
1

Laboratories of Day 1
Table 1. Day one

Laboratory Code

1: Installing the Arduino IDE and Mbili
features

Hello_world.ino, Leds1_2.ino

2: Serial Communication Echo.ino, add_sub.ino,
add_sub_div_mul.ino, Delimiters_sum.ino

3: RTC: setting time, reading time RTC_date_update.ino

4: Reading temperature from internal RTC
temperature sensor

RTC_date_Volt_Temp.ino

5: SD: writing data to card SD_write.5.ino

6: reading temperature, timestamping
reading and saving to SD card

RTC_date_Volt_Temp_SD.ino

7: Adding a Timer to Schedule Readings RTC_TPH_SD_Timer.ino,
RTC_date_Volt_Temp_SD_Timer.ino

1. Getting Started

Here are the steps required in order to get started with the SODAQ Mbili board.

1. Install the Arduino IDE & Software1

2. Install the SODAQ Mbili Files and Libraries2

3. Select the SODAQ Mbili Hardware Profile3

4. Configure the Serial Port4

5. Configure a Serial Monitor5

1 http://mbili.sodaq.net/howtodownloads/#step1
2 http://mbili.sodaq.net/howtodownloads/#step2
3 http://mbili.sodaq.net/howtodownloads/#step3
4 http://mbili.sodaq.net/howtodownloads/#step4
5 http://mbili.sodaq.net/howtodownloads/#step5

http://mbili.sodaq.net/howtodownloads/#step1
http://mbili.sodaq.net/howtodownloads/#step2
http://mbili.sodaq.net/howtodownloads/#step3
http://mbili.sodaq.net/howtodownloads/#step4
http://mbili.sodaq.net/howtodownloads/#step5
http://mbili.sodaq.net/howtodownloads/#step1
http://mbili.sodaq.net/howtodownloads/#step2
http://mbili.sodaq.net/howtodownloads/#step3
http://mbili.sodaq.net/howtodownloads/#step4
http://mbili.sodaq.net/howtodownloads/#step5

Laboratories of Day 1

2

1.1. Installing the Arduino IDE & Software

The first step required is to download and install, the latest version of the Arduino IDE. You
will need version 1.5.X or higher (presently 1.5.8 Beta). The Arduino IDE is available both as
an installer and as a zipped version.

You can find the files and installation instructions for different platforms here: Arduino
Software6

After downloading and installing the software, you need to run the Arduino IDE once for it to
create a the sketchbook directory called Arduino inside your documents folder. You can then
close the program.

More advanced users may wish to use Eclipse, instructions and details of the setup process
can be found here: Using Eclipse with Arduino7

1.2. Installing the SODAQ Mbili Files and Libraries

The next step is to download the SODAQ Mbili files here: Sodaq_bundle8

You must unpack this zip file and place the contents in the Arduino sub-folder of your
documents folder (the folder that was created by the Arduino IDE the first time it was run).

In Windows it is located in: C:\Users\yourusername\Documents\Arduino\.

The contents of that Arduino folder should now look like this:

In Linux it is located in: /usr/share/Arduino

In Apple OSX it is located in: /Users/username/Documents/Arduino

6 http://arduino.cc/en/Main/Software
7 http://playground.arduino.cc/Code/Eclipse
8 http://mbili.sodaq.net/wp-content/uploads/2015/04/Sodaq_bundle.zip

http://arduino.cc/en/Main/Software
http://arduino.cc/en/Main/Software
http://playground.arduino.cc/Code/Eclipse
http://mbili.sodaq.net/wp-content/uploads/2015/04/Sodaq_bundle.zip
http://arduino.cc/en/Main/Software
http://playground.arduino.cc/Code/Eclipse
http://mbili.sodaq.net/wp-content/uploads/2015/04/Sodaq_bundle.zip

Laboratories of Day 1

3

1.3. Selecting the SODAQ Mbili Hardware Profile

The SODAQ Mbili files you copied in step two include a hardware profile for the SODAQ Mbili
board. Restart the Arduino IDE. The IDE will now have the SODAQ board added to the list
found in the menu Tools→Board,

You simply need to select that hardware profile as the board that the Arduino IDE will use.

1.4. Configuring the Serial Port

Windows versions 7 and 8 will normally find the right USB driver when you plug in the SODAQ
Mbili for the first time. The same is also true for Mac and Linux. If your system doesn’t find the
driver you will have to download the FTDI drivers from here: FTDI Drivers9 .

The FTDI driver adds a virtual serial port. In Windows this is COMx (so COM1, COM8, etc.).
On Linux and Mac the port name starts with /dev/tty.

You can find the list of available serial ports in the menu under Tools→Port.

9 http://www.ftdichip.com/Drivers/VCP.htm

http://www.ftdichip.com/Drivers/VCP.htm
http://www.ftdichip.com/Drivers/VCP.htm

Laboratories of Day 1

4

You must select the serial port associated with the SODAQ Mbili board. The associated serial
port is only visible in that list when the SODAQ Mbili board is connected and switched on. If
you are unsure which is the correct port simply check what new port has been added after
you switch the device on.

1.5. Configuring Serial Monitor

In order to read data coming from the board, we will use the Serial Monitor. You can open
the serial monitor built in the IDE by pressing Ctrl-Shift-M or through the menu Tools→Serial
Monitor. The default setting does not add CR/LF to any commands you send. You will want
to change this using the drop down options shown below:

Alternatively, you can use a terminal emulator such as PuTTY. The download page can be
found here: PuTTY Download10 and you can find Instructions on the configuration settings
here: PuTTY Configuration.11

The Arduino IDE will automatically close the built in serial monitor before
uploading a sketch. If you are using a terminal emulator you must close

10 http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
11 https://binglongx.wordpress.com/2011/09/27/arduino-and-putty/

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
https://binglongx.wordpress.com/2011/09/27/arduino-and-putty/
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
https://binglongx.wordpress.com/2011/09/27/arduino-and-putty/

Laboratories of Day 1

5

the session before you can upload a sketch. If you do not, you will get
an error message stating that access is denied to the communications
port (it is busy due to another active session).

Whenever a terminal session is opened, a reset command is sent to
the device. Your uploaded sketch will then restart and you will see any
messages that might be displayed at startup. There is no need to rush to
try and open the serial monitor immediately after uploading your sketch.

2. Loading and Running a Basic Demo

You are now ready to upload and run your first sketch. Ensure that the SODAQ Mbili board
is connected and switched on, and that you have configured it as described above (selecting
the SODAQ Mbili hardware profile and the right serial port).

Simply copy and paste the following code into a new sketch.

Hello_world.ino

void setup()

{

 // put your setup code here, to run once:

 Serial.begin(9600);

 Serial.println("Starting...");

}

void loop()

{

 // put your main code here, to run repeatedly:

 Serial.println("Hello World");

 delay(1000);

}

Click

to optionally compile and test the code and then

Click

to compile and upload it to the SODAQ Mbili board.

If you open the built in serial monitor by pressing Ctrl-Shift-M you should see a startup message
displayed, and then “Hello World” displayed repeatedly at intervals of one second.

Laboratories of Day 1

6

3. Onboard LEDs

The SODAQ Mbili board has two user programmable onboard LEDs. These are LED1 (green)
and LED2 (red). The onboard position of these can be seen here indicated as G.

These two LEDs can be controlled using the output from the digital pins they are connected
to. In this example we will demonstrate how to switch on and off these LEDs using the same
methods used for digital I/O (output only). The same methods can be used for controlling the
output to components attached to other digital pins.

Laboratories of Day 1

7

LED1 & LED2 are the constants which define which digital pin each LED
is attached to.

Table 2. LED example

Required Components SODAQ Mbili Board

Required Libraries None

Hardware Setup Connect the SODAQ board to the PC via
USB.

Source Code Leds1_2.ino

Turn on the SODAQ Mbili board, compile and upload the following sketch from the Arduino IDE
onto the device. You should see the green and red LEDs alternately light up for one second
at a time.

Leds1_2.ino

//How long to activate each LED

#define DELAY_TIME 1000

void setup()

{

 //LED1

 pinMode(LED1, OUTPUT);

 digitalWrite(LED1, LOW);

 //LED2

 pinMode(LED2, OUTPUT);

 digitalWrite(LED2, LOW);

}

void loop()

{

 //Switch LED1 on then off again after DELAY_TIME (ms)

 digitalWrite(LED1, HIGH);

 delay(DELAY_TIME);

 digitalWrite(LED1, LOW);

 //Repeat for LED2

 digitalWrite(LED2, HIGH);

 delay(DELAY_TIME);

 digitalWrite(LED2, LOW);

}

Laboratories of Day 1

8

Let’s understand what each part of the code is doing.

• Here we define a constant which is used to control how long each LED is turned on for. The
specified value is in milliseconds and so each LED remains lit for one second at a time.

//How long to activate each LED

#define DELAY_TIME 1000

• Here we set each of the digital pins for the LEDs to OUTPUT12 mode using the
pinMode()13 method. Additionally, we turn them off initially using the digitalWrite()14

method and the constant LOW15 .

void setup()

{

 //LED1

 pinMode(LED1, OUTPUT);

 digitalWrite(LED1, LOW);

 //LED2

 pinMode(LED2, OUTPUT);

 digitalWrite(LED2, LOW);

}

• First we switch LED1 on using digitalWrite()16 and the constant HIGH17 . We then call the
method delay()18 which returns after the specified number of milliseconds (DELAY_TIME)
have elapsed. Finally, we switch off LED1 with another call to digitalWrite()19 this time
using the constant LOW20 . The same process is repeated for LED2.

void loop()

{

 //Switch LED1 on then off again after DELAY_TIME (ms)

 digitalWrite(LED1, HIGH);

12 http://arduino.cc/en/Reference/Constants
13 http://arduino.cc/en/Reference/pinMode
14 http://arduino.cc/en/Reference/digitalWrite
15 http://arduino.cc/en/Reference/Constants
16 http://arduino.cc/en/Reference/digitalWrite
17 http://arduino.cc/en/Reference/Constants
18 http://arduino.cc/en/reference/delay
19 http://arduino.cc/en/Reference/digitalWrite
20 http://arduino.cc/en/Reference/Constants

http://arduino.cc/en/Reference/Constants
http://arduino.cc/en/Reference/pinMode
http://arduino.cc/en/Reference/digitalWrite
http://arduino.cc/en/Reference/Constants
http://arduino.cc/en/Reference/digitalWrite
http://arduino.cc/en/Reference/Constants
http://arduino.cc/en/reference/delay
http://arduino.cc/en/Reference/digitalWrite
http://arduino.cc/en/Reference/Constants
http://arduino.cc/en/Reference/Constants
http://arduino.cc/en/Reference/pinMode
http://arduino.cc/en/Reference/digitalWrite
http://arduino.cc/en/Reference/Constants
http://arduino.cc/en/Reference/digitalWrite
http://arduino.cc/en/Reference/Constants
http://arduino.cc/en/reference/delay
http://arduino.cc/en/Reference/digitalWrite
http://arduino.cc/en/Reference/Constants

Laboratories of Day 1

9

 delay(DELAY_TIME);

 digitalWrite(LED1, LOW);

 //Repeat for LED2

 digitalWrite(LED2, HIGH);

 delay(DELAY_TIME);

 digitalWrite(LED2, LOW);

}

Excercise: Change delay time by a factor of 0.5 in LED1 and 1.5 in
LED2.

4. Serial Communication

The SODAQ Mbili has two hardware serial connections Serial & Serial1. Serial is the USB
connection and Serial1 the connection to the Bee module. They are also connected to two of
the Grove sockets. See here for details: Grove sockets21 .

In this tutorial we will discuss sending data over a serial connection (USB) between the SODAQ
Mbili and a connected PC. This can be a useful way of displaying debug data (in the Serial
Monitor) or for sending commands to the device.

The Serial22 class inherits from the Stream23 class and the behaviour is similar to other
Stream24 based classes. Most of the functionality involves reading from and writing to the
incoming and outgoing stream buffers. Below is a brief description of some of the methods
which you might use for this purpose.

Some of the links here reference the documentation of the parent class Stream25 .

To open the serial connection to the PC a call must be made to
Serial.begin(speed)26 . The parameter speed specifies the bits per
second or baud rate. This must match the baud rate set in the Serial
Monitor or in the terminal emulator program you are using. Similarly a
call to Serial.end()27 will close the connection.

21 http://mbili.sodaq.net/?page_id=81
22 http://arduino.cc/en/reference/serial
23 http://arduino.cc/en/Reference/Stream
24 http://arduino.cc/en/Reference/Stream
25 http://arduino.cc/en/Reference/Stream
26 http://arduino.cc/en/Serial/Begin
27 http://arduino.cc/en/Serial/End

http://mbili.sodaq.net/?page_id=81
http://arduino.cc/en/reference/serial
http://arduino.cc/en/Reference/Stream
http://arduino.cc/en/Reference/Stream
http://arduino.cc/en/Reference/Stream
http://arduino.cc/en/Serial/Begin
http://arduino.cc/en/Serial/End
http://mbili.sodaq.net/?page_id=81
http://arduino.cc/en/reference/serial
http://arduino.cc/en/Reference/Stream
http://arduino.cc/en/Reference/Stream
http://arduino.cc/en/Reference/Stream
http://arduino.cc/en/Serial/Begin
http://arduino.cc/en/Serial/End

Laboratories of Day 1

10

4.1. Reading from the Serial Connection (Input)

Data which is received from the PC is stored in the incoming stream buffer. Here are some of
the methods available for reading from the incoming stream buffer:

• read()28 : Reads and returns a single byte (character) from the incoming stream buffer.

• readBytes(buffer, length)29 : Copies length number of bytes (characters) from the incoming
stream buffer into the parameter buffer.

• readString()30 : Reads characters from the incoming stream buffer and returns the data
as a String. Each of these methods read varying amounts of data from the incoming
stream buffer and either return that data directly, or in the case ofhttp://arduino.cc/en/Serial/
ReadBytes[readBytes()] writes the data into the supplied parameter buffer. The data which
is read is also removed from the incoming stream buffer.

These methods are only able to return data when the incoming stream buffer is not empty.
Calling them when the incoming stream buffer is empty will likely result in a timeout (unless new
data is received before the timeout duration has elapsed). A call to the method available()31

returns the number of bytes (characters) currently stored in the incoming stream buffer and
can used to determine if any data has been received. Additionally, the timeout duration can
be set with a call to the method setTimeout()32 .

4.2. Writing to the Serial Connection (Output)

Sending data to the PC involves writing data to the outgoing stream buffer. Here are several
of the methods which can be used for writing to the outgoing stream buffer:

• print(val, base)33 : Writes the data from val into the outgoing stream buffer. If val is a
numerical type, the optional second parameter base can be used to specify the formatting.

• println(val, base)34 : Functions the same as the print() method but also appends the
carriage return (ASCII 13, or ‘\r’) and a newline characters (ASCII 10, or ‘\n’).

28 http://arduino.cc/en/Serial/Read
29 http://arduino.cc/en/Serial/ReadBytes
30 http://arduino.cc/en/Reference/StreamReadString
31 http://arduino.cc/en/Serial/Available
32 http://arduino.cc/en/Serial/setTimeout
33 http://arduino.cc/en/Serial/Print
34 http://arduino.cc/en/Serial/Println

http://arduino.cc/en/Serial/Read
http://arduino.cc/en/Serial/ReadBytes
http://arduino.cc/en/Reference/StreamReadString
http://arduino.cc/en/Serial/Available
http://arduino.cc/en/Serial/setTimeout
http://arduino.cc/en/Serial/Print
http://arduino.cc/en/Serial/Println
http://arduino.cc/en/Serial/Read
http://arduino.cc/en/Serial/ReadBytes
http://arduino.cc/en/Reference/StreamReadString
http://arduino.cc/en/Serial/Available
http://arduino.cc/en/Serial/setTimeout
http://arduino.cc/en/Serial/Print
http://arduino.cc/en/Serial/Println

Laboratories of Day 1

11

4.3. ECHO ECHO

Table 3. ECHO ECHO example

Required Components SODAQ Mbili Board

Required Libraries none

Hardware Setup Connect the SODAQ board to the PC via
USB.

Source Code Echo.ino

The following code will make the Arduino ECHO anything you send to it. Therefore, if you type
a 3, the Arduino will send back a 3. If you type a letter F, the Arduino will send back a letter F.
Enter the following code into your Arduino IDE and upload it to your Arduino.

Echo.ino

/* Use a variable called byteRead to temporarily store

 the data coming from the computer */

byte byteRead;

void setup() {

// Turn the Serial Protocol ON

 Serial.begin(9600);

}

void loop() {

 /* check if data has been sent from the computer: */

 if (Serial.available()) {

 /* read the most recent byte */

 byteRead = Serial.read();

 /*ECHO the value that was read, back to the serial port. */

 Serial.write(byteRead);

 }

}

• Once the Arduino sketch has been uploaded to the Arduino. Open the Serial monitor, which
looks like a magnifying glass at the top right section of the Arduino IDE. Please note, that
you need to keep the USB connected to the Arduino during this process, as the USB cable
is your communication link between your computer and the Arduino.

Laboratories of Day 1

12

• Type anything into the top box of the Serial Monitor and press <Enter> on your keyboard.
This will send a series of bytes to the Arduino. The Arduino will respond by sending back
your typed message in the larger textbox.

• Please note that we are using Serial.write(byteRead); on line 18 to get the Arduino to
ECHO the message back to you on your computer.

Exercises

1. Delete lines 16 to 18, and replace them with the following line : Serial.write(Serial.read());

This essentially eliminates the byteRead variable in the sketch above. But we will be using it
later on, so once you have tested it out, put the code back together as originally displayed.

2. Replace line 18 with a Serial.println instead of Serial.write Serial.println(byteRead);

Once uploaded, type 1 <enter> 2 <enter> 3 <enter> into the Serial Monitor.You should
see: 495051 Serial.print and Serial.println will send back the actual ASCII code, whereas
Serial.write will send back the actual text. See ASCII codes35 for more information.

35 http://www.asciitable.com/

http://www.asciitable.com/
http://www.asciitable.com/

Laboratories of Day 1

13

3. Try typing in numbers like 1.5 or 2.003 or -15.6 into the Serial Monitor using Serial.write and
Serial.print or Serial.println commands as described before. You will notice that the decimal
point transmits as a number using Serial.print or Serial.println, and will transmit as a decimal
point when using Serial.write

4.4. Operations

Table 4. Operations example

Required Components SODAQ Mbili Board

Required Libraries none

Hardware Setup Connect the SODAQ board to the PC via
USB.

Source Code add_sub.ino

Turn on the SODAQ Mbili board, compile and upload the sketch below from the Arduino IDE
onto the SODAQ Mbili board. Leave the USB cable plugged in and open the Serial Monitor
(Ctrl-Shift-M) and ensure that it is set to the 9600 baud rate.

If you try sending the command ‘add’ followed by ‘sub’ you should see output similar to this:

add_sub.ino

#define INPUT_DELAY 100 //Specifies how often we check for input

int value = 0; //A variable which is modified by commands from the serial connection

Laboratories of Day 1

14

void setup()

{

 //Open the port

 Serial.begin(9600);

 Serial.println("Opened serial connection");

 //Print initial message

 Serial.println("Enter the commands <add> or <sub>");

}

void loop()

{

 //Check if any data has been received

 //If so call the method handleInput() to process it

 if (Serial.available() > 0)

 {

 handleInput();

 }

 //This delay dictates how often the device will check for input

 delay(INPUT_DELAY);

}

void handleInput()

{

 //Get the input string

 String input = Serial.readString();

 //Remove any whitespace or CR/LF

 input.trim();

 //Echo the input

 Serial.println("Command: " + input + " received");

 //Process the input

 if (input == "add")

 {

 Serial.println("Adding 1 to the value");

 value++;

 }

 else if (input == "sub")

 {

 Serial.println("Subtracting 1 from the value");

 value--;

 }

 else

Laboratories of Day 1

15

 {

 Serial.println("Unknown command: " + input);

 }

 //Echo the changes

 Serial.print("The current value is: ");

 Serial.println(value);

}

• Here we define a delay value which is used to control the effective frequency that the sketch
checks for any new incoming data. We also declare a global variable, value, which we will
modify via commands sent from the PC.

#define INPUT_DELAY 100 //Specifies how often we check for input

int value = 0; //A variable which is modified by commands from the serial connection

• In the setup()36 method we first open the serial connection. This is done with a call to
Serial.begin()37 on the hardware serial object Serial. We then use the output method
println()38 to write two strings to the outgoing stream buffer.

void setup()

{

 //Open the port

 Serial.begin(9600);

 Serial.println("Opened serial connection");

 //Print initial message

 Serial.println("Enter the commands <add> or <sub>");

}

• Here we check if there is any data in the incoming stream buffer. This is done with a call
to Serial.available()39 which returns the number of bytes (characters) which have been
received and are currently held in the incoming stream buffer. If the returned value is greater
than zero then we call the user defined method handleInput() which processes the incoming
data. We have also added a small delay by calling the method delay()40 . This affects how
quickly the sketch responds to data received over the serial connection.

36 http://arduino.cc/en/Reference/Setup
37 http://arduino.cc/en/Serial/begin
38 http://arduino.cc/en/Serial/Println
39 http://arduino.cc/en/Serial/Available
40 http://arduino.cc/en/reference/delay

http://arduino.cc/en/Reference/Setup
http://arduino.cc/en/Serial/begin
http://arduino.cc/en/Serial/Println
http://arduino.cc/en/Serial/Available
http://arduino.cc/en/reference/delay
http://arduino.cc/en/Reference/Setup
http://arduino.cc/en/Serial/begin
http://arduino.cc/en/Serial/Println
http://arduino.cc/en/Serial/Available
http://arduino.cc/en/reference/delay

Laboratories of Day 1

16

Note: An alternative way of handling the data in the incoming stream buffer would be to use
the automatically triggered method serialEvent()41 .

void loop()

{

 //Check if any data has been received

 //If so call the method handleInput() to process it

 if (Serial.available() > 0)

 {

 handleInput();

 }

 //This delay dictates how often the device will check for input

 delay(INPUT_DELAY);

}

This user defined method handleInput() is called from loop()42 if any data is detected in
the incoming stream buffer. Here we read the data into the String43 input using the method
readString()44 . This copies the data from the incoming stream buffer and stores it in input.
It also clears the stream buffer of the data it copied. We then use trim()45 to remove any
additional termination characters which might have be added by the terminal program. Using
the String46 comparison operator ==47 we compare the received command against the two
specified ones and then modify value accordingly.

void handleInput()

{

 //Get the input string

 String input = Serial.readString();

 //Remove any whitespace or CR/LF

 input.trim();

 //Echo the input

 Serial.println("Command: " + input + " received");

 //Process the input

41 http://arduino.cc/en/Reference/SerialEvent
42 http://arduino.cc/en/Reference/loop
43 http://arduino.cc/en/Reference/string
44 http://arduino.cc/en/Reference/StreamReadString
45 http://arduino.cc/en/Reference/StringTrim
46 http://arduino.cc/en/Reference/string
47 http://arduino.cc/en/Reference/StringComparison

http://arduino.cc/en/Reference/SerialEvent
http://arduino.cc/en/Reference/loop
http://arduino.cc/en/Reference/string
http://arduino.cc/en/Reference/StreamReadString
http://arduino.cc/en/Reference/StringTrim
http://arduino.cc/en/Reference/string
http://arduino.cc/en/Reference/StringComparison
http://arduino.cc/en/Reference/SerialEvent
http://arduino.cc/en/Reference/loop
http://arduino.cc/en/Reference/string
http://arduino.cc/en/Reference/StreamReadString
http://arduino.cc/en/Reference/StringTrim
http://arduino.cc/en/Reference/string
http://arduino.cc/en/Reference/StringComparison

Laboratories of Day 1

17

 if (input == "add")

 {

 Serial.println("Adding 1 to the value");

 value++;

 }

 else if (input == "sub")

 {

 Serial.println("Subtracting 1 from the value");

 value--;

 }

 else

 {

 Serial.println("Unknown command: " + input);

 }

 //Echo the changes

 Serial.print("The current value is: ");

 Serial.println(value);

}

4.5. Exercise

Change the example and add a multiplier by 2 and a divider by 2.

Serial.println("Enter the commands <add> or <sub> or <div> or <mul>");

Also you can change integer value to long float value to have decimals when for example
dividing 3/2=1.5.

float value = 0;

Hint…

else if (input == "div")

 {

 Serial.println("Dividing the value by 2");

 value=value/2.0;

 }

 else if (input == "mul")

 {

 Serial.println("Multiplying the value by 2");

 value=value*2.0;

 }

 else

Laboratories of Day 1

18

 {

 Serial.println("Unknown command: " + input);

 }

4.6. RTC: setting time, reading time

In this example we will demonstrate how to manually set and read time in RTC from the
SODAQ Mbili and display those readings using Serial communication.

Table 5. RTC example

Required Components SODAQ Mbili Board, 0.5W Solar Panel,
1aH Battery Pack

Required Libraries Wire, Sodaq_DS3231

Hardware Setup Connect the SODAQ board to the PC via
USB.

Source Code RTC_date_time_update.ino

Turn on the SODAQ Mbili board, compile and upload the following sketch from the Arduino
IDE onto the SODAQ Mbili board.

RTC_date_time_update.ino

//Include the necessary libraries

#include <Wire.h>

#include <Sodaq_DS3231.h>

Sodaq_DS3231 RTC; //Create RTC object for DS3231

//year, month, date, hour, min, sec and week-day(starts from 0 and goes to 6)

//writing any non-existent time-data may interfere with normal operation of the RTC.

//Take care of week-day also.*/

DateTime dt(2014, 06, 05, 11, 5, 00, 4);

void setup()

{

 //Start serial

 Serial.begin(9600);

 Serial.println("Date, Time");

 //Start the I2C protocol

 Wire.begin();

 //initialize the DS3231

 RTC.begin();

Laboratories of Day 1

19

 RTC.setDateTime(dt); //Adjust date-time as defined 'dt' above

}

void loop()

{

 String data = getDateTime();

 Serial.println(data);

}

String getDateTime()

{

 String dateTimeStr;

 //Create a DateTime object from the current time

 DateTime dt(RTC.makeDateTime(RTC.now().getEpoch()));

 //Convert it to a String

 dt.addToString(dateTimeStr);

 return dateTimeStr;

}

• Here the necessary library files are included in the sketch using the #include48 compiler
directive.

//Include the necessary libraries

#include <Wire.h>

#include <Sodaq_DS3231.h>

• Here we prepare DateTime format on dt to update RTC.

Sodaq_DS3231 RTC; //Create RTC object for DS3231 RTC come Temp Sensor

//year, month, date, hour, min, sec and week-day(starts from 0 and goes to 6)

//writing any non-existent time-data may interfere with normal operation of the RTC.

//Take care of week-day also.

DateTime dt(2014, 06, 05, 11, 5, 00, 4);

Note the data format: year, month, date, hour, min, sec and week-day.
Week-day starts with 0 (Sunday) and finishes with 6 (Saturday).

48 http://arduino.cc/en/Reference/Include

http://arduino.cc/en/Reference/Include
http://arduino.cc/en/Reference/Include

Laboratories of Day 1

20

• We initialize the Serial, I2C protocol and the DS3231 using calls to Serial.begin(9600); ,
Wire.begin() and rtc.begin().

void setup()

{

 //Start serial

 Serial.begin(9600);

 Serial.println("Date, Time, Temperature, Voltage, Charging status");

 //Start the I2C protocol

 Wire.begin();

 //initialize the DS3231

 RTC.begin();

 RTC.setDateTime(dt); //Adjust date-time as defined 'dt' above

}

Once the RTC has been updated, line RTC.setDateTime(dt); has to be
commented in order not to update every reboot of the board.

• The readings values are then converted into String mode and glued all together into data
String and print into serial comm.

 String data = getDateTime();

 Serial.println(data);

4.7. Reading temperature from internal RTC temperature sensor

Here we will take a temperature reading and date and time reading from the DS3231 chip,
display that reading on the Serial comm. The DS3231 chip provides a range of functionality
including a real time clock, an interrupt timer, and a temperature sensor. Here we will only
look at taking the temperature reading.

In addition to the temperature reading we also read and display the battery voltage level using
a reading from one of the analog pins49 . For further details of the voltage reading refer to the
JST section of the schema: SODAQ Mbili Schema50 . We will be also displaying if the battery
is being charged or not.

49 http://arduino.cc/en/Tutorial/AnalogInputPins
50 http://mbili.sodaq.net/?page_id=20

http://arduino.cc/en/Tutorial/AnalogInputPins
http://mbili.sodaq.net/?page_id=20
http://arduino.cc/en/Tutorial/AnalogInputPins
http://mbili.sodaq.net/?page_id=20

Laboratories of Day 1

21

Connect the solar panel and the LiPo battery into their respective sockets, as per picture
below. You don’t need to connect the external sensor yet. Connect the SODAQ board to the
PC via USB.

Table 6. RTC temperature example

Required Components SODAQ Mbili Board, 0.5W Solar Panel,
1aH Battery Pack

Required Libraries Wire, Sodaq_DS3231

Hardware Setup Plug the 0.5W solar panel and the 1A
LiPo battery into their respective sockets.
Connect the SODAQ board to the PC via
USB.

Source Code RTC_date_Volt_Temp.ino

Turn on the SODAQ Mbili board, compile and upload the following sketch from the Arduino
IDE to the SODAQ Mbili board, and then unplug the USB cable from the computer when it
has completed the upload.

RTC_date_Volt_Temp.ino

Laboratories of Day 1

22

//Include the necessary libraries

#include <Wire.h>

#include <Sodaq_DS3231.h>

//These constants are used for reading the battery voltage

#define ADC_AREF 3.3

#define BATVOLTPIN A6

#define BATVOLT_R1 4.7

#define BATVOLT_R2 10

Sodaq_DS3231 RTC; //Create RTC object for DS3231 RTC come Temp Sensor

char weekDay[][4] = {"Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat" };

//year, month, date, hour, min, sec and week-day(starts from 0 and goes to 6)

//writing any non-existent time-data may interfere with normal operation of the RTC.

//Take care of week-day also.*/

DateTime dt(2014, 06, 05, 11, 5, 00, 4);

void setup()

{

 //Start serial

 Serial.begin(9600);

 Serial.println("Date, Time, Temperature, Voltage");

 //Start the I2C protocol

 Wire.begin();

 //initialize the DS3231

 RTC.begin();

 RTC.setDateTime(dt); //Adjust date-time as defined 'dt' above

}

void loop()

{

 ///Read the temperature

 RTC.convertTemperature();

 float temp = RTC.getTemperature();

 // Convert temperature voltage to string

 char buffer[14]; //make buffer large enough for 7 digits

 String temperatureS = dtostrf(temp, 7,2,buffer);

 //'7' digits including '-' negative, decimal and white space. '2' decimal places

 temperatureS.trim(); //trim whitespace, important so Ubidots will treat it as a

 number

 //Read the voltage

Laboratories of Day 1

23

 int mv = getRealBatteryVoltage() * 1000.0;

 String data = getDateTime()+ ", ";

 data += String(temperatureS)+ "C, ";

 data += String(mv)+ "mV");

 Serial.println(data);

}

String getDateTime()

{

 String dateTimeStr;

 //Create a DateTime object from the current time

 DateTime dt(RTC.makeDateTime(RTC.now().getEpoch()));

 //Convert it to a String

 dt.addToString(dateTimeStr);

 return dateTimeStr;

}

float getRealBatteryVoltage()

{

 uint16_t batteryVoltage = analogRead(BATVOLTPIN);

 return (ADC_AREF / 1023.0) * (BATVOLT_R1 + BATVOLT_R2) / BATVOLT_R2 *

 batteryVoltage;

}

• Here the necessary library files are included in the sketch using the #include51 compiler
directive.

//Include the necessary libraries

#include <Wire.h>

#include <Sodaq_DS3231.h>

• Here we define several constants which will be used for reading the voltage level of the
battery. ADC_AREF specifies the pin voltage and BATVOLTPIN the analog pin that the
reading is taken from. BATVOLT_R1 and BATVOLT_R2 specify the resistors used on the
voltage reading circuit. For further details refer to the JST section of the schema: SODAQ
Mbili Schema52 .

51 http://arduino.cc/en/Reference/Include
52 http://mbili.sodaq.net/?page_id=20

http://arduino.cc/en/Reference/Include
http://mbili.sodaq.net/?page_id=20
http://mbili.sodaq.net/?page_id=20
http://arduino.cc/en/Reference/Include
http://mbili.sodaq.net/?page_id=20

Laboratories of Day 1

24

//These constants are used for reading the battery voltage

#define ADC_AREF 3.3

#define BATVOLTPIN A6

#define BATVOLT_R1 4.7

#define BATVOLT_R2 10

• Here we prepare DateTime format on dt to update RTC.

Sodaq_DS3231 RTC; //Create RTC object for DS3231 RTC come Temp Sensor

char weekDay[][4] = {"Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat" };

//year, month, date, hour, min, sec and week-day(starts from 0 and goes to 6)

//writing any non-existent time-data may interfere with normal operation of the RTC.

//Take care of week-day also.

DateTime dt(2014, 06, 05, 11, 5, 00, 4);

• We initialize the Serial, I2C protocol and the DS3231 using calls to Serial.begin(9600) ,
Wire.begin() and rtc.begin().

void setup()

{

 //Start serial

 Serial.begin(9600);

 Serial.println("Date, Time, Temperature, Voltage, Charging status");

 //Start the I2C protocol

 Wire.begin();

 //initialize the DS3231

 RTC.begin();

 RTC.setDateTime(dt); //Adjust date-time as defined 'dt' above

}

Once the RTC has been updated, line RTC.setDateTime(dt); has to be
commented in order not to update every reboot of the board.

• First we get the temperature reading. The call to rtc.convertTemperature() instructs
the DS3231 to take a immediate temperature reading. The value of that reading
is then retreived with a call to rtc.getTemperature(). The user defined method
getRealBatteryVoltage() is then called and the returned value is converted to millivolts.
Then we read the charging status with read_charge_status()

Laboratories of Day 1

25

The readings values are then converted into String mode and glued all together into data
String and print into serial comm.

 ///Read the temperature

 RTC.convertTemperature();

 float temp = RTC.getTemperature();

 // Convert temperature voltage to string

 char buffer[14]; //make buffer large enough for 7 digits

 String temperatureS = dtostrf(temp, 7,2,buffer);

 //'7' digits including '-' negative, decimal and white space. '2' decimal places

 temperatureS.trim(); //trim whitespace, important so Ubidots will treat it as a

 number

 //Read the voltage

 int mv = getRealBatteryVoltage() * 1000.0;

 String data = getDateTime()+ ", ";

 data += String(temperatureS)+ "C, ";

 data += String(mv)+ "mV");

 Serial.println(data);

• This method reads an analog signal from the specified analog pin BATVOLTPIN and
converts it to a voltage reading using the specified constants for the pin voltage ADC_AREF
and the circuit’s resistor values BATVOLT_R1 & BATVOLT_R2. The circuit used here is a
voltage divider53 as the battery voltage is too high to connect directly to the analog pin.

float getRealBatteryVoltage()

{

 uint16_t batteryVoltage = analogRead(BATVOLTPIN);

 return (ADC_AREF / 1023.0) * (BATVOLT_R1 + BATVOLT_R2) / BATVOLT_R2 *

 batteryVoltage;

}

4.8. Writing to SD card

The SODAQ Mbili has two storage devices available. These are the MicroSD and the Serial
Flash devices. In this example we will demonstrate the use of the storage capabilities of the
MicroSD device. We will be creating a simple write which, at fixed intervals, logs a sentence
to a storage file and to the Serial Monitor. The log file will consists of a sentence in each line

53 https://learn.sparkfun.com/tutorials/voltage-dividers

https://learn.sparkfun.com/tutorials/voltage-dividers
https://learn.sparkfun.com/tutorials/voltage-dividers

Laboratories of Day 1

26

The SD Library54 provides the functionality for working with the MicroSD device. It contains
two classes SD and File. The SD class provides the functionality for working with the MicroSD
device and file system, and the File class provides the functionality for file operations. For
further information about these classes, and the methods they provide, refer to the reference
pages available here: SD Library55 .

Table 7. SD write example

Required Components SODAQ Mbili Board, 0.5W Solar Panel,
1aH Battery Pack, MicroSD card

Required Libraries SPI, SD

Hardware Setup Plug the 0.5W solar panel and the 1A LiPo
battery into their respective sockets. Insert
the MicroSD card. Connect the SODAQ
board to the PC via USB.

Source Code SD_write.ino

The SPI and SD Libraries come pre-installed with the Arduino IDE, and so there is no need
to download or install either of them.

Insert the memory card in the socket labelled as "1":

54 http://arduino.cc/en/Reference/SD
55 http://arduino.cc/en/Reference/SD

http://arduino.cc/en/Reference/SD
http://arduino.cc/en/Reference/SD
http://arduino.cc/en/Reference/SD
http://arduino.cc/en/Reference/SD

Laboratories of Day 1

27

Turn on the SODAQ Mbili board, compile and upload the following sketch from the Arduino
IDE onto the SODAQ Mbili board. Leave the USB cable plugged in and open the Serial Monitor
(Ctrl-Shift-M) and ensure that it is set to the 9600 baud rate.

SD_write.ino

//Include the necessary libraries

#include <SPI.h>

#include <SD.h>

//The delay between the sensor readings

#define READ_DELAY 1000

//Digital pin 11 is the MicroSD slave select pin on the Mbili

#define SD_SS_PIN 11

//The data log file

#define FILE_NAME "DataLog.txt"

//Data header

#define DATA_HEADER "Hello world"

void setup()

{

 //Start serial

 Serial.begin(9600);

 Serial.println(DATA_HEADER);

 //initialize log file

 setupLogFile();

}

void loop()

{

 //Create the data record

 String dataRec = createDataRecord();

 //Save the data record to the log file

 logData(dataRec);

 //Echo the data to the serial connection

 Serial.println(dataRec);

 //Wait before taking the next reading

 delay(READ_DELAY);

}

Laboratories of Day 1

28

void setupLogFile()

{

 //initialize the SD card

 if (!SD.begin(SD_SS_PIN))

 {

 Serial.println("Error: SD card failed to initialize or is missing.");

 //Hang

 while (true);

 }

 //Check if the file already exists

 bool oldFile = SD.exists(FILE_NAME);

 //Open the file in write mode

 File logFile = SD.open(FILE_NAME, FILE_WRITE);

 //Add header information if the file did not already exist

 if (!oldFile)

 {

 logFile.println(DATA_HEADER);

 }

 //Close the file to save it

 logFile.close();

}

void logData(String rec)

{

 //Re-open the file

 File logFile = SD.open(FILE_NAME, FILE_WRITE);

 //Write the CSV data

 logFile.println(rec);

 //Close the file to save it

 logFile.close();

}

String createDataRecord()

{

 //Create a String type data record in csv format

 String data = "1st East-African Workshop on the Internet Of Things";

 return data;

}

56 http://arduino.cc/en/Reference/Include

http://arduino.cc/en/Reference/Include

Laboratories of Day 1

29

• Here the necessary library files are included in the sketch using the #include56 compiler
directive.

#include <SPI.h>

#include <SD.h>

• Here we define the delay between sensor readings, the SPI slave select (SS) pin for the
MicroSD device, the log file for the sensor readings. and the data header for the log file.

//The delay between the sensor readings

#define READ_DELAY 1000

//Digital pin 11 is the MicroSD slave select pin on the Mbili

#define SD_SS_PIN 11

//The data log file

#define FILE_NAME "DataLog.txt"

//Data header

#define DATA_HEADER "Hello world"

• Here we start by initializing the serial connection with a call to Serial.begin()57 . Next we
call to initialize the storage system and log file. We will be displaying the sensor data in
the Serial Monitor (as well as saving it to a log file on a MicroSD card). For readability, we
first send the header information to the Serial Monitor with a call to the Serial.println()58

method passing the parameter DATA_HEADER.

void setup()

{

 //initialize the serial connection

 Serial.begin(9600);

 //initialize log file

 setupLogFile();

 //Echo the data header to the serial connection

 Serial.println(DATA_HEADER);

}

57 http://arduino.cc/en/Serial/Begin
58 http://arduino.cc/en/Serial/Println

http://arduino.cc/en/Reference/Include
http://arduino.cc/en/Serial/Begin
http://arduino.cc/en/Serial/Println
http://arduino.cc/en/Serial/Begin
http://arduino.cc/en/Serial/Println

Laboratories of Day 1

30

• Here we start by getting the data with a call to the user defined method createDataRecord()
which returns us a String59 containing the current sentence. We then pass that String60

to the user defined method logData() which writes it to the log file. We also send the data
to the Serial Monitor using the Serial.println()61 method. Finally, we call delay()62 to wait
READ_DELAY number of milliseconds before returning from the loop()63 method. This
roughly controls the frequency of the sensor readings.

void loop()

{

 //Create the data record

 String dataRec = createDataRecord();

 //Save the data record to the log file

 logData(dataRec);

 //Echo the data to the serial connection

 Serial.println(dataRec);

 //Wait before taking the next reading

 delay(READ_DELAY);

}

• Here we start by initializing the MicroSD device. This is done by a call to SD.begin()64

passing the SPI slave select (SS) pin that the MicroSD device is connected to. On the
SODAQ Mbili this is digitial pin 11 (defined here as SD_SS_PIN). We then make a call
to SD.exists()65 which tells us whether our log file already exists or not (we will use
this information later). We then use thehttp://arduino.cc/en/Reference/SDopen[SD.open()]
method with the FILE_WRITE66 parameter to open the log file in write mode.

When a file is opened in FILE_WRITE67 mode, if the file already exists,
any data written to file will be appended to end of the existing file. If the
file does not exist it will be created.

59 http://arduino.cc/en/Reference/string
60 http://arduino.cc/en/Reference/string
61 http://arduino.cc/en/Serial/Println
62 http://arduino.cc/en/reference/delay
63 http://arduino.cc/en/Reference/loop
64 http://arduino.cc/en/Reference/SDbegin
65 http://arduino.cc/en/Reference/SDexists
66 http://arduino.cc/en/Reference/SDopen
67 http://arduino.cc/en/Reference/SDopen

http://arduino.cc/en/Reference/string
http://arduino.cc/en/Reference/string
http://arduino.cc/en/Serial/Println
http://arduino.cc/en/reference/delay
http://arduino.cc/en/Reference/loop
http://arduino.cc/en/Reference/SDbegin
http://arduino.cc/en/Reference/SDexists
http://arduino.cc/en/Reference/SDopen
http://arduino.cc/en/Reference/SDopen
http://arduino.cc/en/Reference/string
http://arduino.cc/en/Reference/string
http://arduino.cc/en/Serial/Println
http://arduino.cc/en/reference/delay
http://arduino.cc/en/Reference/loop
http://arduino.cc/en/Reference/SDbegin
http://arduino.cc/en/Reference/SDexists
http://arduino.cc/en/Reference/SDopen
http://arduino.cc/en/Reference/SDopen

Laboratories of Day 1

31

If the file did not previously exist, we write the header information as the first line of that file.
This is done with a call to File.println()68 using the constant DATA_HEADER. This data header
gives a description of what sensor data is being written to the log file and the order of that data.

void setupLogFile()

{

 //initialize the SD card

 if (!SD.begin(SD_SS_PIN))

 {

 Serial.println("Error: SD card failed to initialize or is missing.");

 //Hang

 while (true);

 }

 //Check if the file already exists

 bool oldFile = SD.exists(FILE_NAME);

 //Open the file in write mode

 File logFile = SD.open(FILE_NAME, FILE_WRITE);

 //Add header information if the file did not already exist

 if (!oldFile)

 {

 logFile.println(DATA_HEADER);

 }

 //Close the file to save it

 logFile.close();

}

• Here we reopen the log file using the SD.open()69 method and FILE_WRITE70 parameter.
Since the file already exists any new data will be appended to the existing file. Using the
File.println()71 method we write a new line to log file using the String72 passed as the
parameter rec. Finally, we close the file to ensure that the data is saved.

void logData(String rec)

{

 //Re-open the file

68 http://arduino.cc/en/Reference/FilePrintln
69 http://arduino.cc/en/Reference/SDopen
70 http://arduino.cc/en/Reference/SDopen
71 http://arduino.cc/en/Reference/FilePrintln
72 http://arduino.cc/en/Reference/string

http://arduino.cc/en/Reference/FilePrintln
http://arduino.cc/en/Reference/SDopen
http://arduino.cc/en/Reference/SDopen
http://arduino.cc/en/Reference/FilePrintln
http://arduino.cc/en/Reference/string
http://arduino.cc/en/Reference/FilePrintln
http://arduino.cc/en/Reference/SDopen
http://arduino.cc/en/Reference/SDopen
http://arduino.cc/en/Reference/FilePrintln
http://arduino.cc/en/Reference/string

Laboratories of Day 1

32

 logFile = SD.open(FILE_NAME, FILE_WRITE);

 //Write the CSV data

 logFile.println(rec);

 //Close the file to save it

 logFile.close();

}

• Here we create and return a String73 which contains the data readings from the sensors in
comma separated format (CSV). The String74 contains the Time & Date which is queried
using the user defined method getTimeDate(). We then append the sensor data, using the
String += operator75 , from each of the four sensors with a comma separator between each
reading. The complete String76 containing all the data is then returned from this method.

String createDataRecord()

{

 //Create a String type data record in csv format

 String data = "1st East-African Workshop on the Internet Of Things";

 return data;

}

4.9. Writing Date, Voltage and Temperature to the SD card

In this example we will demonstrate the use of RTC to read date, time and temperature. We will
also measure battery voltage and will be creating a simple data logger that logs this information
at fixed intervals in a file and shows it in the Serial Monitor. The log file will consists of Comma
Separated Values (CSV) in ASCII format.

Table 8. RTC and SD write example

Required Components SODAQ Mbili Board, 0.5W Solar Panel,
1aH Battery Pack, MicroSD card

Required Libraries SPI, SD, Sodaq_DS3231

Source Code RTC_date_Volt_Temp_SD.ino

73 http://arduino.cc/en/Reference/string
74 http://arduino.cc/en/Reference/string
75 http://arduino.cc/en/Reference/StringAppend
76 http://arduino.cc/en/Reference/string

http://arduino.cc/en/Reference/string
http://arduino.cc/en/Reference/string
http://arduino.cc/en/Reference/StringAppend
http://arduino.cc/en/Reference/string
http://arduino.cc/en/Reference/string
http://arduino.cc/en/Reference/string
http://arduino.cc/en/Reference/StringAppend
http://arduino.cc/en/Reference/string

Laboratories of Day 1

33

Hardware Setup Plug the 0.5W solar panel and the 1A LiPo
battery into their respective sockets. Insert
the MicroSD card. Connect the SODAQ
board to the PC via USB.

Source Code RTC_date_Volt_Temp_SD.ino

The SPI and SD Libraries come pre-installed with the Arduino IDE, and so there is no need to
download or install either of them. The Sodaq_DS3231 libraries is included with the SODAQ
Mbili files that you have already installed.

Turn on the SODAQ Mbili board, compile and upload the following sketch from the Arduino
IDE onto the SODAQ Mbili board. Leave the USB cable plugged in and open the Serial Monitor
(Ctrl-Shift-M) and ensure that it is set to the 9600 baud rate.

RTC_date_Volt_Temp_SD.ino

//Include the necessary libraries

#include <Wire.h>

#include <Sodaq_DS3231.h>

#include <SPI.h>

#include <SD.h>

//These constants are used for reading the battery voltage

#define ADC_AREF 3.3

#define BATVOLTPIN A6

#define BATVOLT_R1 4.7

#define BATVOLT_R2 10

//The delay between the sensor readings

#define READ_DELAY 1000

//Digital pin 11 is the MicroSD slave select pin on the Mbili

#define SD_SS_PIN 11

//The data log file

#define FILE_NAME "DataLog.txt"

//Data header

#define DATA_HEADER "DateTime, Temperature, Voltage"

Sodaq_DS3231 RTC; //Create RTC object for DS3231 RTC come Temp Sensor

//year, month, date, hour, min, sec and week-day(starts from 0 and goes to 6)

//writing any non-existent time-data may interfere with normal operation of the RTC.

//Take care of week-day also.*/

DateTime dt(2014, 06, 05, 11, 5, 00, 4);

Laboratories of Day 1

34

void setup()

{

 //Start serial

 Serial.begin(9600);

 Serial.println(DATA_HEADER);

 //initialize sensors

 setupSensors();

 //initialize log file

 setupLogFile();

}

void loop()

{

 //Create the data record

 String dataRec = createDataRecord();

 //Save the data record to the log file

 logData(dataRec);

 //Echo the data to the serial connection

 Serial.println(dataRec);

 //Wait before taking the next reading

 delay(READ_DELAY);

}

void setupSensors()

{

 //initialize I2C

 Wire.begin();

 //initialize the DS3231

 RTC.begin();

 //remember to comment this line once RTC is updated

 RTC.setDateTime(dt); //Adjust date-time as defined 'dt' above

}

void setupLogFile()

{

 //initialize the SD card

 if (!SD.begin(SD_SS_PIN))

 {

Laboratories of Day 1

35

 Serial.println("Error: SD card failed to initialize or is missing.");

 //Hang

 while (true);

 }

 //Check if the file already exists

 bool oldFile = SD.exists(FILE_NAME);

 //Open the file in write mode

 File logFile = SD.open(FILE_NAME, FILE_WRITE);

 //Add header information if the file did not already exist

 if (!oldFile)

 {

 logFile.println(DATA_HEADER);

 }

 //Close the file to save it

 logFile.close();

}

void logData(String rec)

{

 //Re-open the file

 File logFile = SD.open(FILE_NAME, FILE_WRITE);

 //Write the CSV data

 logFile.println(rec);

 //Close the file to save it

 logFile.close();

}

String createDataRecord()

{

 //Create a String type data record in csv format

 ///Read the temperature

 RTC.convertTemperature();

 float temp = RTC.getTemperature();

 // Convert temperature voltage to string

 char buffer[14]; //make buffer large enough for 7 digits

 String temperatureS = dtostrf(temp, 7,2,buffer);

 //'7' digits including '-' negative, decimal and white space. '2' decimal places

 temperatureS.trim(); //trim whitespace, important so Ubidots will treat it as a

 number

Laboratories of Day 1

36

 //Read the voltage

 int mv = getRealBatteryVoltage() * 1000.0;

 String data = getDateTime()+ ", ";

 data += String(temperatureS)+ "C, ";

 data += String(mv)+ "mV";

 return data;

}

String getDateTime()

{

 String dateTimeStr;

 //Create a DateTime object from the current time

 DateTime dt(RTC.makeDateTime(RTC.now().getEpoch()));

 //Convert it to a String

 dt.addToString(dateTimeStr);

 return dateTimeStr;

}

float getRealBatteryVoltage()

{

 uint16_t batteryVoltage = analogRead(BATVOLTPIN);

 return (ADC_AREF / 1023.0) * (BATVOLT_R1 + BATVOLT_R2) / BATVOLT_R2 *

 batteryVoltage;

}

• Here the necessary library files are included in the sketch using the #include77 compiler
directive.

#include <Wire.h>

#include <SPI.h>

#include <SD.h>

//SODAQ Mbili libraries

#include <Sodaq_DS3231.h>

• Here we define the delay between sensor readings, the SPI slave select (SS) pin for the
MicroSD device, the log file for the sensor readings and the data header for the log file. We
also define constants are used for reading the battery voltage.

77 http://arduino.cc/en/Reference/Include

http://arduino.cc/en/Reference/Include
http://arduino.cc/en/Reference/Include

Laboratories of Day 1

37

//These constants are used for reading the battery voltage

#define ADC_AREF 3.3

#define BATVOLTPIN A6

#define BATVOLT_R1 4.7

#define BATVOLT_R2 10

//The delay between the sensor readings

#define READ_DELAY 1000

//Digital pin 11 is the MicroSD slave select pin on the Mbili

#define SD_SS_PIN 11

//The data log file

#define FILE_NAME "DataLog.txt"

//Data header

#define DATA_HEADER "DateTime, Temperature, Voltage"

• Here we start by initializing the serial connection with a call to Serial.begin()78 . Next we
call several user defined methods, one to initialize the readings we will be using and the
other to initialize the storage system and log file. We will be displaying the readings data in
the Serial Monitor (as well as saving it to a log file on a MicroSD card). For readability, we
first send the header information to the Serial Monitor with a call to the Serial.println()79

method passing the parameter DATA_HEADER.

void setup()

{

 //initialize the serial connection

 Serial.begin(9600);

 //initialize sensors

 setupSensors();

 //initialize log file

 setupLogFile();

 //Echo the data header to the serial connection

 Serial.println(DATA_HEADER);

}

78 http://arduino.cc/en/Serial/Begin
79 http://arduino.cc/en/Serial/Println

http://arduino.cc/en/Serial/Begin
http://arduino.cc/en/Serial/Println
http://arduino.cc/en/Serial/Begin
http://arduino.cc/en/Serial/Println

Laboratories of Day 1

38

• Here we start by getting the readings with a call to the user defined method
createDataRecord() which returns us a String80 containing the current readings. We then
pass that String81 to the user defined method logData() which writes it to the log file. We
also send the data to the Serial Monitor using the Serial.println()82 method. Finally, we call
delay()83 to wait READ_DELAY number of milliseconds before returning from the loop()84

method. This roughly controls the frequency of the readings.

void loop()

{

 //Create the data record

 String dataRec = createDataRecord();

 //Save the data record to the log file

 logData(dataRec);

 //Echo the data to the serial connection

 Serial.println(dataRec);

 //Wait before taking the next reading

 delay(READ_DELAY);

}

• Here we make the necessary calls in order to setup the readingssensors we will be using.
We initialize the Real Time Clock (RTC) on the DS3231 chip with a call to RTC.begin().

The SHT2x does not require initialisation.

void setupSensors()

{

 //initialize the wire protocol for the TPH sensors

 Wire.begin();

 //initialize the DS3231 RTC

 RTC.begin();

}

80 http://arduino.cc/en/Reference/string
81 http://arduino.cc/en/Reference/string
82 http://arduino.cc/en/Serial/Println
83 http://arduino.cc/en/reference/delay
84 http://arduino.cc/en/Reference/loop

http://arduino.cc/en/Reference/string
http://arduino.cc/en/Reference/string
http://arduino.cc/en/Serial/Println
http://arduino.cc/en/reference/delay
http://arduino.cc/en/Reference/loop
http://arduino.cc/en/Reference/string
http://arduino.cc/en/Reference/string
http://arduino.cc/en/Serial/Println
http://arduino.cc/en/reference/delay
http://arduino.cc/en/Reference/loop

Laboratories of Day 1

39

• Here we start by initialising the MicroSD device. This is done by a call to SD.begin()85

passing the SPI slave select (SS) pin that the MicroSD device is connected to. On the
SODAQ Mbili this is digitial pin 11 (defined here as SD_SS_PIN). We then make a call
to SD.exists()86 which tells us whether our log file already exists or not (we will use
this information later). We then use the SD.open()87 method with the FILE_WRITE88

parameter to open the log file in write mode.

When a file is opened in FILE_WRITE89 mode, if the file already exists,
any data written to file will be appended to end of the existing file. If the
file does not exist it will be created.

If the file did not previously exist, we write the header information as the first line of that file.
This is done with a call to File.println()90 using the constant DATA_HEADER. This data header
gives a description of what sensor data is being written to the log file and the order of that data.

void setupLogFile()

{

 //initialize the SD card

 if (!SD.begin(SD_SS_PIN))

 {

 Serial.println("Error: SD card failed to initialize or is missing.");

 //Hang

 while (true);

 }

 //Check if the file already exists

 bool oldFile = SD.exists(FILE_NAME);

 //Open the file in write mode

 File logFile = SD.open(FILE_NAME, FILE_WRITE);

 //Add header information if the file did not already exist

 if (!oldFile)

 {

 logFile.println(DATA_HEADER);

 }

85 http://arduino.cc/en/Reference/SDbegin
86 http://arduino.cc/en/Reference/SDexists
87 http://arduino.cc/en/Reference/SDopen
88 http://arduino.cc/en/Reference/SDopen
89 http://arduino.cc/en/Reference/SDopen
90 http://arduino.cc/en/Reference/FilePrintln

http://arduino.cc/en/Reference/SDbegin
http://arduino.cc/en/Reference/SDexists
http://arduino.cc/en/Reference/SDopen
http://arduino.cc/en/Reference/SDopen
http://arduino.cc/en/Reference/SDopen
http://arduino.cc/en/Reference/FilePrintln
http://arduino.cc/en/Reference/SDbegin
http://arduino.cc/en/Reference/SDexists
http://arduino.cc/en/Reference/SDopen
http://arduino.cc/en/Reference/SDopen
http://arduino.cc/en/Reference/SDopen
http://arduino.cc/en/Reference/FilePrintln

Laboratories of Day 1

40

 //Close the file to save it

 logFile.close();

}

• Here we reopen the log file using the SD.open()91 method and FILE_WRITE92 parameter.
Since the file already exists any new data will be appended to the existing file. Using the
File.println()93 method we write a new line to log file using the String94 passed as the
parameter rec. Finally, we close the file to ensure that the data is saved.

void logData(String rec)

{

 //Re-open the file

 logFile = SD.open(FILE_NAME, FILE_WRITE);

 //Write the CSV data

 logFile.println(rec);

 //Close the file to save it

 logFile.close();

}

• Here we create and return a String95 which contains the data readings from the sensors in
comma separated format (CSV). The String96 contains the Time & Date which is queried
using the user defined method getTimeDate(). We then append the readings. The complete
String97 containing all the data is then returned from this method.

String createDataRecord()

{

 //Create a String type data record in csv format

 ///Read the temperature

 RTC.convertTemperature();

 float temp = RTC.getTemperature();

 // Convert temperature voltage to string

 char buffer[14]; //make buffer large enough for 7 digits

91 http://arduino.cc/en/Reference/SDopen
92 http://arduino.cc/en/Reference/SDopen
93 http://arduino.cc/en/Reference/FilePrintln
94 http://arduino.cc/en/Reference/string
95 http://arduino.cc/en/Reference/string
96 http://arduino.cc/en/Reference/string
97 http://arduino.cc/en/Reference/string

http://arduino.cc/en/Reference/SDopen
http://arduino.cc/en/Reference/SDopen
http://arduino.cc/en/Reference/FilePrintln
http://arduino.cc/en/Reference/string
http://arduino.cc/en/Reference/string
http://arduino.cc/en/Reference/string
http://arduino.cc/en/Reference/string
http://arduino.cc/en/Reference/SDopen
http://arduino.cc/en/Reference/SDopen
http://arduino.cc/en/Reference/FilePrintln
http://arduino.cc/en/Reference/string
http://arduino.cc/en/Reference/string
http://arduino.cc/en/Reference/string
http://arduino.cc/en/Reference/string

Laboratories of Day 1

41

 String temperatureS = dtostrf(temp, 7,2,buffer);

 //'7' digits including '-' negative, decimal and white space. '2' decimal places

 temperatureS.trim(); //trim whitespace, important so Ubidots will treat it as a

 number

 //Read the voltage

 int mv = getRealBatteryVoltage() * 1000.0;

 String data = getDateTime()+ ", ";

 data += String(temperatureS)+ "C, ";

 data += String(mv)+ "mV";

 return data;

}

• Here we return a Date and Time reading from the RTC in a String98 format. First a
DateTime99 object is constructed using a time reading from the DS3231 RTC. This is then
converted into a String100 using the method DateTime.addToString() the result of which
is then returned from this method.

String getDateTime()

{

 String dateTimeStr;

 //Create a DateTime object from the current time

 DateTime dt(rtc.makeDateTime(rtc.now().getEpoch()));

 //Convert it to a String

 dt.addToString(dateTimeStr);

 return dateTimeStr;

}

4.10. Adding a Timer to Schedule Readings

This example builds on the previous example. Only the sections of code
which have been changed or added are discussed here. However, a full
copy of the complete sketch can be found at the end of this page.

98 http://arduino.cc/en/Reference/string
99 http://playground.arduino.cc/Code/DateTime
100 http://arduino.cc/en/Reference/string

http://arduino.cc/en/Reference/string
http://playground.arduino.cc/Code/DateTime
http://arduino.cc/en/Reference/string
http://arduino.cc/en/Reference/string
http://playground.arduino.cc/Code/DateTime
http://arduino.cc/en/Reference/string

Laboratories of Day 1

42

In this example we will demonstrate the use of a RTCTimer to schedule regular events. This
example builds on the previous example, but instead of using the delay()101 method, it uses
a scheduling timer to control the frequency of the readings.

If you examine the output from the previous example you will see that the actual sensor
readings are not exactly at one second intervals. This is due to the use of the method
delay()102 which pauses the execution for a specified number of milliseconds. However, since
the actual time between readings is the sum of the execution time and the specified delay, this
results in readings which in this case are taken at intervals of longer than one second.

The RTCTimer library provides the functionality for scheduling specific methods at fixed
intervals. Here we will modify the previous example to take the sensor readings using a method
which is called at fixed intervals by a RTCTimer object.

The required RTCTimer library is included with the SODAQ Mbili files that you have already
installed.

If necessary, refer to Section 2103 of the Getting Started104 guide for details on where to
download from and how to install the SODAQ Mbili files.

Instead of using the temperature from the RTC, we will use an external sensor that provides
temperature, pressure and humidity. We will refer to this sensor as TPH sensor.

101 http://arduino.cc/en/reference/delay
102 http://arduino.cc/en/reference/delay
103 http://mbili.sodaq.net/?page_id=23#step2
104 http://mbili.sodaq.net/?page_id=23

http://arduino.cc/en/reference/delay
http://arduino.cc/en/reference/delay
http://mbili.sodaq.net/?page_id=23#step2
http://mbili.sodaq.net/?page_id=23
http://arduino.cc/en/reference/delay
http://arduino.cc/en/reference/delay
http://mbili.sodaq.net/?page_id=23#step2
http://mbili.sodaq.net/?page_id=23

Laboratories of Day 1

43

You should refer to both the board diagram105 and Grove sockets page106 for additional
information.

1. First, plug the TPH Sensor into the Grove I2C socket.

2. Then, plug the 0.5W solar panel and the 1A LiPo battery into their respective sockets.

Turn on the SODAQ Mbili board, compile and upload the following sketch from the Arduino
IDE onto the SODAQ Mbili board. Leave the USB cable plugged in and open the Serial Monitor
(Ctrl-Shift-M) and ensure that it is set to the 9600 baud rate.

• In addition to the existing libraries, we must now also include the RTCTimer library in the
sketch using the #include107 compiler directive.

#include <RTCTimer.h>

• In addition to the existing Globals we declare a RTCTimer object.

105 http://mbili.sodaq.net/?page_id=13
106 http://mbili.sodaq.net/?page_id=81
107 http://arduino.cc/en/Reference/Include

http://mbili.sodaq.net/?page_id=13
http://mbili.sodaq.net/?page_id=81
http://arduino.cc/en/Reference/Include
http://mbili.sodaq.net/?page_id=13
http://mbili.sodaq.net/?page_id=81
http://arduino.cc/en/Reference/Include

Laboratories of Day 1

44

//RTC Timer

RTCTimer timer;

• In addition to the existing setup code, we make a call to the user defined method
setupTimer() which handles the initialisation of the timer and the scheduling of the main
datalogging method takeReading(). We also make a call to takeReading() to take first
sensor reading immediately instead of waiting for the first scheduled reading.

//Setup timer events

setupTimer();

//Echo the data header to the serial connection

Serial.println(DATA_HEADER);

//Take first reading immediately

takeReading(getNow())

• The main functionality of this sketch is handled by the scheduled callback method
takeReading(), which is called automatically at a scheduled interval. Here in the loop()108

method all we do is make a call to RTCTimer.update() which updates the timer object and
ensures any scheduled events are called if they are now due.

void loop()

{

 //Update the timer

 timer.update();

}

• This method is scheduled to be called automatically by the timer object. It is scheduled to
be called every READ_DELAY number of ticks. In this particular setup each tick is equal to
one millisecond. Here we start by getting the sensor readings with a call to the user defined
method createDataRecord() which returns us a String109 containing the current sensor
readings. We then pass that String110 to the user defined method logData() which writes
it to the log file. We also send the data to the Serial Monitor using the Serial.println()111

method.

108 http://arduino.cc/en/Reference/loop
109 http://arduino.cc/en/Reference/string
110 http://arduino.cc/en/Reference/string
111 http://arduino.cc/en/Serial/Println

http://arduino.cc/en/Reference/loop
http://arduino.cc/en/Reference/string
http://arduino.cc/en/Reference/string
http://arduino.cc/en/Serial/Println
http://arduino.cc/en/Reference/loop
http://arduino.cc/en/Reference/string
http://arduino.cc/en/Reference/string
http://arduino.cc/en/Serial/Println

Laboratories of Day 1

45

void takeReading(uint32_t ts)

{

 //Create the data record

 String dataRec = createDataRecord();

 //Save the data record to the log file

 logData(dataRec);

 //Echo the data to the serial connection

 Serial.println(dataRec);

}

• Here we schedule the takeReading() method to be called every READ_DELAY number
of ticks. This is done by a call to the RTCTimer.every() method where the first parameter
specifies the number of ticks between each call to the method specified by the second
parameter.

void setupTimer()

{

 //Instruct the RTCTimer how to get the current time reading

 timer.setNowCallback(getNow);

 //Schedule the reading every second

 timer.every(READ_DELAY, takeReading);

}

• The scheduled callback methods must be declared in the following format, where label is
replaced with the actual name of the method:

void label(uint32_t ts)

You must specify a separate callback method that RTCTimer will
use to determine the current time reading (you should do this before
scheduling any callbacks). This method must be declared in the
following format, where label is replaced with the actual name of the
method:

uint32_t __label__()

112 http://arduino.cc/en/reference/millis

http://arduino.cc/en/reference/millis

Laboratories of Day 1

46

• This method is called by the RTCTimer object to update its current time reading. Here we
use the method millis()112 which returns the number of milliseconds which have elapsed
since the current sketch began. In this example one tick or one increment to the time value
is equal to one millisecond. It is also possible to use one second intervals by using readings
from the Real Time Clock. Just remember that the scheduled callbacks will be called after
the specified number of ticks have elapsed regardless of what unit of time that equates to.

uint32_t getNow()

{

 return millis();

}

If you open the Serial Monitor (Ctrl-Shift-M), you should see output similar to this. Notice that
the sensor readings are now at regular one second intervals:

The complete source code is the following:

RTC_TPH_SD_Timer.ino

#include <Wire.h>

#include <SPI.h>

#include <SD.h>

//SODAQ Mbili libraries

#include <RTCTimer.h>

#include <Sodaq_BMP085.h>

#include <Sodaq_SHT2x.h>

http://arduino.cc/en/reference/millis

Laboratories of Day 1

47

#include <Sodaq_DS3231.h>

//The delay between the sensor readings

#define READ_DELAY 1000

//Digital pin 11 is the MicroSD slave select pin on the Mbili

#define SD_SS_PIN 11

//The data log file

#define FILE_NAME "DataLog.txt"

//Data header

#define DATA_HEADER "TimeDate, TempSHT21, TempBMP, PressureBMP, HumiditySHT21"

//TPH BMP sensor

Sodaq_BMP085 bmp;

//RTC Timer

RTCTimer timer;

void setup()

{

 //initialize the serial connection

 Serial.begin(9600);

 //initialize sensors

 setupSensors();

 //initialize log file

 setupLogFile();

 //Setup timer events

 setupTimer();

 //Echo the data header to the serial connection

 Serial.println(DATA_HEADER);

 //Take first reading immediately

 takeReading(getNow());

}

void loop()

{

 //Update the timer

 timer.update();

}

Laboratories of Day 1

48

void takeReading(uint32_t ts)

{

 //Create the data record

 String dataRec = createDataRecord();

 //Save the data record to the log file

 logData(dataRec);

 //Echo the data to the serial connection

 Serial.println(dataRec);

}

void setupSensors()

{

 //initialize the wire protocol for the TPH sensors

 Wire.begin();

 //initialize the TPH BMP sensor

 bmp.begin();

 //initialize the DS3231 RTC

 rtc.begin();

}

void setupLogFile()

{

 //initialize the SD card

 if (!SD.begin(SD_SS_PIN))

 {

 Serial.println("Error: SD card failed to initialize or is missing.");

 //Hang

 while (true);

 }

 //Check if the file already exists

 bool oldFile = SD.exists(FILE_NAME);

 //Open the file in write mode

 File logFile = SD.open(FILE_NAME, FILE_WRITE);

 //Add header information if the file did not already exist

 if (!oldFile)

 {

 logFile.println(DATA_HEADER);

 }

 //Close the file to save it

Laboratories of Day 1

49

 logFile.close();

}

void setupTimer()

{

 //Instruct the RTCTimer how to get the current time reading

 timer.setNowCallback(getNow);

 //Schedule the reading every second

 timer.every(READ_DELAY, takeReading);

}

void logData(String rec)

{

 //Re-open the file

 File logFile = SD.open(FILE_NAME, FILE_WRITE);

 //Write the CSV data

 logFile.println(rec);

 //Close the file to save it

 logFile.close();

}

String createDataRecord()

{

 //Create a String type data record in csv format

 //TimeDate, TempSHT21, TempBMP, PressureBMP, HumiditySHT21

 String data = getDateTime() + ", ";

 data += String(SHT2x.GetTemperature()) + ", ";

 data += String(bmp.readTemperature()) + ", ";

 data += String(bmp.readPressure() / 100) + ", ";

 data += String(SHT2x.GetHumidity());

 return data;

}

String getDateTime()

{

 String dateTimeStr;

 //Create a DateTime object from the current time

 DateTime dt(rtc.makeDateTime(rtc.now().getEpoch()));

 //Convert it to a String

 dt.addToString(dateTimeStr);

Laboratories of Day 1

50

 return dateTimeStr;

}

uint32_t getNow()

{

 return millis();

}

	Laboratories of Day 1
	1. Getting Started
	1.1. Installing the Arduino IDE & Software
	1.2. Installing the SODAQ Mbili Files and Libraries
	1.3. Selecting the SODAQ Mbili Hardware Profile
	1.4. Configuring the Serial Port
	1.5. Configuring Serial Monitor

	2. Loading and Running a Basic Demo
	3. Onboard LEDs
	4. Serial Communication
	4.1. Reading from the Serial Connection (Input)
	4.2. Writing to the Serial Connection (Output)
	4.3. ECHO ECHO
	Exercises

	4.4. Operations
	4.5. Exercise
	4.6. RTC: setting time, reading time
	4.7. Reading temperature from internal RTC temperature sensor
	4.8. Writing to SD card
	4.9. Writing Date, Voltage and Temperature to the SD card
	4.10. Adding a Timer to Schedule Readings

