
1

Laboratories of Day 2
Table 1. Day two

Laboratory Code

1: Sending an SMS message with
GPRSbee

Send_SMS.ino

2: Sending an SMS with Date, Time, RTC
Temperature and Battery Voltage

Send_SMS_DateTemp.ino

3: Syncing the RTC RTC_update.ino

4: Configuring Zigbee radios No code for this lab

5: Sending data between two devices using
Zigbee

RTC_date_Volt_Temp_Zigbee.ino

6: Connecting an Analog Sensor SensorAD0.ino, Pote_angle.ino

7: Connecting a Digital Sensor Switch_relay.ino, Digital_TPH.ino

8: Using a Button to Activate a Buzzer Lab2.9.ino

9: Turning ON a Light When It Gets Dark Lab2.10.ino

10: Using an Ultrasonic Ranger to Measure
Distance

Lab2.11.ino

11: Using Temperature, Humidity &
Moisture Sensor

Hum_temp_moist.ino

1. Sending an SMS message with GPRSbee

The GPRSbee is a GPRS/GSM expansion board, designed by Gregory Knauff

It is an alternative for the Arduino GPRS Shield and has the Xbee form factor so it can be
used in any system that has a bee socket like the Seeeduino Stalker, the Arduino Fio and the
SODAQ. The GPRSbee uses SIM cards of the MicroSIM form factor.

The core of this board is the well known SIM900 module. This module, like most other GPRS/
GSM modules, has an operating voltage of 3.5 - 4.5 volt and can draw up to 2A power during
broadcasts bursts. This makes the 3.3V power that the bee socket can provide unsuitable.
This has been solved by powering the GPRSbee directly from a 3.7 volt LiPo battery.

Laboratories of Day 2

2

To accomodate this the GPRSbee has two JST sockets, one to connect the battery and a
second one to provide the power to the main board. When the main board has a LiPo charge
circuit (like the Stalker and the Fio have), this allows for charging the LiPo battery too.

1.1. GPRSbee Connection

As the module draws a significant amount of power, we want to switch it off when unused.
There are two methods for controlling the on/off state of the GPRSbee. The “old” method is to
toggle DTR which toggles the on-off state of the SIM900. The “new” method is to switch the
power supply of GPRSbee. This new method is only supported by SODAQ Mbili. The SODAQ
Mbili board has a connector (JP2) which is switched on or off by setting GPRSbeePower (D23)
to HIGH or LOW.

The On-Off Toggle Method

The power (battery) connections are as follows:

• Connect the battery to one of the GPRSbee power connectors.

• Connect the other GPRSbee power connector to the LiPo connector on the SODAQ board.

The default setting for the GPRSbee library is to use this mode.

The Switched Power Method

This method is only supported by the SODAQ Mbili.

The power (battery) connections are as follows:

• Connect the battery to the LiPo connector on the SODAQ Mbili board.

• Connect the SODAQ Mbili JP2 connector to one of the power connectors on the GPRSbee.

Laboratories of Day 2

3

To enable this mode you must add the following to your setup or initialisation code:

gprsbee.setPowerSwitchedOnOff(true);

Note: Calling the above method and passing the parameter false, will switch the mode back
to the On-Off Toggle method.

1.2. What is GSM

GSM is an international standard for mobile telephones. It is an acronym that stands for Global
System for Mobile Communications. It is also sometimes referred to as 2G, as it is a second-
generation cellular network.

To use GPRS for internet access, and for the Arduino to request or serve webpages, you need
to obtain the Access Point Name (APN) and a username/password from the network operator.
See the information in Connecting to the Internet for more information about using the data
capabilities of the shield.

Among other things, GSM supports outgoing and incoming voice calls, Simple Message
System (SMS or text messaging), and data communication (via GPRS).

The GPRSbee module is a a GSM modem. From the mobile operator perspective, it looks just
like a mobile phone. From the Arduino perspective, it looks just like a modem.

What is GPRS

GPRS is a packet switching technology that stands for General Packet Radio Service. It can
provide idealized data rates between 56-114 kbit per second. With the GPRSbee module, it
is possible to leverage the data communication to access the Internet. Similar to the Ethernet
and WiFi libraries, the GSM library allows the Arduino to act as a client or server, using http
calls to send and receive web pages.

Laboratories of Day 2

4

Network operator requirements

To access a network, you must have a subscription with a mobile phone operator (either
prepaid or contract), a GSM compliant device like the GPRSbee, and a Subscriber Identity
Module (SIM) card. The network operator provides the SIM card, which contains information
like the mobile number, and can store limited amounts of contacts and SMS messages.

It’s common for SIM cards to have a four-digit PIN number associated with them for security
purposes. Keep note of this number, as it’s necessary for connecting to a network. If you lose
the PIN associated with your SIM card, you may need to contact your network operator to
retrieve it. Some SIM cards become locked if an incorrect PIN is entered too many times. If
you’re unsure of what the PIN is, look at the documentation that came with your SIM. Using a
PUK (PIN Unlock Code), it is possible to reset a lost PIN with the GSM shield and an Arduino.
The PUK number will come with your SIM card documentation.

There are a few different sizes of SIM cards; the GPRSbee accepts cards in the micro-SIM
format.

To use GPRS for internet access, and for the Arduino to request or serve webpages, you need
to obtain the Access Point Name (APN) and a username/password from the network operator.

Laboratories of Day 2

5

1.3. Sending an SMS

In this example we will connect the GPRSBee board to the SODAQ Mbili and send an SMS
text with the message "Hello World".

The GPRSBee board uses the GPRSbee library to send SMS text messages and to connect
via 2G or 3G. The GPRSbee librarie is included with the SODAQ Mbili files that you have
already installed.

Table 2. SMS example

Required Components SODAQ Mbili Board, 0.5W Solar Panel,
1aH Battery Pack, GPRSBee board and
Micro SIM card

Required Libraries GPRSbee

Hardware Setup Plug the 0.5W solar panel and the 1A LiPo
battery into their respective sockets. Insert
the GPRSbee board after inserting the
Micro SIM card.

Source Code Send_SMS.ino

Insert the Micro Sim card in the GPRSBee board and connect as follows.

Turn on the SODAQ Mbili board, compile and upload the following sketch from the Arduino
IDE onto the SODAQ Mbili board. Leave the USB cable plugged in and open the Serial Monitor
(Ctrl-Shift-M) and ensure that it is set to the 9600 baud rate.

Send_SMS.ino

//SODAQ Mbili libraries

#include <GPRSbee.h>

Laboratories of Day 2

6

// Fill in your mobile number here. Start with + and country code

#define TELNO "+393898896252"

void setup ()

{

 Serial.begin(9600); // Serial1 is connected to SIM900 GPRSbee

 Serial.println("sending a SMS text: Hello world");

 //Setup GPRSbee

 setupComms();

}

void loop ()

{

 bool smsSent = gprsbee.sendSMS(TELNO,"Hello World");

 delay(10000);

}

void setupComms()

{

 //Start Serial1 the Bee port

 Serial1.begin(9600);

 //Intialise the GPRSbee

 gprsbee.init(Serial1, BEECTS, BEEDTR);

 //uncomment this line to debug the GPRSbee with the serial monitor

 gprsbee.setDiag(Serial);

 //This is required for the Switched Power method

 gprsbee.setPowerSwitchedOnOff(true);

}

• Here the necessary library files are included in the sketch using the #include1 compiler
directive.

//SODAQ Mbili libraries

#include <GPRSbee.h>

• Here we define the telephone number. Remember to add + and country code.

1 http://arduino.cc/en/Reference/Include

http://arduino.cc/en/Reference/Include
http://arduino.cc/en/Reference/Include

Laboratories of Day 2

7

// Fill in your mobile number here. Start with + and country code

#define TELNO "+393898896252"

• Here we start by initialising the serial connection with a call to Serial.begin()2 and print the
message "sending a SMS text: Hello world". Then we call setupComms function.

void setup ()

{

 Serial.begin(9600); // Serial1 is connected to SIM900 GPRSbee

 Serial.println("sending a SMS text: Hello world");

 //Setup GPRSbee

 setupComms();

}

• Here we use the GPRSbee library that sends SMS with the sentence "Hello world"

void loop ()

{

 bool smsSent = gprsbee.sendSMS(TELNO,"Hello world");

 delay(10000);

}

• This function initializes Serial port number 1, then initializes GPRSBee and configures
Switched Power method. Remember here you can uncomment gprsbee.setDiag(Serial);
to debug the GPRSbee with the serial monitor

void setupComms()

{

 //Start Serial1 the Bee port

 Serial1.begin(9600);

 //Intialise the GPRSbee

 gprsbee.init(Serial1, BEECTS, BEEDTR);

 //uncomment this line to debug the GPRSbee with the serial monitor

 gprsbee.setDiag(Serial);

 //This is required for the Switched Power method

2 http://arduino.cc/en/Serial/Begin

http://arduino.cc/en/Serial/Begin
http://arduino.cc/en/Serial/Begin

Laboratories of Day 2

8

 gprsbee.setPowerSwitchedOnOff(true);

}

2. Sending an SMS with Date, Time, RTC Temperature
and Battery Voltage

In this example we will connect GPRSBee board to Mbili and send an SMS text with a message
which contains Date, Time, RTC Temperature and Battery Voltage.

Table 3. SMS with Date, Time, Temperature and Battery example

Required Components SODAQ Mbili Board, 0.5W Solar Panel,
1aH Battery Pack, GPRSBee board and
Micro SIM card

Required Libraries GPRSbee

Hardware Setup Plug the 0.5W solar panel and the 1A LiPo
battery into their respective sockets. Insert
the GPRSbee board after inserting the
Micro SIM card.

Source Code Send_SMS_DateTemp.ino

The GPRSbee library is included with the SODAQ Mbili files that you have already installed.

Put the Micro SIM card in the GPRSBee board and connect as follows.

Turn on the SODAQ Mbili board, compile and upload the following sketch from the Arduino
IDE onto the SODAQ Mbili board. Leave the USB cable plugged in and open the Serial Monitor
(Ctrl-Shift-M) and ensure that it is set to the 9600 baud rate.

Laboratories of Day 2

9

Send_SMS_DateTemp.ino

#include <Wire.h>

//SODAQ Mbili libraries

#include <RTCTimer.h>

#include <Sodaq_DS3231.h>

#include <GPRSbee.h>

//The delay between the sensor readings

#define SEND_DELAY 60000

//These constants are used for reading the battery voltage

#define ADC_AREF 3.3

#define BATVOLTPIN A6

#define BATVOLT_R1 4.7

#define BATVOLT_R2 10

// Fill in your mobile number here. Start with + and country code

#define TELNO "+393898896252"

Sodaq_DS3231 RTC; //Create RTC object for DS3231 RTC come Temp Sensor

//year, month, date, hour, min, sec and week-day(starts from 0 and goes to 6)

//writing any non-existent time-data may interfere with normal operation of the RTC.

//Take care of week-day also.*/

DateTime dt(2015, 06, 05, 11, 5, 00, 4);

void setup ()

{

 //Initialise the serial connection

 Serial.begin(9600); // Serial1 is connected to SIM900 GPRSbee

 Serial.println("Starting");

 //Initialise sensors

 setupSensors();

 //Setup GPRSbee

 setupComms();

}

void loop ()

{

 //Create the data

 String dataRec = createData();

 Serial.println("Sending SMS with value: "+ dataRec);

 bool smsSent = gprsbee.sendSMS(TELNO,dataRec.c_str()); //String.c_str() send

 Char array of String

Laboratories of Day 2

10

 delay(SEND_DELAY);

}

void setupSensors()

{

 //Initialise the wire protocol for the TPH sensors

 Wire.begin();

 //Initialise the DS3231 RTC

 rtc.begin();

 //remember to comment this line once RTC is updated

 rtc.setDateTime(dt); //Adjust date-time as defined 'dt' above

}

void setupComms()

{

 //Start Serial1 the Bee port

 Serial1.begin(9600);

 //Intialise the GPRSbee

 gprsbee.init(Serial1, BEECTS, BEEDTR);

 //uncomment this line to debug the GPRSbee with the serial monitor

 gprsbee.setDiag(Serial);

 //This is required for the Switched Power method

 gprsbee.setPowerSwitchedOnOff(true);

}

String createData()

{

 //Create a String type data record in csv format

 ///Read the temperature

 RTC.convertTemperature();

 float temp = RTC.getTemperature();

 // Convert temperature voltage to string

 char buffer[14]; //make buffer large enough for 7 digits

 String temperatureS = dtostrf(temp, 7,2,buffer);

 //'7' digits including '-' negative, decimal and white space. '2' decimal places

 temperatureS.trim(); //trim whitespace, important so Ubidots will treat it as a

 number

 //Read the voltage

 int mv = getRealBatteryVoltage() * 1000.0;

Laboratories of Day 2

11

 String data = getDateTime()+ ", Temp=";

 data += String(temperatureS)+ "C, Volt=";

 data += String(mv)+ "mV";

 return data;

}

String getDateTime()

{

 String dateTimeStr;

 //Create a DateTime object from the current time

 DateTime dt(RTC.makeDateTime(RTC.now().getEpoch()));

 //Convert it to a String

 dt.addToString(dateTimeStr);

 return dateTimeStr;

}

float getRealBatteryVoltage()

{

 uint16_t batteryVoltage = analogRead(BATVOLTPIN);

 return (ADC_AREF / 1023.0) * (BATVOLT_R1 + BATVOLT_R2) / BATVOLT_R2 *

 batteryVoltage;

}

• Here the necessary library files are included in the sketch using the #include3 compiler
directive.

#include <Wire.h>

#include <SPI.h>

#include <SD.h>

//SODAQ Mbili libraries

#include <Sodaq_DS3231.h>

#include <GPRSbee.h>

• Here we define the telephone number. Remember to add + and country code. We also
define constants are used for reading the battery voltage and delay between messages
sent. We create RTC object for DS3231 RTC come Temperature Sensor.

3 http://arduino.cc/en/Reference/Include

http://arduino.cc/en/Reference/Include
http://arduino.cc/en/Reference/Include

Laboratories of Day 2

12

// Fill in your mobile number here. Start with + and country code

#define TELNO "+393898896252"

//The delay between the sensor readings

#define SEND_DELAY 60000

//These constants are used for reading the battery voltage

#define ADC_AREF 3.3

#define BATVOLTPIN A6

#define BATVOLT_R1 4.7

#define BATVOLT_R2 10

Sodaq_DS3231 RTC; //Create RTC object for DS3231 RTC come Temp Sensor

//year, month, date, hour, min, sec and week-day(starts from 0 and goes to 6)

//writing any non-existent time-data may interfere with normal operation of the RTC.

//Take care of week-day also.*/

DateTime dt(2015, 06, 05, 11, 5, 00, 4);

• The difference with the previous example is that here we create an String dataRec with the
data values. Then we use GPRSBee library gprsbee.sendSMS to send an SMS text.

Note: We have to add dataRec.c_str() that is the char values from the String object.
dataRec.c_str() is representing the current value of the string4 object.

void loop ()

{

 //Create the data

 String dataRec = createData();

 Serial.println("Sending SMS with value: "+ dataRec);

 bool smsSent = gprsbee.sendSMS(TELNO,dataRec.c_str()); //String.c_str() send

 Char array of String

 delay(SEND_DELAY);

}

• This function takes readings from the battery voltage, Date and Time, and temperature
from RTC. With this values creates an String data to be sent as an SMS text.

String createData()

{

 //Create a String type data record in csv format

 ///Read the temperature

4 http://www.cplusplus.com/string

http://www.cplusplus.com/string
http://www.cplusplus.com/string

Laboratories of Day 2

13

 RTC.convertTemperature();

 float temp = RTC.getTemperature();

 // Convert temperature voltage to string

 char buffer[14]; //make buffer large enough for 7 digits

 String temperatureS = dtostrf(temp, 7,2,buffer);

 //'7' digits including '-' negative, decimal and white space. '2' decimal places

 temperatureS.trim(); //trim whitespace, important so Ubidots will treat it as a

 number

 //Read the voltage

 int mv = getRealBatteryVoltage() * 1000.0;

 String data = getDateTime()+ ", Temp=";

 data += String(temperatureS)+ "C, Volt=";

 data += String(mv)+ "mV";

 return data;

}

3. Syncing the RTC
In this example we will be using the GPRSbee module to connect to the SODAQ time server5

in order to retrieve the current date and time stamp for the purpose of updating the internal
Real Time Clock (RTC) on the SODAQ Mbili board.

If you navigate your browser to the SODAQ time server at: http://time.sodaq.net/ you will see
a numeric value shown in the upper left hand corner of the screen. This value represents the
current UTC time, specified in seconds since the start of Epoch time6 (00:00:00 01/01/1970).
Here this value is retrieved and used to update the DS3231 RTC time stamp.

Table 4. Syncing the RTC example

Required Components SODAQ Mbili Board, 0.5W Solar Panel,
1aH Battery Pack, GPRSBee board and
Micro SIM card

Required Libraries GPRSbee, Wire, Sodaq_DS3231

Hardware Setup Plug the 0.5W solar panel and the 1A LiPo
battery into their respective sockets. Insert

Source Code RTC_update.ino

5 http://time.sodaq.net/
6 http://en.wikipedia.org/wiki/Unix_time

http://time.sodaq.net/
http://time.sodaq.net/
http://en.wikipedia.org/wiki/Unix_time
http://time.sodaq.net/
http://en.wikipedia.org/wiki/Unix_time

Laboratories of Day 2

14

the GPRSbee board after inserting the
Micro SIM card.

Source Code RTC_update.ino

The Wire Library comes pre-installed with the Arduino IDE, and so there is no need to
download or install it. The Sodaq_DS3231 and the GPRSbee libraries are included with the
SODAQ Mbili files that you have already installed.

If necessary, refer to the Getting Started guide for details on where to download from and how
to install the SODAQ Mbili files.

Install the GPRSbee module into the Xbee socket. Following the wiring diagram for the
Switched Power Method7 , plug the 1A LiPo battery and GPRSbee power connectors into their
sockets. Finally, plug the 0.5W solar panel into its socket as shown below.

Turn on the SODAQ Mbili board, compile and upload the following sketch from the Arduino
IDE onto the SODAQ Mbili board. Leave the USB cable plugged in and open the Serial Monitor
(Ctrl-Shift-M) and ensure that it is set to the 9600 baud rate.

After you open the Serial Monitor (Ctrl-Shift-M), you should see output similar to this:

7 http://mbili.sodaq.net/gprsbee-connection/#switched

http://mbili.sodaq.net/gprsbee-connection/#switched
http://mbili.sodaq.net/gprsbee-connection/#switched

Laboratories of Day 2

15

If the current time stamp of the RTC is within about 30 seconds of the
retrieved time stamp, the RTC will not be updated and you will not see
the second line of output.

RTC_update.ino

#include <Wire.h>

#include <Sodaq_DS3231.h>

#include <GPRSbee.h>

#define APN "internet"

#define APN_USERNAME ""

#define APN_PASSWORD ""

#define TIME_URL "time.sodaq.net"

#define TIME_ZONE 0.0

#define TIME_ZONE_SEC (TIME_ZONE * 3600)

void setup()

{

 //Start Serial for serial monitor

 Serial.begin(9600);

 //Start Serial1 the Bee port

 Serial1.begin(9600);

 //Intialise the GPRSbee

 gprsbee.init(Serial1, BEECTS, BEEDTR);

Laboratories of Day 2

16

 //Uncomment the line below to debug the GPRSbee with the serial monitor

 //gprsbee.setDiag(Serial);

 //This is required for the Switched Power method

 gprsbee.setPowerSwitchedOnOff(true);

 //Sync time

 syncRTCwithServer();

 //Print out new date/time

 Serial.println(getDateTime());

}

void loop()

{

}

void syncRTCwithServer()

{

 char buffer[20];

 if (gprsbee.doHTTPGET(APN, APN_USERNAME, APN_PASSWORD, TIME_URL, buffer,

 sizeof(buffer)))

 {

 Serial.println("HTTP GET: " + String(buffer));

 //Convert the time stamp to unsigned long

 char *ptr;

 uint32_t newTs = strtoul(buffer, &ptr, 0);

 //Add the timezone difference plus a few seconds

 //to compensate for transmission and processing delay

 newTs += 3 + TIME_ZONE_SEC;

 //If conversion was successful

 if (ptr != buffer)

 {

 //Get the old time stamp

 uint32_t oldTs = rtc.now().getEpoch();

 int32_t diffTs = abs(newTs - oldTs);

 //If time is more than 30s off, update

 if (diffTs > 30)

 {

 //Display old and new time stamps

 Serial.print("Updating RTC, old=" + String(oldTs));

Laboratories of Day 2

17

 Serial.println(" new=" + String(newTs));

 //Update the rtc

 rtc.setEpoch(newTs);

 }

 }

 }

}

String getDateTime()

{

 String dateTimeStr;

 //Create a DateTime object from the current time

 DateTime dt(rtc.makeDateTime(rtc.now().getEpoch()));

 //Convert it to a String

 dt.addToString(dateTimeStr);

 return dateTimeStr;

}

• Here the necessary library files are included in the sketch using the #include8 compiler
directive.

#include <Wire.h>

#include <Sodaq_DS3231.h>

#include <GPRSbee.h>

• Here we specify the Access Point Name (APN), APN Username, and APN Password for
the network that the GPRSbee will connect to. You will need to change these APN values
to those required by your specific network. Next we specify the URL for the time server
which will return the current UTC time stamp. You can modify TIME_ZONE to reflect your
current time zone, specified in hours (or part hours) +/- relative to UTC.

#define APN "internet"

#define APN_USERNAME ""

#define APN_PASSWORD ""

#define TIME_URL "time.sodaq.net"

#define TIME_ZONE 0.0

8 http://arduino.cc/en/Reference/Include

http://arduino.cc/en/Reference/Include
http://arduino.cc/en/Reference/Include

Laboratories of Day 2

18

#define TIME_ZONE_SEC (TIME_ZONE * 3600)

• On the SODAQ Mbili board, the serial connection to the PC is connected to the first serial
port which is accessed through the Serial object, and the Bee socket is connected to the
second serial port which is accessed through the Serial1 object.

We start with initialising both Serial and Serial1 with calls to Serial.begin()9 . We then initialise
the GPRSbee module using the method gprsbee.init(). The three parameters passed to this
method include: the Serial object that the GPRSbee module is connected to, the CTS pin
(BEECTS), and the power pin (BEEDTR).

We must also make a call to gprsbee.setPowerSwitchedOnOff(), passing the argument true.
This instructs the GPRSbee library to use the Switched Power Method10 . (The method that
we wired the GPRSbee and battery for in the Hardware Setup section.)

Next we call the user defined method syncRTCwithServer() which retrieves the current time
stamp from the server and updates the RTC. Finally, we print the updated date and time using
a reading from the RTC.

void setup()

{

 //Start Serial for serial monitor

 Serial.begin(9600);

 //Start Serial1 the Bee port

 Serial1.begin(9600);

 //Intialise the GPRSbee

 gprsbee.init(Serial1, BEECTS, BEEDTR);

 //Uncomment the line below to debug the GPRSbee with the serial monitor

 //gprsbee.setDiag(Serial);

 //This is required for the Switched Power method

 gprsbee.setPowerSwitchedOnOff(true);

 //Sync time

 syncRTCwithServer();

 //Print out new date/time

9 http://arduino.cc/en/Serial/Begin
10 http://mbili.sodaq.net/gprsbee-connection/#switched

http://arduino.cc/en/Serial/Begin
http://mbili.sodaq.net/gprsbee-connection/#switched
http://arduino.cc/en/Serial/Begin
http://mbili.sodaq.net/gprsbee-connection/#switched

Laboratories of Day 2

19

 Serial.println(getDateTime());

}

• The code in this sketch attempts to synchronise the RTC once when the setup() method is
called. No further code is executed and so the loop() method is emptly.

void loop()

{

}

• Here we attempt a HTTP GET request with the gprsbee.doHTTPGET() passing the
parameters for the APN, APN_USERNAME, APN_PASSWORD, the URL, a return buffer
and the size of that return buffer. If the HTTP GET request was successful, we then output
the returned data (stored in buffer) to the Serial Monitor.

The returned data is an ASCII time stamp specifying the number of seconds in Epoch time11 .
We then convert the value to an unsigned long integer (using strtoul()12) and add both the
timezone seconds as well as a few additional seconds to compensate for any transmission
and processing delays.

If the conversion was successful, we then check if the old time stamp from the RTC is more
than 30 seconds different from the new time stamp from the time server. If so, we then display
both the old and new time stamps in the Serial Monitor and then update the RTC with the new
time stamp using the method rtc.setEpoch().

void syncRTCwithServer()

{

 char buffer[20];

 if (gprsbee.doHTTPGET(APN, APN_USERNAME, APN_PASSWORD, TIME_URL, buffer,

 sizeof(buffer)))

 {

 Serial.println("HTTP GET: " + String(buffer));

 //Convert the time stamp to unsigned long

 char *ptr;

 uint32_t newTs = strtoul(buffer, &ptr, 0);

11 http://en.wikipedia.org/wiki/Unix_time
12 http://www.cplusplus.com/reference/cstdlib/strtoul/

http://en.wikipedia.org/wiki/Unix_time
http://www.cplusplus.com/reference/cstdlib/strtoul/
http://en.wikipedia.org/wiki/Unix_time
http://www.cplusplus.com/reference/cstdlib/strtoul/

Laboratories of Day 2

20

 //Add the timezone difference plus a few seconds

 //to compensate for transmission and processing delay

 newTs += 3 + TIME_ZONE_SEC;

 //If conversion was successful

 if (ptr != buffer)

 {

 //Get the old time stamp

 uint32_t oldTs = rtc.now().getEpoch();

 int32_t diffTs = abs(newTs - oldTs);

 //If time is more than 30s off, update

 if (diffTs > 30)

 {

 //Display old and new time stamps

 Serial.print("Updating RTC, old=" + String(oldTs));

 Serial.println(" new=" + String(newTs));

 //Update the rtc

 rtc.setEpoch(newTs);

 }

 }

 }

}

• Here we return a Date & Time reading from the RTC in a String13 format. First a
DateTime14 object is constructed using a time reading from the DS3231 RTC. This is then
converted into a String15 using the methodDateTime.addToString() the result of which is
then returned from this method.

String getDateTime()

{

 String dateTimeStr;

 //Create a DateTime object from the current time

 DateTime dt(rtc.makeDateTime(rtc.now().getEpoch()));

 //Convert it to a String

 dt.addToString(dateTimeStr);

 return dateTimeStr;

13 http://arduino.cc/en/Reference/string
14 http://playground.arduino.cc/Code/DateTime
15 http://arduino.cc/en/Reference/string

http://arduino.cc/en/Reference/string
http://playground.arduino.cc/Code/DateTime
http://arduino.cc/en/Reference/string
http://arduino.cc/en/Reference/string
http://playground.arduino.cc/Code/DateTime
http://arduino.cc/en/Reference/string

Laboratories of Day 2

21

}

4. Configuring Zigbee radios

4.1. X-CTU

X-CTU16 was developed by Digi and it is only available for Windows. This is the version 2 of
the tutorial, modified to fit the new 2014 X-CTU version.

Once X-CTU has been downloaded, the next step is to install the program. When the program
asks for updating from Digi, we must answer ‘yes’ so as to download all the firmware versions
for all the XBee modules.

Changing or upgrading the XBee firmware is a delicate process that
may harm permanently the XBee module.

When X-CTU has been properly installed, the Zigbee module can be connected to the
computer using the Xbee adapter.

It will be recognized as a ‘USB Serial Port’. We have to know the COM number given to this
device in order to specify it in the X-CTU (in our test, COM1 was the value given by Windows,
as seen later in Figure 2).

Finally, we launch X-CTU and the program will start. A window like the one below will appear,
showing the different functions and the different COM ports detected.

16 http://www.digi.com/support/productdetl.jsp?pid=3352&osvid=57&tp=5&s=316

http://www.digi.com/support/productdetl.jsp?pid=3352&osvid=57&tp=5&s=316
http://www.digi.com/support/productdetl.jsp?pid=3352&osvid=57&tp=5&s=316

Laboratories of Day 2

22

4.2. X-CTU operations

Press the button “Discover radio modules connected” (on the top left, with a magnifying glass),
select the appropriate communication port and configure it as shown below (if you are not
sure, you can select all).

Laboratories of Day 2

23

The application will start to look for different devices connected and will deliver a message
similar to this one:

Laboratories of Day 2

24

It is possible that X-CTU asks you to do a reset of the XBee in this step (or in the next steps).
To do that, just press the reset button in the adapter for 1 or 2 seconds.

Go to the Configuration Working mode and click to select the device. We must check each
parameter first.

Laboratories of Day 2

25

Check the PAN ID:

The destination address (2 parts):

The KY parameter (if needed). It must be set as hexadecimal key:

Laboratories of Day 2

26

The serial interface baud rate:

The sleep options for end devices:

In ZigBee End Devices/Routers: the JV command (join verification) enables the power-on
join verification check. If enabled, the XBee will attempt to discover the 64-bit address of the
coordinator when it first joins a network. If JV=0, the router will continue operating on its current
channel even if a coordinator is not detected. If you set to 1 the JV parameter and write it,
after rebooting the radio module, it will verify the Coordinator (if it has been configured) is on
its operating channel when joining or coming up from a power cycle. If a coordinator is not

Laboratories of Day 2

27

detected, the router will leave its current channel and attempt to join a new PAN. This feature
can be useful when several ZigBee End Device or Router have not been configured yet; this
way you can get them connected to an existing network in a semi-automatic way.

4.3. Troubleshooting

If you have networking problems, please check these tips:

• All XBees are in the same network. Make sure the PAN ID parameter is set.

• Al XBees are in the same channel. The CHANNEL parameter is set with setChannel
function. If you want to do it in the X-CTU way, you must use the ATCH command.

• All XBees are configured to the correct baud rate. In X-CTU, you can control data baud
rates executing the ATBD command.

• All XBees have the same encryption options. The ENCRYPTION MODE parameter is
set with setEncryptionMode function. In X-CTU, the related command is ATEE. And the
ENCRYPTION KEY parameter is set with setLinkKey function. In this case, the X-CTU
command is ATKY.

5. Sending data between two devices using Zigbee

We will follow the example "Reading Temperature from internal RTC temperature sensor"
where we print to the serial port Date, Time, Temperature from RTC and Battery voltage.

Once two radios are configured as explained in the previous chapter, we will connect one to
an Mbili board and upload the RTC_date_Volt_Temp_Zigbee.ino code.

The setup is the following:

One Zigbee card is connected to the SODAQ board, while the second one is connected to a
PC via USB through the UartsBee module.

The only thing to do is print to Serial1 using Serial1.println(data); so that data is sent to the
Zigbee module instead of the serial cable (as in the original example).

Laboratories of Day 2

28

We will also add a sensor number to identify one device from another using #define
DEVICE_NUM 1

The Zigbee card connected to the PC will look as in the picture below.

The UartsBee is a small board, with a mini USB connector on one side and a Xbee socket on
the top. It allows us to communicate with Xbee modules using USB and a serial software.

These is achieved through an Integrated Circuit called FT232RL. Before FT232RL can be
used, its drivers must be installed on your Windows based PC from FTDI’s website http://
www.ftdichip.com. If you are using Ubuntu 12.04, the drivers are already installed in the
system.

RTC_date_Volt_Temp_Zigbee.ino

//Include the necessary libraries

#include <Wire.h>

#include <Sodaq_DS3231.h>

//Device number

#define DEVICE_NUM 1

//These constants are used for reading the battery voltage

#define ADC_AREF 3.3

#define BATVOLTPIN A6

#define BATVOLT_R1 4.7

#define BATVOLT_R2 10

http://www.ftdichip.com
http://www.ftdichip.com

Laboratories of Day 2

29

Sodaq_DS3231 RTC; //Create RTC object for DS3231 RTC come Temp Sensor

//year, month, date, hour, min, sec and week-day(starts from 0 and goes to 6)

//writing any non-existent time-data may interfere with normal operation of the RTC.

//Take care of week-day also.*/

DateTime dt(2014, 06, 05, 11, 5, 00, 4);

void setup()

{

 //Start serial

 Serial.begin(9600);

 Serial.println("Date, Time, Temperature, Voltage");

 //Start the I2C protocol

 Wire.begin();

 //Initialise the DS3231

 RTC.begin();

 //remember to comment this line once RTC is updated

 RTC.setDateTime(dt); //Adjust date-time as defined 'dt' above

}

void loop()

{

 ///Read the temperature

 RTC.convertTemperature();

 float temp = RTC.getTemperature();

 // Convert temperature voltage to string

 char buffer[14]; //make buffer large enough for 7 digits

 String temperatureS = dtostrf(temp, 7,2,buffer);

 //'7' digits including '-' negative, decimal and white space. '2' decimal places

 temperatureS.trim(); //trim whitespace, important so Ubidots will treat it as a

 number

 //Read the voltage

 int mv = getRealBatteryVoltage() * 1000.0;

 String data= DEVICE_NUM +",";

 data += getDateTime()+ ", ";

 data += String(temperatureS)+ "C, ";

 data += String(mv)+ "mV";

 Serial.println(data);

 Serial1.println(data);

}

String getDateTime()

{

Laboratories of Day 2

30

 String dateTimeStr;

 //Create a DateTime object from the current time

 DateTime dt(RTC.makeDateTime(RTC.now().getEpoch()));

 //Convert it to a String

 dt.addToString(dateTimeStr);

 return dateTimeStr;

}

float getRealBatteryVoltage()

{

 uint16_t batteryVoltage = analogRead(BATVOLTPIN);

 return (ADC_AREF / 1023.0) * (BATVOLT_R1 + BATVOLT_R2) / BATVOLT_R2 *

 batteryVoltage;

}

6. Connecting an Analog Sensor

In this section we will describe how the Mbili can send us data from an external Grove analog
sensor. We will use Serial Monitor to view the sensor data.

Disconnect the USB cable, and hook up one of the Grove analog sensors to your Mbili (Grove
analog temperature sensor and Grove potentiometer are shown below).

Table 5. Connecting an analog sensor example

Required Components SODAQ Mbili Board, Analog Sensor

Required Libraries None

Hardware Setup Connect the analog sensor to port A0

Source Code SensorAD0.ino

SensorAD0.ino

//Send Sensor Value to Serial Monitor

 int sensorVal = 0;

void setup() {

Laboratories of Day 2

31

 // Setup Serial communication with computer

 Serial.begin(9600);

}

void loop() {

 // Read the value from the sensor:

 sensorVal = analogRead(A0);

 // Send the value to the Serial Monitor

 Serial.print("Sensor Value=");

 Serial.println(sensorVal);

 // Interval between readings = 1 second

 delay(1000);

 }

Open the Serial monitor and watch the readings change depending on the input conditions.
As an example, by turning the potentiometer from left to right, you get an output similar to
the picture below.

As per the Arduino reference site, AnalogRead17 returns an integer between 0 and 1023. You
can see this is true based on the picture above. But what if we do not want a value between

17 http://arduino.cc/en/Reference/analogRead

http://arduino.cc/en/Reference/analogRead
http://arduino.cc/en/Reference/analogRead

Laboratories of Day 2

32

0 and 1023. Let us say we want a value between 0 and 100? You would have to use the map
function18 . We will do it by changing line 13 to this:

13 sensorVal = map(analogRead(A0),0,1023,0,100);

The map function is quite a useful function, and good fun to play around with. So here are
some things to try.

Change line 13 to the following, upload to the Arduino and then open the Serial Monitor to
see the effect.

Trial 1:

13 sensorVal = map(analogRead(A0),0,1023,100,0);

Trial 2:

13 sensorVal = map(analogRead(A0),0,1023,0,1000);

Trial 3:

13 sensorVal = map(analogRead(A0),200,800,0,100);

In Trial 1: We see that the values have been inverted. Instead of ranging from 0 up to100,
they now go from 100 down to 0.

In Trial 2: The analog readings are now mapped to a range of 0 up to 1000.

In Trial 3: The analog readings that range from 200 to 800 are mapped to a range of 0 to
100. Therefore if the analog readings drop below 200, we will end up with a negative value for
sensorVal. If the analog readings go above 800, we will end up with a value greater than 100.
For this particular example, my readings actually range from -33 to 137.

Therefore an

1. Analog reading of 0 = -33

2. Analog reading of 200 = 0

3. Analog reading of 800 = 100

18 http://arduino.cc/en/Reference/Map

http://arduino.cc/en/Reference/Map
http://arduino.cc/en/Reference/Map
http://arduino.cc/en/Reference/Map

Laboratories of Day 2

33

4. Analog reading of 1023 = 137

What if we don’t want the output to go beyond our intended limits of 0 to 100?Then you would
have to use the constrain function19 . This essentially trims the reading range of the sensor,
and sets a minimum and maximum value.

Replace line 13 with the following code:

13 sensorVal = constrain(map(analogRead(A0),200,800,0,100),0,100);

Therefore an

1. Analog reading of 0 = 0

2. Analog reading of 100 = 0

3. Analog reading of 200 = 0

4. Analog reading of 800 = 100

5. Analog reading of 955 = 100

6. Analog reading of 1023 = 100

7. Analog values between 200 and 800 will produce a result between 0 and 100.

7. Using a Potentiometer to Measure an Angle

In this example we will demonstrate how to use an analog potentiometer and how to display
the reading in the Serial Monitor. This is another example of using the analog pins20 for input
and using the serial connection to send data to a USB connected PC.

Additionally, this example demonstrates the use of the board reference voltage for processing
analog input signals into useable readings. In this case the angular reading expressed in
degrees. This type of sensor can be used to measure and record the direction that the wind
is blowing.

Table 6. Connecting an potentiometer example

Required Components SODAQ Mbili Board, Grove Rotary Angle
Sensor

Source Code Pote_angle.ino

19 http://arduino.cc/en/Reference/Constrain
20 http://arduino.cc/en/Tutorial/AnalogInputPins

http://arduino.cc/en/Reference/Constrain
http://arduino.cc/en/Tutorial/AnalogInputPins
http://arduino.cc/en/Reference/Constrain
http://arduino.cc/en/Tutorial/AnalogInputPins

Laboratories of Day 2

34

Required Libraries None

Hardware Setup Connect the Grove Rotary Angle Sensor to
port A0

Source Code Pote_angle.ino

You should refer to both the board diagram21 and Grove sockets page22 for additional
information.

Plug the Rotary Angle Sensor into the socket for the analog pin A0 A1. Plug the 0.5W solar
panel and the 1A LiPo battery into their respective sockets as shown below.

Turn on the SODAQ Mbili board, compile and upload the following sketch from the Arduino
IDE onto the SODAQ Mbili board. Leave the USB cable plugged in and open the Serial Monitor
(Ctrl-Shift-M) and ensure that it is set to the 9600 baud rate.

After opening the Serial Monitor (Ctrl-Shift-M), if you rotate the Rotary Angle Sensor you should
see output similar to this:

21 http://mbili.sodaq.net/?page_id=13
22 http://mbili.sodaq.net/?page_id=81

http://mbili.sodaq.net/?page_id=13
http://mbili.sodaq.net/?page_id=81
http://mbili.sodaq.net/?page_id=13
http://mbili.sodaq.net/?page_id=81

Laboratories of Day 2

35

Pote_angle.ino

#define ROTARY_ANGLE_SENSOR A0 //Use analog pin A0 for the Rotary Angle Sensor

#define ADC_REF 3.3 //Rreference voltage of ADC is 3.3v

#define FULL_ANGLE 300.0 //Full value of the rotary angle is 300 degrees

void setup()

{

 //Start the serial connection

 Serial.begin(9600);

}

void loop()

{

 //Read the value of the rotary angle sensor in degrees

 int degrees = getDegrees();

 //Output it to the serial monitor

 Serial.print("The angle between the mark and the start position: ");

 Serial.println(degrees);

 //The delay between readings

 delay(500);

}

int getDegrees()

{

 //Read the raw sensor value

Laboratories of Day 2

36

 int sensor_value = analogRead(ROTARY_ANGLE_SENSOR);

 //Convert the sensor reading to degrees and return that value

 float voltage = (float)sensor_value * ADC_REF / 1023;

 float degrees = (voltage * FULL_ANGLE) / ADC_REF;

 return degrees;

}

• Here we specify the analog pin which we will connect to the Rotary Angle Sensor.
Additionally, we specify several constants, including reference voltages for the ADC and
the angular range of the sensor, which are used for converting the analog signal to a value
in degrees.

#define ROTARY_ANGLE_SENSOR A0 //Use analog pin A0 for the Rotary Angle Sensor

#define ADC_REF 3.3 //Rreference voltage of ADC is 3.3v

#define FULL_ANGLE 300.0 //Full value of the rotary angle is 300 degrees

• Here we simply start the serial connection with a call to Serial.begin()23 .

void setup()

{

 //Start the serial connection

 Serial.begin(9600);

}

• Here we first get the reading from the sensor by calling the user defined method
getDegrees(). This method returns the processed analog signal as an integer value in
degrees. We then write data to the outgoing stream buffer of the serial connection using
the Serial.print()24 and Serial.println()25 methods. This data includes a text description and
the reading from the Rotary Angle Sensor in degrees.

void loop()

{

 //Read the value of the rotary angle sensor in degrees

 int degrees = getDegrees();

 //Output it to the serial monitor

23 http://arduino.cc/en/Serial/begin
24 http://arduino.cc/en/Serial/Print
25 http://arduino.cc/en/Serial/Println

http://arduino.cc/en/Serial/begin
http://arduino.cc/en/Serial/Print
http://arduino.cc/en/Serial/Println
http://arduino.cc/en/Serial/begin
http://arduino.cc/en/Serial/Print
http://arduino.cc/en/Serial/Println

Laboratories of Day 2

37

 Serial.print("The angle between the mark and the starting position: ");

 Serial.println(degrees);

 //The delay between readings

 delay(500);

}

• In this method the raw analog signal is read from the pin connected to the Rotary Angle
Sensor. The reading is then processed and returned as a value representing the angle of
the sensor in degrees.

First the raw signal is read from the pin using analogRead()26 . This is then converted into a
voltage reading by multiplying it by the ADC_REF reference voltage and dividing it by the upper
boundary of the reading’s range (1023). The result is a floating point value with a range of 0.0…
ADC_REF. The final value, in degrees, is calculated by multiplying the reading voltage by the
angular range of the sensor (FULL_ANGLE) and then dividing it by theADC_REF reference
voltage. The final value has a range of 0…FULL_ANGLE as is return by the method.

int getDegrees()

{

 //Read the raw sensor value

 int sensor_value = analogRead(ROTARY_ANGLE_SENSOR);

 //Convert the sensor reading to degrees and return that value

 float voltage = (float)sensor_value * ADC_REF / 1023;

 float degrees = (voltage * FULL_ANGLE) / GROVE_VCC;

 return degrees;

}

8. Connecting Digital Sensors

In this example we will demonstrate the use of a Switch, with its HIGH and LOW settings. In
addition we demonstrate how to use a Relay as an actuator.

This example is a demonstration of the use of the digital pins27 for both input and output. A
digital signal is received from the Switch and is used to activate and deactivate the Relay.
The Relay in this example does not serve any real purpose, but if an electronic device such
as a coffee-machine was connected to its screw terminal, it could be used to power on and
off that device.

26 http://arduino.cc/en/Reference/analogRead
27 http://arduino.cc/en/Tutorial/DigitalPins

http://arduino.cc/en/Reference/analogRead
http://arduino.cc/en/Tutorial/DigitalPins
http://arduino.cc/en/Reference/analogRead
http://arduino.cc/en/Tutorial/DigitalPins

Laboratories of Day 2

38

Table 7. Connecting Digital Sensors example

Required Components SODAQ Mbili Board, Grove Relay, Grove
Switch

Required Libraries None

Hardware Setup Connect the Relay to digital pins D4 D5,
Connect the Switch to digital pins D20 D21

Source Code Switch_relay.ino

You should refer to both the board diagram28 and Grove sockets page29 for additional
information.

Plug the Relay into the socket for the digital pins D4 D5. Plug the Switch into the Grove socket
for the digital pins D20 D21. 3. Next, plug the 0.5W solar panel and the 1A LiPo battery into
their respective sockets. Turn on the SODAQ Mbili board, compile and upload the following
sketch from the Arduino IDE onto the SODAQ Mbili board, and then unplug the USB cable
from the computer when it has completed the upload.

28 http://mbili.sodaq.net/?page_id=13
29 http://mbili.sodaq.net/?page_id=81

http://mbili.sodaq.net/?page_id=13
http://mbili.sodaq.net/?page_id=81
http://mbili.sodaq.net/?page_id=13
http://mbili.sodaq.net/?page_id=81

Laboratories of Day 2

39

Switch_relay.ino

#define SWITCH_PIN 20 //Use digital pin 20 for the switch

#define RELAY_PIN 4 //Use digital pin 4 for the relay

int switchState = 0;

void setup()

{

 //Set the digital pin modes

 pinMode(SWITCH_PIN, INPUT);

 pinMode(RELAY_PIN, OUTPUT);

}

void loop()

{

 //Read the current state of the switch

 switchState = digitalRead(SWITCH_PIN);

 if (switchState == HIGH)

 {

 //If the switch is set to HIGH, turn the relay on

 digitalWrite(RELAY_PIN, HIGH);

 delay(100);

 }

 else

 {

 //If not, turn the relay off

 digitalWrite(RELAY_PIN, LOW);

 }

}

You should see the light on the relay turning on when you the Switch is set to HIGH, and
turning off when you set the Switch to LOW.

Laboratories of Day 2

40

• Here we specify the digital pins we will use for both the Relay and the Switch. Additionally,
we declare a global variable, switchState, of type int30 to store the switch state. This is
initialised to 0.

#define SWITCH_PIN 20 //Use digital pin 20 for the switch

#define RELAY_PIN 4 //Use digital pin 4 for the relay

int switchState = 0;

• Here we set the pin mode for the two digital pins we are using. This is done through a call to
pinMode()31 with the first parameter specifying the pin to be set and the second parameter
specifying the mode for that pin. The Switch pin is set to INPUT32 mode while the Relay
pin is set to OUTPUT33mode.

void setup()

{

 //Set the digital pin modes

30 http://arduino.cc/en/Reference/int
31 http://arduino.cc/en/Reference/pinMode
32 http://arduino.cc/en/Reference/Constants
33 http://arduino.cc/en/Reference/Constants

http://arduino.cc/en/Reference/int
http://arduino.cc/en/Reference/pinMode
http://arduino.cc/en/Reference/Constants
http://arduino.cc/en/Reference/Constants
http://arduino.cc/en/Reference/int
http://arduino.cc/en/Reference/pinMode
http://arduino.cc/en/Reference/Constants
http://arduino.cc/en/Reference/Constants

Laboratories of Day 2

41

 pinMode(SWITCH_PIN, INPUT);

 pinMode(RELAY_PIN, OUTPUT);

}

• Here we read the state of the Switch by reading a value from the digital pin that it
is connected to. This is done using the digitalRead()34 method which returns a value
matching the built in constants of HIGH35 or LOW36 . We then modify the state of the output
pin connected to the Relay using the digitalWrite()37 method, passing the value returned
from the Switch. An if/else38 conditional is used to determine whether to switch the Relay
on or off. After switching the relay on, a small delay of 100ms is added (using delay()39)
to allow the relay activate properly.

void loop()

{

 //Read the current state of the switch

 switchState = digitalRead(SWITCH_PIN);

 if (switchState == HIGH)

 {

 //If the switch is set to HIGH, turn the relay on

 digitalWrite(RELAY_PIN, HIGH);

 delay(100);

 }

 else

 {

 //If not, turn the relay off

 digitalWrite(RELAY_PIN, LOW);

 }

}

9. Connecting the Digital Sensor TPH using I2C
In this example we will demonstrate the use of the Grove Temperature Pressure Humidity
(TPH) Sensor board. The code reads data from the sensor and sends it to the Serial Monitor.
We will also demonstrate using the DS3231 Real Time Clock to provide date and time
readings.

34 http://arduino.cc/en/Reference/digitalRead
35 http://arduino.cc/en/Reference/Constants
36 http://arduino.cc/en/Reference/Constants
37 http://arduino.cc/en/Reference/digitalWrite
38 http://arduino.cc/en/Reference/Else
39 http://arduino.cc/en/reference/delay

http://arduino.cc/en/Reference/digitalRead
http://arduino.cc/en/Reference/Constants
http://arduino.cc/en/Reference/Constants
http://arduino.cc/en/Reference/digitalWrite
http://arduino.cc/en/Reference/Else
http://arduino.cc/en/reference/delay
http://arduino.cc/en/Reference/digitalRead
http://arduino.cc/en/Reference/Constants
http://arduino.cc/en/Reference/Constants
http://arduino.cc/en/Reference/digitalWrite
http://arduino.cc/en/Reference/Else
http://arduino.cc/en/reference/delay

Laboratories of Day 2

42

9.1. The SPI Protocol

The Serial Peripheral Interface (SPI) is a synchronous serial data protocol used by the SODAQ
Mbili for communication with the MicroSD device and the Serial Flash. On other Arduino
microcontrollers it is used for communication with a variety of peripherals and can also be
used for communication between two microcontrollers.

9.2. Grove TPH Sensor Board

The Grove TPH Sensor board is a I2C component which comprises of two separate sensor
devices. The first is the SHT21 Sensor which provides temperature and humidity readings.
The other is a BMP180 Sensor which provides a second temperature reading as well as a
pressure reading.

Table 8. Connecting TPH Sensor example

Required Components SODAQ Mbili Board, TPH Grove sensor,
0.5W Solar Panel, 1aH Battery Pack

Required Libraries Wire, Sodaq_BMP085, Sodaq_SHT2x,
Sodaq_DS3231

Hardware Setup Plug the TPH Sensor into the Grove I2C
socket. Plug the 0.5W solar panel and
the 1A LiPo battery into their respective
sockets.

Source Code Digital_TPH.ino

The Wire Libraries come pre-installed with the Arduino IDE, and so there is no need
to download or install either of them. TheSodaq_BMP085, Sodaq_SHT2x, and the
Sodaq_DS3231 libraries are included with the SODAQ Mbili files that you have already
installed.

If necessary, refer to Section 240 of the Getting Started41 guide for details on where to
download from and how to install the SODAQ Mbili files.

You should refer to both the board diagram42 and Grove sockets page43 for additional
information.

40 http://mbili.sodaq.net/?page_id=23#step2
41 http://mbili.sodaq.net/?page_id=23
42 http://mbili.sodaq.net/?page_id=13
43 http://mbili.sodaq.net/?page_id=81

http://mbili.sodaq.net/?page_id=23#step2
http://mbili.sodaq.net/?page_id=23
http://mbili.sodaq.net/?page_id=13
http://mbili.sodaq.net/?page_id=81
http://mbili.sodaq.net/?page_id=23#step2
http://mbili.sodaq.net/?page_id=23
http://mbili.sodaq.net/?page_id=13
http://mbili.sodaq.net/?page_id=81

Laboratories of Day 2

43

Plug the TPH Sensor into the Grove I2C socket. Plug the 0.5W solar panel and the 1A LiPo
battery into their respective sockets.

Turn on the SODAQ Mbili board, compile and upload the following sketch from the Arduino
IDE onto the SODAQ Mbili board. Leave the USB cable plugged in and open the Serial Monitor
(Ctrl-Shift-M) and ensure that it is set to the 9600 baud rate.

After you open the Serial Monitor (Ctrl-Shift-M), you should see output similar to this:

Laboratories of Day 2

44

Digital_TPH.ino

#include <Wire.h>

//SODAQ Mbili libraries

#include <Sodaq_BMP085.h>

#include <Sodaq_SHT2x.h>

#include <Sodaq_DS3231.h>

//The delay between the sensor readings

#define READ_DELAY 1000

//Data header

#define DATA_HEADER "TimeDate, TempSHT21, TempBMP, PressureBMP, HumiditySHT21"

//TPH BMP sensor

Sodaq_BMP085 bmp;

void setup()

{

 //Initialise the serial connection

 Serial.begin(9600);

 //Initialise sensors

 setupSensors();

 //Echo the data header to the serial connection

 Serial.println(DATA_HEADER);

}

Laboratories of Day 2

45

void loop()

{

 //Create the data record

 String dataRec = createDataRecord();

 //Echo the data to the serial connection

 Serial.println(dataRec);

 //Wait before taking the next reading

 delay(READ_DELAY);

}

void setupSensors()

{

 //Initialise the wire protocol for the TPH sensors

 Wire.begin();

 //Initialise the TPH BMP sensor

 bmp.begin();

 //Initialise the DS3231 RTC

 rtc.begin();

}

String createDataRecord()

{

 //Create a String type data record in csv format

 //TimeDate, TempSHT21, TempBMP, PressureBMP, HumiditySHT21

 String data = getDateTime() + ", ";

 data += String(SHT2x.GetTemperature()) + ", ";

 data += String(bmp.readTemperature()) + ", ";

 data += String(bmp.readPressure() / 100) + ", ";

 data += String(SHT2x.GetHumidity());

 return data;

}

String getDateTime()

{

 String dateTimeStr;

 //Create a DateTime object from the current time

 DateTime dt(rtc.makeDateTime(rtc.now().getEpoch()));

 //Convert it to a String

 dt.addToString(dateTimeStr);

Laboratories of Day 2

46

 return dateTimeStr;

}

• Here the necessary library files are included in the sketch using the #include44 compiler
directive.

#include <Wire.h>

//SODAQ Mbili libraries

#include <Sodaq_BMP085.h>

#include <Sodaq_SHT2x.h>

#include <Sodaq_DS3231.h>

• Here we define the delay between sensor readings and the data header for the log file. We
also declare a Sodaq_BMP085 object.

Note: There is already a global object SHT2x which is used for interfacing with the SHT21
device on the TPH board.

//The delay between the sensor readings

#define READ_DELAY 1000

#define DATA_HEADER "TimeDate, TempSHT21, TempBMP, PressureBMP, HumiditySHT21"

//TPH BMP sensor

Sodaq_BMP085 bmp;

• Here we start by initialising the serial connection with a call to Serial.begin()45 . Next we
call several user defined methods, one to initialise the sensors we will be using . We will be
displaying the sensor data in the Serial Monitor. For readability, we first send the header
information to the Serial Monitor with a call to the Serial.println()46 method passing the
parameter DATA_HEADER.

void setup()

{

 //Initialise the serial connection

44 http://arduino.cc/en/Reference/Include
45 http://arduino.cc/en/Serial/Begin
46 http://arduino.cc/en/Serial/Println

http://arduino.cc/en/Reference/Include
http://arduino.cc/en/Serial/Begin
http://arduino.cc/en/Serial/Println
http://arduino.cc/en/Reference/Include
http://arduino.cc/en/Serial/Begin
http://arduino.cc/en/Serial/Println

Laboratories of Day 2

47

 Serial.begin(9600);

 //Initialise sensors

 setupSensors();

 //Echo the data header to the serial connection

 Serial.println(DATA_HEADER);

}

• Here we start by getting the sensor readings with a call to the user defined method
createDataRecord() which returns us a String47 containing the current sensor readings.
We send the data to the Serial Monitor using the Serial.println()48 method. Finally, we
call delay()49 to wait READ_DELAY number of milliseconds before returning from the
loop()50method. This roughly controls the frequency of the sensor readings.

void loop()

{

 //Create the data record

 String dataRec = createDataRecord();

 //Echo the data to the serial connection

 Serial.println(dataRec);

 //Wait before taking the next reading

 delay(READ_DELAY);

}

• Here we make the necessary calls in order to setup the sensors we will be using. The
TPH Sensor communicates via the I2C protocol and so we must start with a call to
Wire.begin()51 . Next we initialise the Sodaq_BMP085 Sensor (part of the TPH Sensor
board) with a call to bmp.begin(). Finally, we initialise the Real Time Clock (RTC) on the
DS3231 chip with a call to rtc.begin().

Note: The SHT2x does not require initialisation.

void setupSensors()

{

47 http://arduino.cc/en/Reference/string
48 http://arduino.cc/en/Serial/Println
49 http://arduino.cc/en/reference/delay
50 http://arduino.cc/en/Reference/loop
51 http://arduino.cc/en/Reference/WireBegin

http://arduino.cc/en/Reference/string
http://arduino.cc/en/Serial/Println
http://arduino.cc/en/reference/delay
http://arduino.cc/en/Reference/loop
http://arduino.cc/en/Reference/WireBegin
http://arduino.cc/en/Reference/string
http://arduino.cc/en/Serial/Println
http://arduino.cc/en/reference/delay
http://arduino.cc/en/Reference/loop
http://arduino.cc/en/Reference/WireBegin

Laboratories of Day 2

48

 //Initialise the wire protocol for the TPH sensors

 Wire.begin();

 //Initialise the TPH BMP sensor

 bmp.begin();

 //Initialise the DS3231 RTC

 rtc.begin();

}

• Here we create and return a String52 which contains the data readings from the sensors in
comma separated format (CSV). The String53 contains the Time & Date which is queried
using the user defined method getTimeDate(). We then append the sensor data, using the
String += operator54 , from each of the four sensors with a comma separator between each
reading. The complete String55 containing all the data is then returned from this method.

String createDataRecord()

{

 //Create a String type data record in csv format

 //TimeDate, TempSHT21, TempBMP, PressureBMP, HumiditySHT21

 String data = getDateTime() + ", ";

 data += String(SHT2x.GetTemperature()) + ", ";

 data += String(bmp.readTemperature()) + ", ";

 data += String(bmp.readPressure() / 100) + ", ";

 data += String(SHT2x.GetHumidity());

 return data;

}

• Here we return a Date & Time reading from the RTC in a String56 format. First a
DateTime57 object is constructed using a time reading from the DS3231 RTC. This is then
converted into a String58 using the method DateTime.addToString() the result of which is
then returned from this method.

String getDateTime()

52 http://arduino.cc/en/Reference/string
53 http://arduino.cc/en/Reference/string
54 http://arduino.cc/en/Reference/StringAppend
55 http://arduino.cc/en/Reference/string
56 http://arduino.cc/en/Reference/string
57 http://playground.arduino.cc/Code/DateTime
58 http://arduino.cc/en/Reference/string

http://arduino.cc/en/Reference/string
http://arduino.cc/en/Reference/string
http://arduino.cc/en/Reference/StringAppend
http://arduino.cc/en/Reference/string
http://arduino.cc/en/Reference/string
http://playground.arduino.cc/Code/DateTime
http://arduino.cc/en/Reference/string
http://arduino.cc/en/Reference/string
http://arduino.cc/en/Reference/string
http://arduino.cc/en/Reference/StringAppend
http://arduino.cc/en/Reference/string
http://arduino.cc/en/Reference/string
http://playground.arduino.cc/Code/DateTime
http://arduino.cc/en/Reference/string

Laboratories of Day 2

49

{

 String dateTimeStr;

 //Create a DateTime object from the current time

 DateTime dt(rtc.makeDateTime(rtc.now().getEpoch()));

 //Convert it to a String

 dt.addToString(dateTimeStr);

 return dateTimeStr;

}

9.3. Using a Button to Activate a Buzzer

In this example we will demonstrate how to use a Button Sensor and how to create a sound
with a Buzzer. This example is a good demonstration of using the digital pins59 for both input
and output. A digital signal is received from the Button Sensor and is used to activate and
deactivate the Buzzer.

Table 9. Using a Button to Activate a Buzzer Example

Required Components SODAQ Mbili Board, 0.5W Solar Panel,
1aH Battery Pack, Grove Buzzer, Grove
Button

Required Libraries none

Hardware Setup Plug the Buzzer into the socket for digital
pins D4 D5. Plug the Button Sensor into
the Grove socket for digital pins D20 D21.
Plug the 0.5W solar panel and the 1A LiPo
battery into their respective sockets.

Source Code Lab2.9.ino

Plug the sensors as per picture below.

59 http://arduino.cc/en/Tutorial/DigitalPins

http://arduino.cc/en/Tutorial/DigitalPins
http://arduino.cc/en/Tutorial/DigitalPins

Laboratories of Day 2

50

Turn on the SODAQ Mbili board, compile and upload the following sketch from the Arduino
IDE onto the SODAQ Mbili board, and then unplug the USB cable from the computer when
it has completed the upload.

Lab2.9.ino

#define BUTTON_PIN 20 //Use digital pin 20 for the button

#define BUZZER_PIN 4 //Use digital pin 4 for the buzzer

int buttonState = 0;

void setup()

{

 //Set the digital pin modes

 pinMode(BUZZER_PIN, OUTPUT);

 pinMode(BUTTON_PIN, INPUT);

}

void loop()

{

 //Read the current state of the button

 buttonState = digitalRead(BUTTON_PIN);

 if (buttonState == HIGH)

 {

 //If the button is pressed, turn the buzzer on

Laboratories of Day 2

51

 digitalWrite(BUZZER_PIN, HIGH);

 }

 else

 {

 //If not, turn the buzzer off

 digitalWrite(BUZZER_PIN, LOW);

 }

}

When you press the button, you should hear the buzzer sound.

• Here we specify the digital pins we are using for both the Button Sensor and the Buzzer.
Additionally, we declare a global variable buttonState and initialise it to 0.

Note: If you use other Grove sockets for either the button or buzzer you must update these
values to the first digital pin listed for that Grove socket.

#define BUTTON_PIN 20 //Use digital pin 20 for the button

#define BUZZER_PIN 4 //Use digital pin 4 for the buzzer

int buttonState = 0;

Laboratories of Day 2

52

• Here we set the pin mode for the two digital pins we are using. This is done through a call to
pinMode()60 with the first parameter specifying the pin to be set and the second parameter
specifying the mode for that pin. The Buzzer pin is set to OUTPUT61 mode while the Button
pin is set to INPUT62mode.

void setup()

{

 //Set the digital pin modes

 pinMode(BUZZER_PIN, OUTPUT);

 pinMode(BUTTON_PIN, INPUT);

}

• Here we read the state of the Button Sensor by reading a value from the digital pin that
it is connected to. This is done using the digitalRead()63method which returns a value
matching the built in constants of HIGH64 or LOW65 . We then modify the state of the output
pin connected to the Buzzer using the digitalWrite()66 method, passing the value returned
from the Button Sensor. An if/else67 conditional is used to determine whether to switch
the Buzzer on or off.

void loop()

{

 //Read the current state of the button

 buttonState = digitalRead(BUTTON_PIN);

 if (buttonState == HIGH)

 {

 //If the button is pressed, turn the buzzer on

 digitalWrite(BUZZER_PIN, HIGH);

 }

 else

 {

 //If not, turn the buzzer off

 digitalWrite(BUZZER_PIN, LOW);

 }

}

60 http://arduino.cc/en/Reference/pinMode
61 http://arduino.cc/en/Reference/Constants
62 http://arduino.cc/en/Reference/Constants
63 http://arduino.cc/en/Reference/digitalRead
64 http://arduino.cc/en/Reference/Constants
65 http://arduino.cc/en/Reference/Constants
66 http://arduino.cc/en/Reference/digitalWrite
67 http://arduino.cc/en/Reference/Else

http://arduino.cc/en/Reference/pinMode
http://arduino.cc/en/Reference/Constants
http://arduino.cc/en/Reference/Constants
http://arduino.cc/en/Reference/digitalRead
http://arduino.cc/en/Reference/Constants
http://arduino.cc/en/Reference/Constants
http://arduino.cc/en/Reference/digitalWrite
http://arduino.cc/en/Reference/Else
http://arduino.cc/en/Reference/pinMode
http://arduino.cc/en/Reference/Constants
http://arduino.cc/en/Reference/Constants
http://arduino.cc/en/Reference/digitalRead
http://arduino.cc/en/Reference/Constants
http://arduino.cc/en/Reference/Constants
http://arduino.cc/en/Reference/digitalWrite
http://arduino.cc/en/Reference/Else

Laboratories of Day 2

53

9.4. Turning ON a Light When It Gets Dark

In this example we will demonstrate how to use a Grove Light Sensor to control an LED. The
LED will be automatically switched on or off depending on the level of light hitting the sensor.
This is a good example of how to use analog input to control a digital output. In this case an
analog signal is processed and converted to a digital signal based on a threshold value.

Table 10. Turning ON a Light When It Gets Dark Example

Required Components SODAQ Mbili Board, 0.5W Solar Panel,
1aH Battery Pack, Grove Light Sensor,
Grove LED (any colour)

Required Libraries none

Hardware Setup Plug the Light Sensor into the socket for
the analog pins A4 A5. Plug the LED into
the Grove socket for the digital pins D4 D5.
Plug the 0.5W solar panel and the 1A LiPo
battery into their respective sockets.

Source Code Lab2.10.ino

Plug the sensors as per picture below.

Laboratories of Day 2

54

Turn on the SODAQ Mbili board, compile and upload the following sketch from the Arduino
IDE onto the SODAQ Mbili board, and then unplug the USB cable from the computer when
it has completed the upload.

Lab2.10.ino

#define LED_PIN 4 //Use digital pin 4 for the LED

#define SENSOR_PIN A4 //Use analog pin A4 for the sensor

#define THRESHOLD_VALUE 50 //Activation threshold

void setup()

{

 //Set the LED digital pin to OUTPUT mode

 pinMode(LED_PIN, OUTPUT);

}

void loop()

{

 //Read the analog value from the sensor

 int sensorValue = analogRead(SENSOR_PIN);

 //Calculate the resistance from the sensor

 float rSensor=(float)(1023-sensorValue)*10 / sensorValue;

Laboratories of Day 2

55

 //Compare the calculated resistance against the threshold

 if (rSensor > THRESHOLD_VALUE)

 {

 //If the result is above the threshold, turn the LED on

 digitalWrite(LED_PIN, HIGH);

 }

 else

 {

 //If not, turn the LED off

 digitalWrite(LED_PIN, LOW);

 }

}

If you cover the Light Sensor with your hand, you should see the LED light up.

• Here we define which pins will be used for both the LED and the Light Sensor. Additionally,
we specify an activation threshold for the digital signal. If the processed analog signal is
above this threshold then the digital signal (and the LED) is activated.

#define LED_PIN 4 //Use digital pin 4 for the LED

#define SENSOR_PIN A4 //Use analog pin A4 for the sensor

#define THRESHOLD_VALUE 50 //Activation threshold

Laboratories of Day 2

56

• In the setup method we set the specified LED digital pin to OUTPUT68 mode (using the
pinMode()69 method). There is no need to specify the usage mode for the analog pin
connected to the Light Sensor.

void setup()

{

 //Set the LED digital pin to OUTPUT mode

 pinMode(LED_PIN, OUTPUT);

}

• The first step is to read the raw analog value from the sensor pin. This uses a call to
analogRead()70 which returns a 10 bit unsigned integer value which has a range of 0…
1023. The value is then converted to a logarithmic floating point value representing the
resistance across the sensor. This resistance value is compared to the threshold value, if
it is above the threshold the digital pin connected to the LED is set to HIGH71 otherwise it
is set to LOW72 (using the digitalWrite()73 method).

void loop()

{

 //Read the analog value from the sensor

 int sensorValue = analogRead(SENSOR_PIN);

 //Calculate the resistance from the sensor

 float rSensor=(float)(1023-sensorValue)*10 / sensorValue;

 //Compare the calculated resistance against the threshold

 if (rSensor > THRESHOLD_VALUE)

 {

 //If the result is above the threshold, turn the LED on

 digitalWrite(LED_PIN, HIGH);

 }

 else

 {

 //If not, turn the LED off

 digitalWrite(LED_PIN, LOW);

 }

68 http://arduino.cc/en/Reference/Constants
69 http://arduino.cc/en/Reference/pinMode
70 http://arduino.cc/en/Reference/analogRead
71 http://arduino.cc/en/Reference/Constants
72 http://arduino.cc/en/Reference/Constants
73 http://arduino.cc/en/Reference/digitalWrite

http://arduino.cc/en/Reference/Constants
http://arduino.cc/en/Reference/pinMode
http://arduino.cc/en/Reference/analogRead
http://arduino.cc/en/Reference/Constants
http://arduino.cc/en/Reference/Constants
http://arduino.cc/en/Reference/digitalWrite
http://arduino.cc/en/Reference/Constants
http://arduino.cc/en/Reference/pinMode
http://arduino.cc/en/Reference/analogRead
http://arduino.cc/en/Reference/Constants
http://arduino.cc/en/Reference/Constants
http://arduino.cc/en/Reference/digitalWrite

Laboratories of Day 2

57

}

9.5. Using an Ultrasonic Ranger to Measure Distance

In this example we will demonstrate how to use an Ultrasonic Ranger to measure the distance
of an object placed in front of the sensor and to display that distance reading in the Serial
Monitor. This is another example of using the digital pins74 for input and output and for using
the serial connection to send data to a USB connected PC. Additionally, we demonstrate the
use of single digital pin both in INPUT75 and OUTPUT76 modes. This example also uses
the pulseIn()77 method which measures the duration (in µs) of a digital signal received over
a digital pin. This time value is then converted into a representative distance in centimetres
and is displayed in the serial monitor. Additionally, a LED is lit up whenever the reading falls
below a specified threshold.

Note: This example is based on the Arduino tutorial that can be found here: Ping Ultrasonic
Range Finder Tutorial78

Table 11. Using an Ultrasonic Ranger to Measure Distance Example

Required Components SODAQ Mbili Board, 0.5W Solar Panel,
1aH Battery Pack, Grove Ultrasonic
Ranger, Grove LED (any colour)

Required Libraries none

Hardware Setup Plug the Ultrasonic Ranger into the socket
for the digital pins D4 D5. Plug the LED into
the Grove socket for the digital pins D20
D21. Plug the 0.5W solar panel and the 1A
LiPo battery into their respective sockets.

Source Code Lab2.11.ino

Plug the sensors as per picture below.

74 http://arduino.cc/en/Tutorial/DigitalPins
75 http://arduino.cc/en/Reference/Constants
76 http://arduino.cc/en/Reference/Constants
77 http://arduino.cc/en/Reference/pulseIn
78 http://www.arduino.cc/en/Tutorial/Ping

http://arduino.cc/en/Tutorial/DigitalPins
http://arduino.cc/en/Reference/Constants
http://arduino.cc/en/Reference/Constants
http://arduino.cc/en/Reference/pulseIn
http://www.arduino.cc/en/Tutorial/Ping
http://www.arduino.cc/en/Tutorial/Ping
http://arduino.cc/en/Tutorial/DigitalPins
http://arduino.cc/en/Reference/Constants
http://arduino.cc/en/Reference/Constants
http://arduino.cc/en/Reference/pulseIn
http://www.arduino.cc/en/Tutorial/Ping

Laboratories of Day 2

58

Turn on the SODAQ Mbili board, compile and upload the following sketch from the Arduino
IDE onto the SODAQ Mbili board. Leave the USB cable plugged in and open the Serial Monitor
(Ctrl-Shift-M) and ensure that it is set to the 9600 baud rate.

After you open the Serial Monitor (Ctrl-Shift-M), if move your hand over the Ultrasonic Ranger
you should see output similar to this:

Laboratories of Day 2

59

Lab2.11.ino

#define PING_PIN 4 //Use digital pin 4 for the range finder

#define LED_PIN 20 //Use digital pin 20 for the LED

#define LED_LIGHT_DISTANCE 5 //At this distance (in cm) or less the LED is lit up

#define READ_DELAY 100 //Delay between readings in milliseconds

void setup()

{

 //Start the serial connection

 Serial.begin(9600);

 //Set the digital pin modes

 pinMode(LED_PIN, OUTPUT);

}

void loop()

{

 //Set Ping Pin to OUTPUT mode

 pinMode(PING_PIN, OUTPUT);

 //Send a HIGH signal for 5 microseconds

 digitalWrite(PING_PIN, HIGH);

 delayMicroseconds(5);

 digitalWrite(PING_PIN, LOW);

 //Now read back the distance as a time value (microseconds) using the same pin

 pinMode(PING_PIN, INPUT);

 long duration = pulseIn(PING_PIN, HIGH);

 //Convert the time into a distance

 long cm = microsecondsToCentimeters(duration);

 //Output the distance to the serial monitor

 Serial.println("Distance in cm: " + String(cm));

 if (cm < LED_LIGHT_DISTANCE)

 {

 //If the distance reading is equal to or less than

 //LED_LIGHT_DISTANCE switch the LED on

 digitalWrite(LED_PIN, HIGH);

 }

 else

 {

 //If not, turn the LED off

 digitalWrite(LED_PIN, LOW);

 }

Laboratories of Day 2

60

 //Delay before the next reading

 delay(READ_DELAY);

}

long microsecondsToCentimeters(long microseconds)

{

 //The speed of sound is 340 m/s or 29 microseconds per centimeter

 //The ping travels twice the distance, there and back and so divide by 58

 return microseconds / 58;

}

Additionally, the LED will light up if your hand or another object is within 5 cm of the sensor.

• Here we specify which digital pins to use for both the Ultrasonic Ranger and the LED.
Additionally, we specify the threshold distance at which the LED will be lit up, and the delay
between taking readings.

#define PING_PIN 4 //Use digital pin 4 for the range finder

#define LED_PIN 20 //Use digital pin 20 for the LED

#define LED_LIGHT_DISTANCE 5 //At this distance (in cm) or less the LED is lit up

#define READ_DELAY 100 //Delay between readings in milliseconds

Laboratories of Day 2

61

• Here we start the serial connection with a call to Serial.begin()79 . Additionally, we set the
digital pin we are using for the LED to OUTPUT80 mode. This is done through a call to
pinMode()81 .

Note: We do not at this point set the pin mode for the Ultrasonic Ranger. This is because we
will be using it in both INPUT82 and OUTPUT83 modes and we will be switching between
those modes in the method loop()84 .

void setup()

{

 //Start the serial connection

 Serial.begin(9600);

 //Set the digital pin modes

 pinMode(LED_PIN, OUTPUT);

}

• The Ultrasonic Ranger will activate its emitter whenever it is receiving a HIGH85 signal
over the digital pin that it is connected to. Here we aim to switch on the emitter for a short
burst in order to emit a ultrasonic ping.

This can be achieved with several steps. First we must set the connected digital pin to
OUTPUT86 mode using pinMode()87 . Next we set the digital pin to HIGH88 . Then we add
a short delay using the method delayMicroseconds()89 which only returns after the specified
number of μs have elapsed. We then switch off the emitter by setting its digital pin to LOW90 .
This results in the emitter of the Ultrasonic Ranger being activated for 5μs.

void loop()

{

 //Set Ping Pin to OUTPUT mode

79 http://arduino.cc/en/Serial/begin
80 http://arduino.cc/en/Reference/Constants
81 http://arduino.cc/en/Reference/pinMode
82 http://arduino.cc/en/Reference/Constants
83 http://arduino.cc/en/Reference/Constants
84 http://arduino.cc/en/Reference/loop
85 http://arduino.cc/en/Reference/Constants
86 http://arduino.cc/en/Reference/Constants
87 http://arduino.cc/en/Reference/pinMode
88 http://arduino.cc/en/Reference/Constants
89 http://arduino.cc/en/Reference/delayMicroseconds
90 http://arduino.cc/en/Reference/Constants

http://arduino.cc/en/Serial/begin
http://arduino.cc/en/Reference/Constants
http://arduino.cc/en/Reference/pinMode
http://arduino.cc/en/Reference/Constants
http://arduino.cc/en/Reference/Constants
http://arduino.cc/en/Reference/loop
http://arduino.cc/en/Reference/Constants
http://arduino.cc/en/Reference/Constants
http://arduino.cc/en/Reference/pinMode
http://arduino.cc/en/Reference/Constants
http://arduino.cc/en/Reference/delayMicroseconds
http://arduino.cc/en/Reference/Constants
http://arduino.cc/en/Serial/begin
http://arduino.cc/en/Reference/Constants
http://arduino.cc/en/Reference/pinMode
http://arduino.cc/en/Reference/Constants
http://arduino.cc/en/Reference/Constants
http://arduino.cc/en/Reference/loop
http://arduino.cc/en/Reference/Constants
http://arduino.cc/en/Reference/Constants
http://arduino.cc/en/Reference/pinMode
http://arduino.cc/en/Reference/Constants
http://arduino.cc/en/Reference/delayMicroseconds
http://arduino.cc/en/Reference/Constants

Laboratories of Day 2

62

 pinMode(PING_PIN, OUTPUT);

 //Send a HIGH signal for 5 microseconds

 digitalWrite(PING_PIN, HIGH);

 delayMicroseconds(5);

 digitalWrite(PING_PIN, LOW);

• The Ultrasonic Ranger measures the time it takes (in μs) for a ultrasonic ping to travel from
its emitter, reflect off an object, and return again to its receiver. This travel time can then
be read from the Ultrasonic Ranger as a digital pulse signal, with the duration of the digital
HIGH91 pulse matching that of the ultrasonic ping time.

In order to get the reading from the Ultrasonic Ranger, we must first set its digital
pin to INPUT92 mode. We then take a reading using thehttp://arduino.cc/en/Reference/
pulseIn[pulseIn()] method which returns the duration of the digital signal it receives from the
Ultrasonic Ranger. The reading in μs is converted to a distance value in centimetres using the
user defined method microsecondsToCentimeters().

 //Now read back the distance as a time value (microseconds) using the same pin

 pinMode(PING_PIN, INPUT);

 long duration = pulseIn(PING_PIN, HIGH);

 //Convert the time into a distance

 long cm = microsecondsToCentimeters(duration);

• Here we write data to the outgoing stream buffer of the serial connection using the
Serial.println()93 method. This data includes a text description and the distance reading
from the Ultrasonic Ranger in centimetres. Additionally, an if/else94 conditional is used
to determine whether to switch the LED on or off based on the distance reading and the
threshold value LED_LIGHT_DISTANCE. Finally, we call the method delay()95 to wait the
specified amount of milliseconds (READ_DELAY) before taking the next reading.

 //Output the distance to the serial monitor

 Serial.println("Distance in cm: " + String(cm));

 if (cm < LED_LIGHT_DISTANCE)

91 http://arduino.cc/en/Reference/Constants
92 http://arduino.cc/en/Reference/Constants
93 http://arduino.cc/en/Serial/Println
94 http://arduino.cc/en/Reference/Else
95 http://arduino.cc/en/reference/delay

http://arduino.cc/en/Reference/Constants
http://arduino.cc/en/Reference/Constants
http://arduino.cc/en/Serial/Println
http://arduino.cc/en/Reference/Else
http://arduino.cc/en/reference/delay
http://arduino.cc/en/Reference/Constants
http://arduino.cc/en/Reference/Constants
http://arduino.cc/en/Serial/Println
http://arduino.cc/en/Reference/Else
http://arduino.cc/en/reference/delay

Laboratories of Day 2

63

 {

 //If the distance reading is equal to or less than

 //LED_LIGHT_DISTANCE switch the LED on

 digitalWrite(LED_PIN, HIGH);

 }

 else

 {

 //If not, turn the LED off

 digitalWrite(LED_PIN, LOW);

 }

 //Delay before the next reading

 delay(READ_DELAY);

}

• Here the value in microseconds (μs) is converted to the equivalent distance in centimetres
(cm). Sound travels approximately 1cm every 29μs. The ultrasonic ping travels twice the
distance of the object in front of the sensor, there and back again. So the value returned is
that of the parameter value microseconds divided by 58 (= 29 * 2).

long microsecondsToCentimeters(long microseconds)

{

 //The speed of sound is 340 m/s or 29 microseconds per centimeter

 //The ping travels twice the distance, there and back and so divide by 58

 return microseconds / 58;

}

10. Using Temperature, Humidity and Moisture Sensors

10.1. Grove - Moisture Sensor

This Moisture Sensor can be used to measure soil moisture or detect if there is water around
the sensor. You can for example let the plants in your garden reach out for human help when
they need irrigation.

Once deployed in the ground, when the soil moisture deficits the sensor output value will
decrease. You can know whether a plant needs water or not by observing the values that
the sensor outputs. The following sketch demonstrates a simple application of sensing the
moisture of the soil.

Connect this module to one of analog port A4 of and then insert the Sensor into the soil or
place it anywhere you want.

Laboratories of Day 2

64

Note:This sensor isn’t hardened against contamination or exposure of the control circuitry to
water and may be prone to electrolytic corrosion across the probes, so it isn’t well suited to
being left in place or used outdoors.

Typical values are:

Sensor in air= 0

Sensor in dry soil = 5-50

Sensor in humid soil = around 500

Sensor in water = 900-1000

11. Grove - Temperature and Humidity Sensor Pro

Professional measurements of temperature and relative humidity are possible with this Grove
sensor. This is a powerful version of the Grove - Temperature and Humidity Sensor. It has
more complete and accurate performance than the basic version. The detecting range of this
sensor is 5% RH - 99% RH, and -40°C - 80°C. And its accuracy satisfyingly reaches up to 2%
RH and 0.5°C. A professional choice for applications that have relatively strict requirements.

Connect the Temperature and Humidity Sensor Pro to A0.

Hum_temp_moist.ino

#include "DHT.h"

#define DHTPIN A0 // what pin we're connected to

#define MOISTPIN A4 // select the input pin for the potentiometer

DHT dht(DHTPIN,DHT11);

void setup()

{

 Serial.begin(9600);

 Serial.println("Humidity, Temperature and Moisture");

 dht.begin();

}

void loop()

{

 // Reading temperature or humidity takes about 250 milliseconds!

Laboratories of Day 2

65

 // Sensor readings may also be up to 2 seconds 'old' (its a very slow sensor)

 float h = dht.readHumidity();

 float t = dht.readTemperature();

 // check if returns are valid, if they are NaN (not a number) then something

 went wrong!

 if (isnan(t) || isnan(h))

 {

 Serial.println("Failed to read from DHT");

 }

 else

 {

 Serial.print(h);

 Serial.print(",");

 Serial.print(t);

 Serial.print(",");

 Serial.println(analogRead(MOISTPIN));

 }

}

66

	Laboratories of Day 2
	1. Sending an SMS message with GPRSbee
	1.1. GPRSbee Connection
	The On-Off Toggle Method
	The Switched Power Method

	1.2. What is GSM
	What is GPRS
	Network operator requirements

	1.3. Sending an SMS

	2. Sending an SMS with Date, Time, RTC Temperature and Battery Voltage
	3. Syncing the RTC
	4. Configuring Zigbee radios
	4.1. X-CTU
	4.2. X-CTU operations
	4.3. Troubleshooting

	5. Sending data between two devices using Zigbee
	6. Connecting an Analog Sensor
	7. Using a Potentiometer to Measure an Angle
	8. Connecting Digital Sensors
	9. Connecting the Digital Sensor TPH using I2C
	9.1. The SPI Protocol
	9.2. Grove TPH Sensor Board
	9.3. Using a Button to Activate a Buzzer
	9.4. Turning ON a Light When It Gets Dark
	9.5. Using an Ultrasonic Ranger to Measure Distance

	10. Using Temperature, Humidity and Moisture Sensors
	10.1. Grove - Moisture Sensor

	11. Grove - Temperature and Humidity Sensor Pro

