
that no answer was received before a timeout occurred.

void sendURLData(String url)

{

 char result[20] = "";

 gprsbee.doHTTPGET(APN, APN_USERNAME, APN_PASSWORD, url.c_str(), result,

 sizeof(result));

 Serial.println("Received: " + String(result));

}

3.11. Final Sketch Code

#include <Wire.h>

#include <SPI.h>

#include <SD.h>

//SODAQ Mbili libraries

#include <RTCTimer.h>

#include <Sodaq_BMP085.h>

#include <Sodaq_SHT2x.h>

#include <Sodaq_DS3231.h>

#include <GPRSbee.h>

//The delay between the sensor readings

#define READ_DELAY 60000

//Digital pin 11 is the MicroSD slave select pin on the Mbili

#define SD_SS_PIN 11

//The data log file

23 http://arduino.cc/en/Reference/string
24 https://thingspeak.com/

http://arduino.cc/en/Reference/string
https://thingspeak.com/
http://arduino.cc/en/Reference/string
https://thingspeak.com/

Laboratories for Day 3

20

#define FILE_NAME "DataLog.txt"

//Data header

#define DATA_HEADER "TimeDate, TempSHT21, TempBMP, PressureBMP, HumiditySHT21"

//Network constants

#define APN "internet"

#define APN_USERNAME ""

#define APN_PASSWORD ""

//SpeakThings constants

#define URL "api.thingspeak.com/update"

#define WRITE_API_KEY "XXXXXXXXXXXXXXXX" //Change to your channel's key

//Seperators

#define FIRST_SEP "?"

#define OTHER_SEP "&"

#define LABEL_DATA_SEP "="

//Data labels, cannot change for ThingSpeak

#define LABEL1 "field1"

#define LABEL2 "field2"

#define LABEL3 "field3"

#define LABEL4 "field4"

//TPH BMP sensor

Sodaq_BMP085 bmp;

//RTC Timer

RTCTimer timer;

void setup()

{

 //Initialise the serial connection

 Serial.begin(9600);

 //Initialise sensors

 setupSensors();

 //Initialise log file

 setupLogFile();

 //Setup timer events

 setupTimer();

 //Setup GPRSbee

 setupComms();

Laboratories for Day 3

21

 //Echo the data header to the serial connection

 Serial.println(DATA_HEADER);

 //Take first reading immediately

 takeReading(getNow());

}

void loop()

{

 //Update the timer

 timer.update();

}

void takeReading(uint32_t ts)

{

 //Create the data record

 String dataRec = createDataRecord();

 //Save the data record to the log file

 logData(dataRec);

 //Echo the data to the serial connection

 Serial.println(dataRec);

 //Get the data record as a URL

 String url = createDataURL();

 //Send it over the GPRS connection

 sendURLData(url);

}

void setupSensors()

{

 //Initialise the wire protocol for the TPH sensors

 Wire.begin();

 //Initialise the TPH BMP sensor

 bmp.begin();

 //Initialise the DS3231 RTC

 rtc.begin();

}

void setupLogFile()

{

 //Initialise the SD card

Laboratories for Day 3

22

 if (!SD.begin(SD_SS_PIN))

 {

 Serial.println("Error: SD card failed to initialise or is missing.");

 //Hang

 while (true);

 }

 //Check if the file already exists

 bool oldFile = SD.exists(FILE_NAME);

 //Open the file in write mode

 File logFile = SD.open(FILE_NAME, FILE_WRITE);

 //Add header information if the file did not already exist

 if (!oldFile)

 {

 logFile.println(DATA_HEADER);

 }

 //Close the file to save it

 logFile.close();

}

void setupTimer()

{

 //Instruct the RTCTimer how to get the current time reading

 timer.setNowCallback(getNow);

 //Schedule the reading every second

 timer.every(READ_DELAY, takeReading);

}

void setupComms()

{

 //Start Serial1 the Bee port

 Serial1.begin(9600);

 //Intialise the GPRSbee

 gprsbee.init(Serial1, BEECTS, BEEDTR);

 //uncomment this line to debug the GPRSbee with the serial monitor

 //gprsbee.setDiag(Serial);

 //This is required for the Switched Power method

 gprsbee.setPowerSwitchedOnOff(true);

}

Laboratories for Day 3

23

void logData(String rec)

{

 //Re-open the file

 File logFile = SD.open(FILE_NAME, FILE_WRITE);

 //Write the CSV data

 logFile.println(rec);

 //Close the file to save it

 logFile.close();

}

String createDataRecord()

{

 //Create a String type data record in csv format

 //TimeDate, TempSHT21, TempBMP, PressureBMP, HumiditySHT21

 String data = getDateTime() + ", ";

 data += String(SHT2x.GetTemperature()) + ", ";

 data += String(bmp.readTemperature()) + ", ";

 data += String(bmp.readPressure() / 100) + ", ";

 data += String(SHT2x.GetHumidity());

 return data;

}

String createDataURL()

{

 //Construct data URL

 String url = URL;

 //Add key followed by each field

 url += String(FIRST_SEP) + String("key");

 url += String(LABEL_DATA_SEP) + String(WRITE_API_KEY);

 url += String(OTHER_SEP) + String(LABEL1);

 url += String(LABEL_DATA_SEP) + String(SHT2x.GetTemperature());

 url += String(OTHER_SEP) + String(LABEL2);

 url += String(LABEL_DATA_SEP) + String(bmp.readTemperature());

 url += String(OTHER_SEP) + String(LABEL3);

 url += String(LABEL_DATA_SEP) + String(bmp.readPressure() / 100);

 url += String(OTHER_SEP) + String(LABEL4);

 url += String(LABEL_DATA_SEP) + String(SHT2x.GetHumidity());

 return url;

Laboratories for Day 3

24

}

void sendURLData(String url)

{

 char result[20] = "";

 gprsbee.doHTTPGET(APN, APN_USERNAME, APN_PASSWORD, url.c_str(), result,

 sizeof(result));

 Serial.println("Received: " + String(result));

}

String getDateTime()

{

 String dateTimeStr;

 //Create a DateTime object from the current time

 DateTime dt(rtc.makeDateTime(rtc.now().getEpoch()));

 //Convert it to a String

 dt.addToString(dateTimeStr);

 return dateTimeStr;

}

uint32_t getNow()

{

 return millis();

}

4. Low Power Mode - Sleep mode and RTC Interruption.

Mbili boards uses 40mA during normal operation. A rechargable Li-ion battery will have a
typical capacity of 1000 mAh. If used to power Mbili board, it will last for about 25 hours
(100mAh/40mA) under normal operation

For a longer battery operation, another options must be taking into account:

• Use a battery with a bigger capacity, or use a battery pack, made up of several batteries.

• Use a solar panel with a battery pack to be charged during daylight.

• Put microcontroller into sleep mode cycling the operation.

In our case, Mbili will be sensing every period of time, ex. every 10 minutes. So an smart
solution would be to put the microcontroller into sleep mode for the rest of the time while it
is doing nothing.

Laboratories for Day 3

25

As Mbili has an RTC onboard we use a RTC interruption to wake it up.

Also note that the power consumption will be influenced by any external circuit that
is connected to Mbili board. So a good practice would be also to switch sensors and
communication devices off during sleeping periods

4.1. Sleep mode

The ATmega1284 micro-controller in our Mbili board supports several modes of sleep:

• SLEEP_MODE_IDLE - the least power savings

• SLEEP_MODE_ADC

• SLEEP_MODE_PWR_SAVE

• SLEEP_MODE_STANDBY

• SLEEP_MODE_PWR_DOWN - the most power savings

The more power saving the sleep mode provides, the less functionality is active.

E.g. in Power-Down sleep mode, only the external interrupt and watch dog timer (WDT) are
active, in Idle sleep mode the UART, timers, ADC, etc are all active, just the CPU and Flash
clocks are disabled. See Section 10 of the ATmega1284 datasheet25 for more information.

Table 10-1 shows the different sleep modes, their wake up sources and Brown-out Detector
(BOD) disable ability

When enabled, the BOD actively monitors the power supply voltage during the sleep periods.
To further save power, it is possible to disable the BOD in some sleep modes.

4.2. Header files and general information

To use the watchdog timer, a sketch needs to include three header files:

#include <avr/sleep.h>

#include <avr/power.h>

25 https://www.google.com/url?
sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&sqi=2&ved=0CB0QFjAA&url=http%3A%2F
%2Fwww.atmel.com%2Fimages
%2Fdoc8059.pdf&ei=14JQVZSwHoHjUvWagJAC&usg=AFQjCNGhbgfnfU0c3f6zyQxo6C2PWY797Q&sig2=B-
kpP6RFzxbUievQ8xCAOA&bvm=bv.92885102,d.bGQ

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&sqi=2&ved=0CB0QFjAA&url=http%3A%2F%2Fwww.atmel.com%2Fimages%2Fdoc8059.pdf&ei=14JQVZSwHoHjUvWagJAC&usg=AFQjCNGhbgfnfU0c3f6zyQxo6C2PWY797Q&sig2=B-kpP6RFzxbUievQ8xCAOA&bvm=bv.92885102,d.bGQ
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&sqi=2&ved=0CB0QFjAA&url=http%3A%2F%2Fwww.atmel.com%2Fimages%2Fdoc8059.pdf&ei=14JQVZSwHoHjUvWagJAC&usg=AFQjCNGhbgfnfU0c3f6zyQxo6C2PWY797Q&sig2=B-kpP6RFzxbUievQ8xCAOA&bvm=bv.92885102,d.bGQ
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&sqi=2&ved=0CB0QFjAA&url=http%3A%2F%2Fwww.atmel.com%2Fimages%2Fdoc8059.pdf&ei=14JQVZSwHoHjUvWagJAC&usg=AFQjCNGhbgfnfU0c3f6zyQxo6C2PWY797Q&sig2=B-kpP6RFzxbUievQ8xCAOA&bvm=bv.92885102,d.bGQ
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&sqi=2&ved=0CB0QFjAA&url=http%3A%2F%2Fwww.atmel.com%2Fimages%2Fdoc8059.pdf&ei=14JQVZSwHoHjUvWagJAC&usg=AFQjCNGhbgfnfU0c3f6zyQxo6C2PWY797Q&sig2=B-kpP6RFzxbUievQ8xCAOA&bvm=bv.92885102,d.bGQ
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&sqi=2&ved=0CB0QFjAA&url=http%3A%2F%2Fwww.atmel.com%2Fimages%2Fdoc8059.pdf&ei=14JQVZSwHoHjUvWagJAC&usg=AFQjCNGhbgfnfU0c3f6zyQxo6C2PWY797Q&sig2=B-kpP6RFzxbUievQ8xCAOA&bvm=bv.92885102,d.bGQ
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&sqi=2&ved=0CB0QFjAA&url=http%3A%2F%2Fwww.atmel.com%2Fimages%2Fdoc8059.pdf&ei=14JQVZSwHoHjUvWagJAC&usg=AFQjCNGhbgfnfU0c3f6zyQxo6C2PWY797Q&sig2=B-kpP6RFzxbUievQ8xCAOA&bvm=bv.92885102,d.bGQ

Laboratories for Day 3

26

These provide definitions for various functions and variables needed to control the watchdog
timer and manage some of the other power functions.

There are several Arduino library functions used to control sleep mode. They are:

• set_sleep_mode(mode) - Configures the Atmega168 for the specified sleep mode (see
above for supported sleep modes);

• sleep_enable() - Enables the sleep mode to be entered;

• sleep_mode() - Enters the sleep mode. Before this is called, the appropriate mechanism
for waking the microcontroller must have been set up;

• sleep_disable() - Disables the sleep mode;

4.3. Test minimum current consumption

4.4. Sketch Code

#include <avr/power.h>

#include <avr/sleep.h>

void setup() {

 enterSleep();

}

void loop() {

}

void enterSleep(void)

{

 set_sleep_mode(SLEEP_MODE_PWR_DOWN);

 sleep_enable();

 ADCSRA &= ~(1<<ADEN); //Disable ADC

 ACSR = (1<<ACD); //Disable the analog comparator

 DIDR0 = 0x3F; //Disable digital input buffers on all ADC0-ADC5

 pins

 DIDR1 = (1<<AIN1D)|(1<<AIN0D); //Disable digital input buffer on AIN1/0

 power_twi_disable();

 power_spi_disable();

 power_usart0_disable();

 power_timer0_disable(); //Needed for delay_ms

 power_timer1_disable();

 sleep_mode();

Laboratories for Day 3

27

 /** The program will continue from here. **/

 /* First thing to do is disable sleep. */

 sleep_disable();

}

Using this code, connecting the battery and taking Battery power draw measurement jumper
out (jumper R). It is possible to measure consumption.

Testing with a multimeter on the jumper

Consumption when microcontroller is in sleeping mode is 220uA.

So the maximum operation period is more than 6 months of operation. This is just a to
know which is the minimum consumption, remember power consumption will be influenced by
microcontroller operation and any external circuit that is connected to Mbili board.

4.5. RTC interruption

It is not very usefull to have the board alll the time in sleeping mode. We want to wake it up
in a period of time measure, switch on sensors, log data and send it using a communication
board (Xbee, Wifi, GPRS, satellite, etc.). Once operation is done. switch everythig off and put
microcontroller in sleep mode again and wait untill next measurement period.

Waking the microcontroller up is possible using RTC interruptions as follow

Laboratories for Day 3

28

To enable RTC interruption Mbili jumper 8 must be solder. It allows the RTC to be used as
an interrupt device.

So an example of operation is shown in the following plot. Peaks can be seen every time
microcontroller wakes up.

4.6. TPH measurement in low power mode

#include <Wire.h>

#include <avr/sleep.h>

#include <avr/wdt.h>

//SODAQ Mbili libraries

#include <RTCTimer.h>

#include <Sodaq_BMP085.h>

#include <Sodaq_SHT2x.h>

#include <Sodaq_DS3231.h>

#include <GPRSbee.h>

#include <Sodaq_PcInt.h>

//The sleep length in seconds (MAX 86399)

#define SLEEP_PERIOD 10

//RTC Interrupt pin and period

#define RTC_PIN A7

//Data header

#define DATA_HEADER "TimeDate, TempSHT21, TempBMP, PressureBMP, HumiditySHT21"

Laboratories for Day 3

29

//TPH BMP sensor

Sodaq_BMP085 bmp;

void setup()

{

 //Initialise the serial connection

 Serial.begin(9600);

 Serial.println("Power up...");

 //Initialise sensors

 setupSensors();

 //Setup sleep mode

 setupSleep();

 //Echo the data header to the serial connection

 Serial.println(DATA_HEADER);

}

void loop()

{

 //take readings

 takeReading();

 //Sleep

 systemSleep();

}

void setupSleep()

{

 pinMode(RTC_PIN, INPUT_PULLUP);

 PcInt::attachInterrupt(RTC_PIN, wakeISR);

 //Setup the RTC in interrupt mode

 rtc.begin();

 //Set the sleep mode

 set_sleep_mode(SLEEP_MODE_PWR_DOWN);

}

void wakeISR()

{

 //Leave this blank

}

void systemSleep()

Laboratories for Day 3

30

{

 Serial.print("Sleeping mode for ");

 Serial.print(SLEEP_PERIOD/60.0);

 Serial.println(" minutes");

 //Wait until the serial ports have finished transmitting

 Serial.flush();

 Serial1.flush();

 //Schedule the next wake up pulse timeStamp + SLEEP_PERIOD

 DateTime wakeTime(getNow() + SLEEP_PERIOD);

 rtc.enableInterrupts(wakeTime.hour(), wakeTime.minute(), wakeTime.second());

 //The next timed interrupt will not be sent until this is cleared

 rtc.clearINTStatus();

 //Disable ADC

 ADCSRA &= ~_BV(ADEN);

 //Sleep time

 noInterrupts();

 sleep_enable();

 interrupts();

 sleep_cpu();

 sleep_disable();

 //Enbale ADC

 ADCSRA |= _BV(ADEN);

 Serial.println("Waking-up");

 //This method handles any sensor specific wake setup

}

//void takeReading(uint32_t ts)

void takeReading()

{

 //Create the data record

 String dataRec = createDataRecord();

 //Echo the data to the serial connection

 Serial.println(dataRec);

}

void setupSensors()

{

 //Initialise the wire protocol for the TPH sensors

 Wire.begin();

Laboratories for Day 3

31

 //Initialise the TPH BMP sensor

 bmp.begin();

 //Initialise the DS3231 RTC

 rtc.begin();

}

String createDataRecord()

{

 //Create a String type data record in csv format

 //TimeDate, TempSHT21, TempBMP, PressureBMP, HumiditySHT21

 String data = getDateTime() + ", ";

 data += String(SHT2x.GetTemperature()) + ", ";

 data += String(bmp.readTemperature()) + ", ";

 data += String(bmp.readPressure() / 100) + ", ";

 data += String(SHT2x.GetHumidity());

 return data;

}

String getDateTime()

{

 String dateTimeStr;

 //Create a DateTime object from the current time

 DateTime dt(rtc.makeDateTime(rtc.now().getEpoch()));

 //Convert it to a String

 dt.addToString(dateTimeStr);

 return dateTimeStr;

}

uint32_t getNow()

{

 return rtc.now().getEpoch();

}

32

	Laboratories for Day 3
	1. ThingSpeak
	1.1. Intro to ThingSpeak
	What is ThingSpeak

	1.2. ThingSpeak Setup

	2. Wee WIFIBee Shield module
	2.1. Overview
	2.2. Features
	2.3. Example
	2.4. Sketch Code

	3. How To Install a ThingSpeak Server in a private way.
	3.1. Reviewed steps to follow (remember not to put MYSQL password for ROOT)
	3.2. It takes time!
	3.3. It takes time again!
	3.4. Thingspeak server start automatically on boot
	3.5. Send TPH data to ThinkSpeak using GPRSbee
	3.6. Additional Required Components
	3.7. Additional Required Libraries
	Library Installation

	3.8. Hardware Setup
	3.9. Additional Sketch Code
	Libarary Includes
	Globals
	setup()
	takeReading()
	setupComms()

	3.10. createDataURL()
	sendURLData()

	3.11. Final Sketch Code

	4. Low Power Mode - Sleep mode and RTC Interruption.
	4.1. Sleep mode
	4.2. Header files and general information
	4.3. Test minimum current consumption
	4.4. Sketch Code
	4.5. RTC interruption
	4.6. TPH measurement in low power mode

