

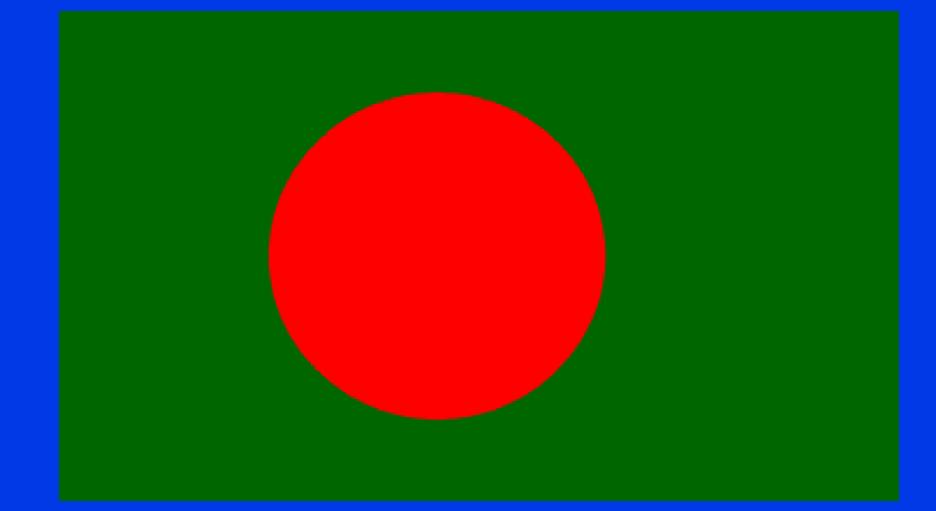
16 March 2017

Bangladesh! ^{^A Ction Recognition: Few Points}

Md. Atiqur Rahman Ahad University of Dhaka, Bangladesh

Web: http://aa.binbd.com Email: atiqahad@univdhaka.edu

বাংলাদেশ BANGLADESH





Area: 147, 570 km² Capital: Dhaka Population: 170 million ©

Mostly flat plain, with hills in the northeast and southeast

University of Dhaka http://www.du.ac.bd/

- From 1921 ~
- 13 Faculties
- 77+ departments
- 11 institutes
- 51+ research centers
- 38,000+ students
- ~2000 teachers

Faculty of Engineering & Technology Dept. of Electrical & Electronic Engineering



1.A A

DU

My home!

म जामी तीसूरी जिल्ही प्रस

ABABAB

National Museum

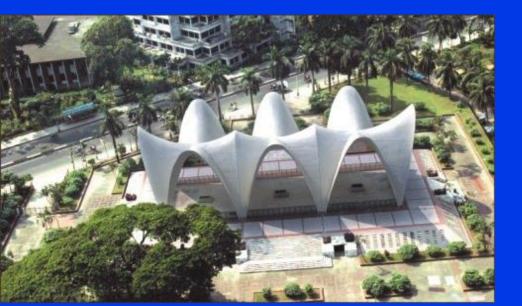
Shaheed Minar — Int'l Mother Language day Monument

National Memorial

Lalbagh fort

Sonargaon

Parliament // Around DU



Ahsan Manjil – next to DU

Green BD

Green BD

UNESCO World's Heritage:

The Sundarbans – World's largest Mangrove forest

In Sundarbans

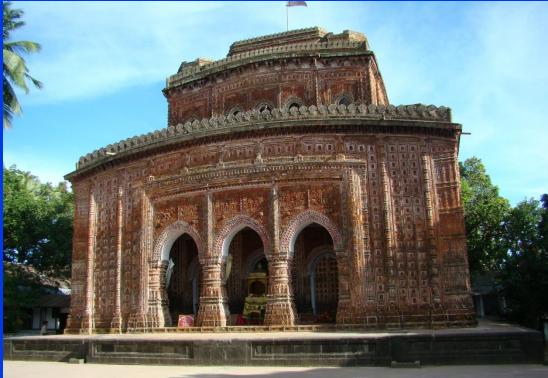
Royal Bengal Tiger - Our National Animal

UNESCO world's Heritage -

Ruins of the Buddhist Vihara at Paharpur

UNESCO World's Heritage:

Historic Mosque City of Bagerhat



Cox's Bazar – World's longest sandy beach

Saint Martin's Island

Our National Bird

Doel Bird (Magpie Robin)

Our National Fruit

Jackfruit (Kathal)

Summer fruits!

Summer fruit – Palm tree!

Our National Flower

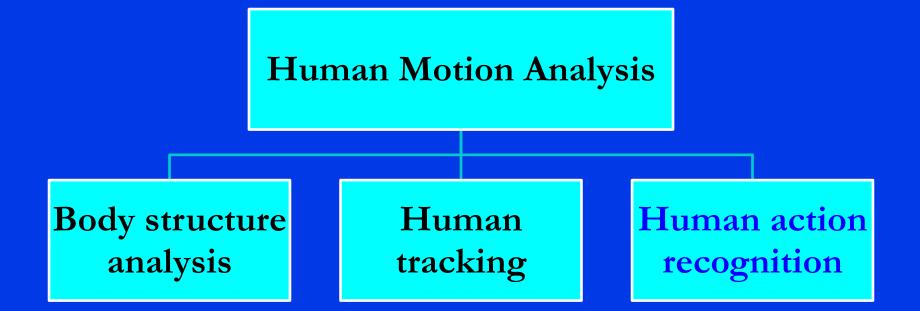
Water Lily (Shaapla)

Summer Flowers

Thanks a lot!

Join 6th ICIEV, 1~3 Sept. 2017 University of Hyogo, Japan! <u>http://cennser.org/ICIEV</u>

Few points on action recognition



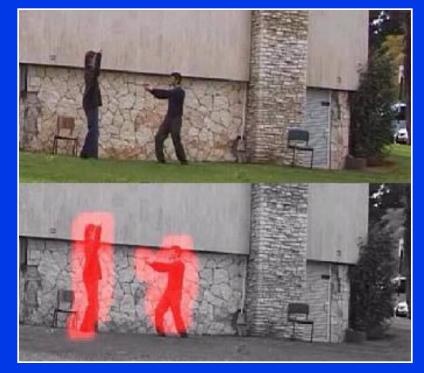
Action Recognition in Surveillance Video

Detecting people fighting

Falling person detection

Detecting Suspicious Behavior

Fence Climbing



Many cameras \rightarrow Lots of input sequences

→ Difficult for man-controlled surveillance

Hence, automated action recognition, behavior analysis, motion segmentation, etc. are crucial tasks to handle

SOME ASSUMPTIONS ON ACTION RECOGNITION

Some Assumptions...

- a) Assumptions related to movements
- Subject (human/car) remains **<u>inside</u>** the workspace
- None or constant <u>camera motion</u>
- Only <u>one person</u> in the workspace at the time
- The subject <u>faces the camera</u> at all time
- Movements <u>parallel to the camera-plane</u>
- <u>No occlusion</u>
- <u>Slow</u> and <u>continuous</u> movements
- Only move one or a few <u>limbs</u>
- The motion pattern of the subject is known
- Subject moves on a flat ground plane

Some Assumptions ...

b) Assumptions related to appearance

Environment –

- 1. Constant lighting indoor
- 2. Static background
- 3. Uniform background
- 4. Known camera parameters
- 5. Special hardware (FPGA, etc.)

Subject -

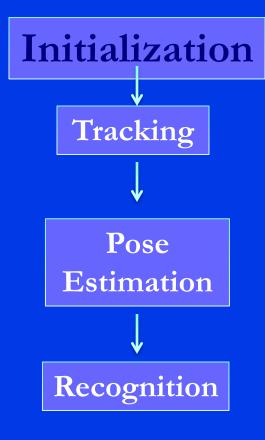
- 1. Known part pose
- 2. Known subject gender, size, height, race, etc.
- 3. Markers placed on the subject
- 4. Special cloths color, no texture...
- 5. Tight-fitting cloths

Action Analysis ...

1. Initialization:

Ensuring that a system <u>starts</u> its operation with a <u>correct interpretation</u> of current scene.

- \rightarrow processing of video/image –
- camera calibration,
- adaption with scene conditions,
- filtering, normalization,
- scene identification.

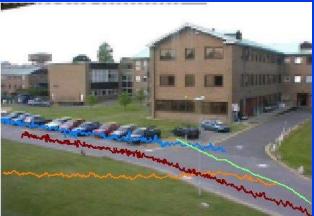


Model Initialization

- Need prior info. e.g., kinematic structure (limb, skeleton); 3D shape; color appearance; pose; motion type.
- Initialization of appearance models for monocular tracking and pose estimation remains an <u>open</u> <u>problem.</u>
 - e.g., initialization of appearance based on image patch exemplars or color mixture models (e.g., color-based particle filter).
- Fully automatic initialization <u>future task!</u>

2. Tracking - human/moving objects, between limbs

- <u>Tracking!</u>
- outdoor tracking,



Pose

Estimation

Recognition

- tracking through occlusion, &
- detection of humans in still images.

e.g.,

Robotic line tracking, Tracking vehicles, persons

2. Tracking – Segmentation...

- 2.1 Initial step for many Background Subtraction → divided into →
- Background representation (color space RGB, HSV; mixture of Gaussian),
- **Classification** (shadow problem, false positive, etc. classifiers based on color, gradients, flow info),
- Background updating (outdoor change of light, dynamic), & Background initialization.

2.2 Motion-based segmentation

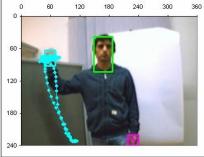
- motion gradient, optical flow, frame subtraction

Data Representations

Object-based	Image-based
point	Spatial - x,y
box	Spatio-temporal - x,y,t
silhouette	edge
blob	features

Point representations:

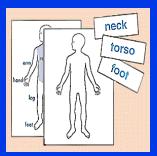
- Active/passive markers.
- Multi-camera system \rightarrow 3D **Box:**
- Set of boundary boxes region-of-interest (ROI)
- track the box, process, ...Silhouette:
- by threshold / subtracting
- find active contour or ROI
 Blobs:
- grouping similar info/interest points
- based on correlation, flow, color-similarity, hybrid



the <u>pixels</u>

3. Pose estimation – for surveillance

• Process of estimating the configuration of the underlying kinematic (or skeletal) articulation structure of a person \rightarrow hand/head/body's center



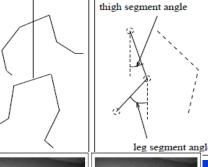
- It can be a <u>post-processing step</u> in a <u>tracking</u> algorithm
- It can be an <u>active part</u> of the <u>tracking</u> process

3. Pose estimation – human MODEL

Geometric modelor,Human modelCategory: based on human model's use –a) Model-free (individual body parts are first detected

and then assembled to estimate the 2D pose) – points, simple shape/box, stick-figures.

- \rightarrow with **markers** easy!
- \rightarrow no markers
 - use hands & head (3 points!)
 - mouth/center of body...



Å

(a)

(c)

3. Pose estimation – human MODEL...

- b) Indirect model use use model as a reference/ lookup table (positions of body parts, aspect ratios of limbs, etc.)
- c) Direct model use (Kalman filter, particle filter) model is continuously updated by observations.
- → model type: cylinders, stick-figures, patches, cones, boxes, ellipse
- \rightarrow model parts: body, leg, upper body, arm...
- → abstraction levels: edges, joints, motion, silhouette, sticks/anatomy, contours, texture, blobs...
- → dimensionality: 2D, 3D, 2.5D [estimating 3D pose data based on 2D processing // testing a 3D pose estimating framework on pseudo-3D data]

4. Recognition – what a person is doing! Action Hierarchy

 - action primitives / basic action (atomic entities out of which actions are built. Tennis: e.g., forehand, backhand, run left, & run right)

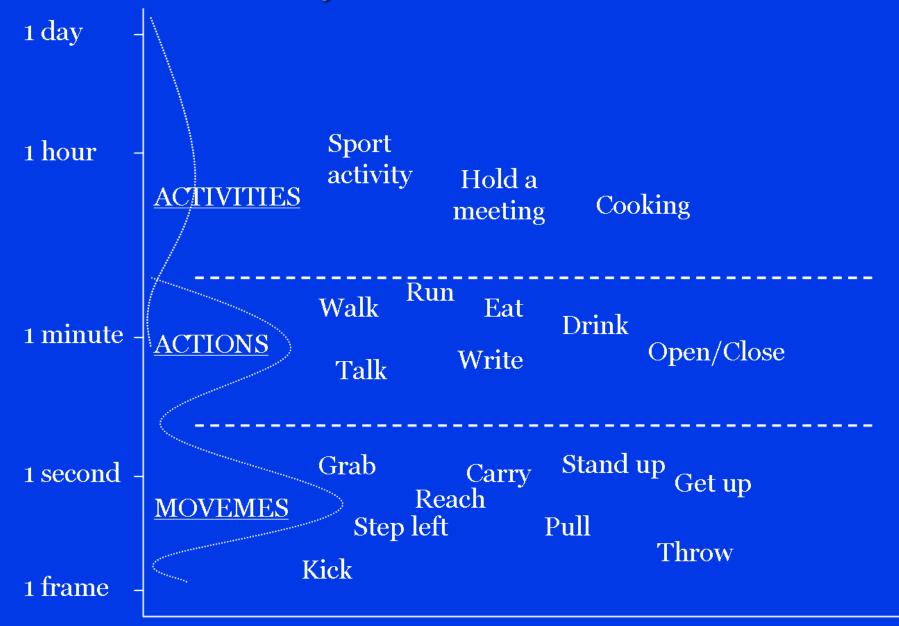
- actions (sequence of action primitives needed to return a ball)

- *activities* (playing tennis!)

actions, activities, simple actions, complex actions, behaviors, movements, etc.

 \rightarrow interchangeably by different researchers.

Action Hierarchy...



What are Actions?

Actions Come in Many Flavors

No Motion

Prolonged

Motion

Multi-tasking!

Whole body

Local

4. Recognition (cont.)

Scene interpretation –

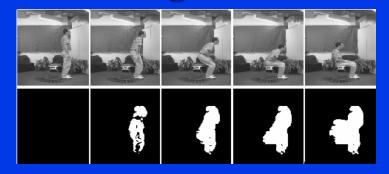
Entire image is interpreted without identifying particular objects or humans (*detecting unusual situation, surveillance*)

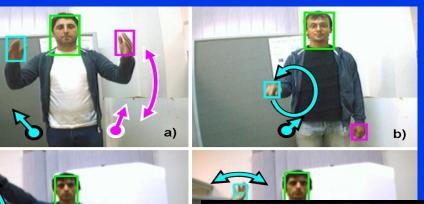
Holistic recognition -

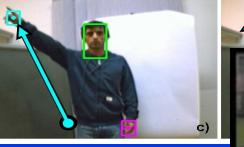
Either the entire human body or individual body parts are applied for recognition (*human gait, actions;* mostly silhouette-/contour-based – full body!)

Action primitives & grammars –
 where an action hierarchy gives rise to a semantic description (parts, limbs, objects) of a scene.

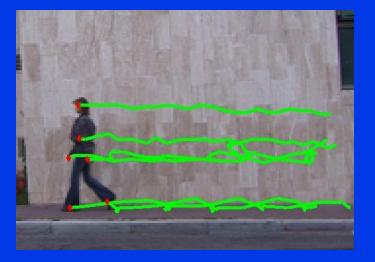
4. Recognition (cont.)







4. Recognition (cont.)



VARIOUS APPROACHES

View-based vs. view-invariant recognition

• View-invariant methods are difficult

• XYZT approaches try with multi-camera system

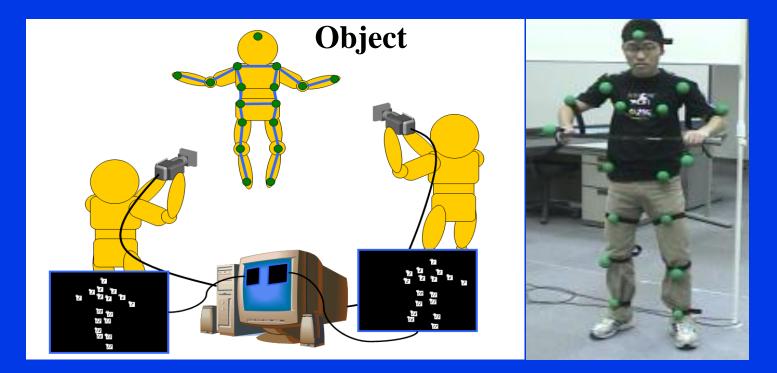
Most of the methods are view-based – mainly from single camera

Intrusive/Interfering-based technique Two techniques to recognize human posture:

Intrusive: track body markers

Non-intrusive: observe a person with cameras & use vision algorithms.

Employing feature points



- Difficult to track feature points.

- Self-occlusion or missing points create constraints.

'Good features to track!'

Spatiotemporal (XYT) features

Spatio(*x*,*y*)-temporal(*time*) features – can avoid some limitations of traditional approaches \rightarrow

of intensities, gradients, optical flow, other local features

Spatiotemporal (XYT) features (cont.)

 Space(X,Y)-time(T) descriptors may strongly depend on the relative motion between the object & camera.

• Some corner points in time, called *space-time interest points* can automatically adapt the features to the local velocity of the image pattern.

But these space-time points are often found on highlights & shadows

□ So, sensitive to lighting conditions and reduce recognition accuracy.

Space-time Interest Points

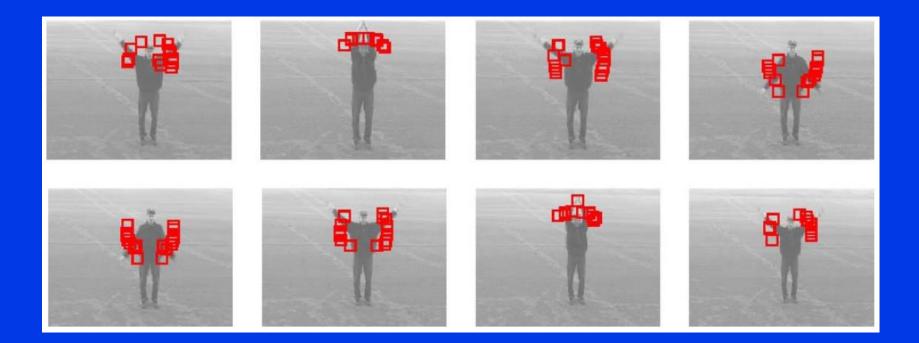


Figure from Niebles et al.

Local Space-time Features

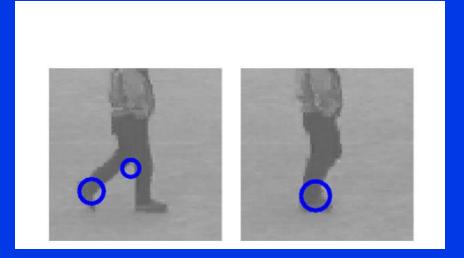
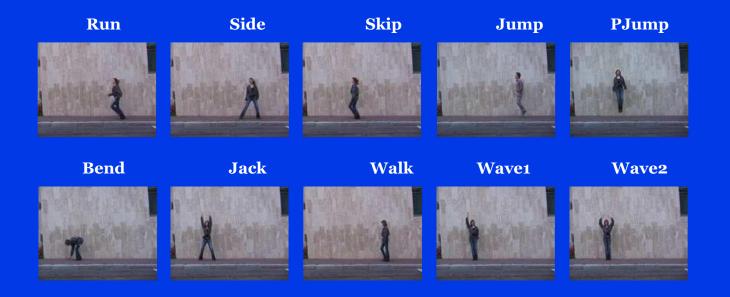


Figure from Schuldt et al.

Weizmann dataset



Weizmann dataset – easiest!

KTH db

IXMAS database

Wide-area activity db – UTexas

UT db from Tower

Carrying

Wave1

Pointing

Standing

Digging

Walking

Running

Wave2

Jumping

2-persons interaction - UTexas

Hand shake

Kicking

Pointing

Pushing

Dataset Employed in PRL special issue

- TUD-MotionPairs dataset
- University of Texas (UT) interactions dataset
- i3DPost database
- AIIA-MOBISERV database
- HMDB51 dataset
- Weizmann database used by many as it is relatively an easy dataset
- KTH database the most-widely used dataset
- UCF Sports dataset
- UCF YouTube dataset
- Ballet datasets
- TUM dataset
- IXMAS dataset
- MuHAVi dataset
- Hollywood dataset
- Hollywood-2 Dataset (TV Human Interactions)
- TRECVID2006 dataset
- PAINFUL database

Dataset Employed in PRL special issue ...

- ChaLearn Gesture Dataset (CGD2011)
- 48 actions from visint.org dataset
- One artificially generated dataset (the first dataset corresponds to a car manufacturing scenario)
- Opportunity dataset, which comprises sensory data of different modalities in a breakfast scenario
- Recordings in laboratory (ShopLab) captured with a fish-eye camera
- Two affective movement datasets (hand movements, full-body movements)
- One unconstrained (in-the-wild) YouTube action dataset
- Database with audio-visual recordings of unwanted behavior in trains, which include aggression in various degrees and normal, neutral situations
- Synthetic data that are obtained from the CMU Graphics Lab Motion Capture Database
- New Waiting Room dataset 'WaRo11'
- New the ISI Atomic Pair Actions Dataset
- New video-tag YouTube dataset
- New the MMU GASPFA (Gait-Speech-Face) multimodal biometric database that contains audio, video and accelerometer data for 82 subjects

CHALLENGES AHEAD

Understanding Collective Activities

Crossing

Waiting

Queuing

Walking

Talking

Mass crowd – normal vs. abnormal activities

Escape panic, clash, fight

Difficult to recognize localized activities

 \rightarrow that vary from person to person

Hug

Kiss

Answering Phone

Opening Door

Number of actions or types and variations → are hugely varied → So difficult!

Challenges ahead!!!

 Human action or activities recognition is difficult due to the presence of various dimensions of motion and the environments.

- 3 important sources of variability are:
- View-invariance issue,
- Execution rate, &
- Anthropometry [size, height, dress effect, gender] of actors.

Challenges ahead - system as view-invariant

- To develop a system as view-invariant will incur time complexity.
- View-dependent methods may fail when the motion is <u>coming towards the optical axis</u> of the camera.

- Motion (e.g., run) are from different directions, diagonal...
- Speed or pace of actions vary
 - [slow, fast; e.g., jogging vs. running]

Challenges ahead – real-time

• **Real-time** motion recognition is difficult

May need prior information, modeling, database or feature vectors to calculate

No. of classes: more classes → slower
It hinders the performances in real-time.

Challenges ahead – illumination-variation

- Another important constraint is illumination change.
- Most of the works are indoor.
- Outdoor scenes may have → light change, cluttered environment, presence of edges, etc.
- Illumination variations [morning vs. noon vs. afternoon, night, cloudy vs. sunny, etc.] cause recognition problem in most of the approaches.

Challenges ahead – varieties of DB, poor-video

• Issue of dataset: As various methods are analyzed with various datasets, it is very difficult to rationalize the methods & their performances.

• Low resolution and poor-quality video recognition is another challenge in computer vision community.

Low-resolution action recognition

96x72

- Low-resolution image \rightarrow Less pixels
- So its processing, recognition → Very difficult.

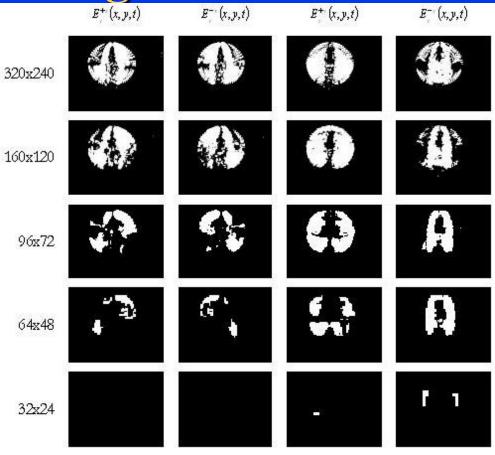
320x240

80x60

Energy images

64x48

160x120



 \rightarrow

History images for an action

 $20\% \rightarrow 25\% \rightarrow 30\% \rightarrow 50\%$

100%

Poor-quality video... http://www.nada.kth.se/cvap/actions/

Partial Occluded Video...

http://www.wisdom.weizmann.ac.il/~vision/SpaceTimeActions.html

• Following actions are 'walking' but having varieties – note only 1 person!

Occluded feet

Occluded by a "pole"

Challenges ahead – applications

- <u>Biometrics issues</u> are incorporating through gait analysis, gesture analysis, emotion analysis through facial expression, etc.
- Robust action recognition \rightarrow assist human beings.
- Rehabilitation centers as aged people are increasing with less people to support and 'smart-house' concept is important.

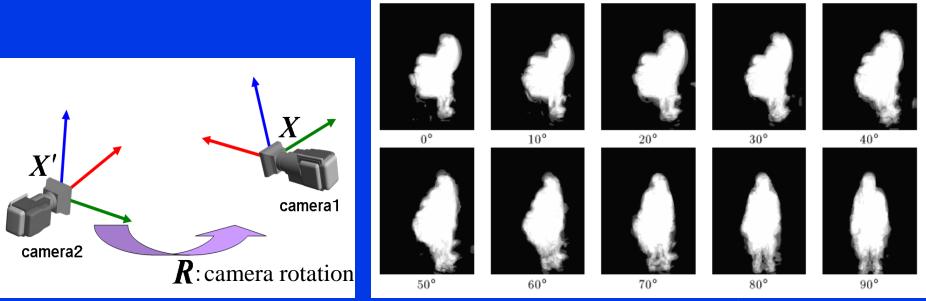
Country	Aged Population
Japan	65yr+: 20% in 2007 25% in 2030
China	60yr+: 33% in 2050
Korea, some EU countries	

Challenges ahead – applications

- For Intelligent Transport System (ITS), safety driving, video surveillance, etc. are other demanding areas for smart recognition and behavior analysis -- under --
 - multiple objects,
 - image depth,
 - illumination changes, etc.

Challenges ahead – camera motion, multi-cams

- Need camera motion compensation
- Changes in view same actions may look like a different action from different view



Motion Energy Images for an action from 10 different angles

Challenges ahead – occlusion, etc. Occlusions: Action may not be fully visible

• Action variation: Different people perform different actions in different ways.

• **Background "clutter":** Other objects/humans present in the video frame.

Challenges ahead – emotion

Need good dataset. Getting actors to generate data means

- Intentions are known
- Conditions are controlled
- Sample is balanced

But

- Performances vary massively &
- Transfer to real trials is poor

Need: "rich, spontaneous human behaviour"

• Strong interpretation:

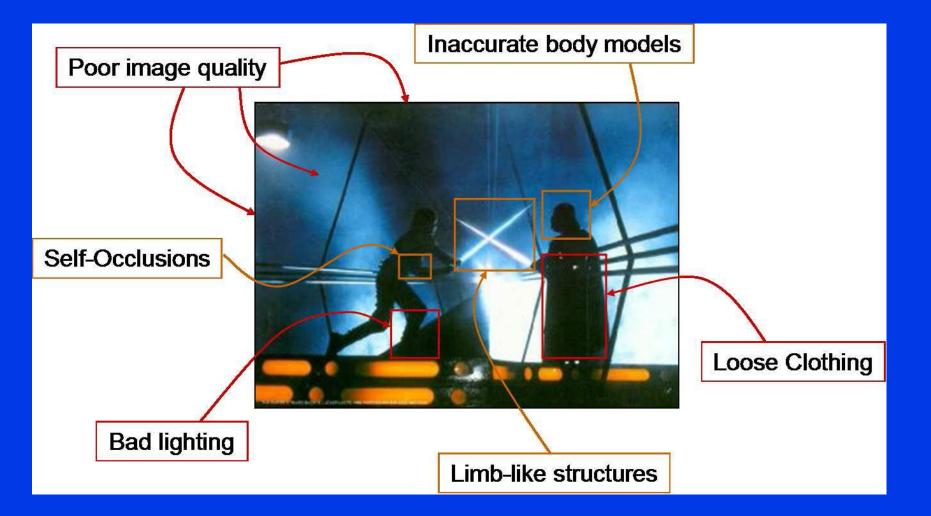
- to detect emotion in a given context,
- we need training data from that context
- e.g., HUMAINE database, etc.

atiqahad@du.ac.bd

Challenges ahead – multi-modality

- Now, most papers consider only video or visual info
- Need to include \rightarrow multi-modality
 - ✓ text,
 - ✓ audio,
 - ✓ object recognition,
 - ✓ facial action units (FACS/AU),
 - ✓ emotions/psychology,
 - ✓ context,
 - ✓ background, etc.

Problem of Human Motion Estimation



Problems of Human Motion Estimation...

• **Poor image quality:** Grainy images result in noisy measurements, and motion blur obscures limb edges.

- <u>Self-Occlusion</u>: Even when a subject is in plain-view, limbs are often obscured by other parts of the body.
- Inaccurate body model: At a certain level of detail, any model of the human body will be inaccurate.
 People come in varying proportions, and a good model must be robust to wide variation in human appearance.

Problems of Human Motion Estimation...

- Loose clothing: Even with an accurate body model, loose clothing disturbs limb location & muddles appearance.
- <u>Limb-like structures:</u> Without constraints on scene background characteristics for a capture sequence, it is easy to misidentify miscellaneous scene elements as subject substructure.
 - **Bad lighting:** Excessively dim or excessively bright lighting conditions make feature detection more challenging.

Conclusion

- Action or activity recognition & analysis very important
- From video or image to understand
- Global scene vs. localized
- Various challenges especially in real-life applications
- Applications are based on assumptions & limited action sets.

Sources:

- 1. Md. Atiqur Rahman Ahad, Computer Vision and Action Recognition: A Guide for Image Processing and Computer Vision Community for Action Understanding, *Atlantic Press*, available in *Springer*, 2011.
- 2. Md. Atiqur Rahman Ahad, Motion History Images for Action Recognition and Understanding, *Springer*, 2012.
- Md. Atiqur Rahman Ahad, Computer Vision Datasets for Action & Behavior Analysis, *Springer*, 2013 (to appear).
- 4. Special Issue, SAHAR, *Pattern Recognition Letters*, *Elsevier*, 2013.
- 5. Various other papers.

Thanks a lot!

Join 6th ICIEV, 1~3 Sept. 2017 University of Hyogo, Japan! <u>http://cennser.org/ICIEV</u>