ICTP-ITU-URSI School on Wireless Networking for Development The Abdus Salam International Centre for Theoretical Physics ICTP, Trieste (Italy), 6 to 24 February 2006

dB: Units & Calculations

Ryszard Struzak

www.ryszard.struzak.com

R Struzak

Purpose

 To review the definition and applications of the dB unit

Outline

- What "dB" is and why is it used?
- A few examples
- Some calculations
- Summary

dB

- The *Decibel*, or 1/10th of Bel (abbreviation 'dB'), is one of most popular unit used in radiocommunications
 - The name is in honor of Alexander Graham Bell (1847-1922), a Scottish-born teacher of the deaf and American inventor of the telephone
- It is applicable to dimension-less physical quantities 'pure numbers' such as gain, loss, protection ratio, etc.

Definition

Let 'x' be the 'magnitude' of a dimensionless variable. Let 'X' be the 'level' of that variable expressed in dB. The 'magnitude' and the 'level' are interrelated: $X = 10\log_{10}(x)$ and $x = 10^{\left(\frac{X}{10}\right)}$

Why dB?

- The dB is used rather than arithmetic ratios or percentages because
 - when circuits are connected in tandem, expressions of power level, in dB, may be arithmetically added and/or subtracted
 - Multiplication of 'magnitudes' and addition of 'levels' are equivalent, as are also subtraction of 'levels' and division of 'magnitudes'
 - logarithmic units preserve relative errors (in contrast to linear units that preserve absolute errors)

dB reference

- Originally, dB was applied to signal <u>power ratio</u> (gain, attenuation)
- Then to signal power level at a <u>specified point</u> and with respect to <u>specified reference level</u>:
 - Reference power levels
 - W \rightarrow dB (or dBW)
 - mW \rightarrow dBm (or dBmW)
- Now dB is applied also to other quantities, eg.:
 - Bandwidth: 10 MHz \rightarrow 70 dBHz
 - Time: 2000 seconds \rightarrow 33 dBs

Outline

- What "dB" is and why is it used?
- A few examples
- Some calculations
- Summary

Various dBs

- **dBW:** *dB* referenced to one watt. *Zero dBW means one watt.*
- **dBm: dB** referenced to one milliwatt. 'dBm' is often used in communication work as a measure of absolute power values. Zero dBm means one milliwatt.
- dB_μV : dB referenced to 1 microvolt across a given impedance. Used often for receiver sensitivity measurement.
- dB_μV/m: dB referenced to 1 microvolt per meter of electrical component of electromagnetic field of plane TEM wave. Used often for receiver sensitivity measurement.
- **dBi:** In the expression of antenna gain, the number of decibels of gain of an antenna referenced to the zero dB gain of a free-space isotropic radiator.
- **Note**: There are also other 'dBs' in use!

Source: Telecommunication Glossary 2000

Simple equivalence

[W/W]	dB (W)	[W/W]	dB (W)
1	0	1	0
10	10	1/10	-10
100	20	1/100	-20
1000	30	1/1000	-30

Simple equivalence 2

%	dB	
0.1	-30	
1	-20	
10	-10	
100	0	

Further equivalence

(with an error of $\sim 1\%$)

dB (W)	[W/W]	dB (W)	[W/W]
0	1.0	6	4.0
1	1.25	7	5.0
2	π /2	8	2π
3	2.0	9	0.8
4	2.5	10	10.0
5	π	11	4π

Example: signal level

• A WLL access point power output is 20 dBm.

– How many dBW is that?

$$P = 20 - 30 = -10 \text{ dBW}$$

('-30' corresponds to 1/1000 or 'milli')

- How many watts is that?

$$P = 10^{(20/10)} = 10^{2} \text{ mW}$$

 $P = 10^{(-10/10)} = 10^{-1} \text{ W}$

Example: noise floor

- Background noise power $P_N = kTB$
 - k = 1.38 10⁻²³ Joules/Kelvin (Boltzman's costant)
 - T is absolute temperature in Kelvins B is the bandwidth in Hz
- At room temperature (290 K)
 kT = 204.0 dBW/Hz

Example: noise floor (2)

- A radio link bandwidth is 20 MHz and noise temperature 290 K.
- What is the noise floor?
 PN = kT [dB] + B [dB]
 = -204 + (70 + 3)
 = -131 dBW = -101 dBm

Example: sensitivity

- **Sensitivity** in radiocommunications is the minimum input signal required to produce a specified output signal following specified criteria (e.g. having a specified signal-to-noise ratio).
- It may be expressed as
 - Power in W, dBm or dBW
 - Field strength in micro- or milli-volts per meter or dB
 - Voltage across the input impedance in micro- or millivolts or dB.

Example: sensitivity (2)

- Sensitivity of a radio receiver is -80 dBm
- How many watts it means?

 $P = 10^{(-80/10)} \text{ mW}$ = 10⁻⁸*10⁻³ W = 10 pW (Prefix 'pico' = 10⁻¹²)

 Assuming input impedance of 50 ohms, how many volts it means?

U = $\sqrt{(10^{-11*}50)}$ V = $10^{-6*}\sqrt{(5)}$ V = 2.236 μ V

Example: SNR

- Signal-to-noise ratio (SNR) is the ratio of the desired signal to noise
 - usually expressed in dB
 - for impulse noise, expressed in terms of peak values
 - for random noise, expressed in terms of root-mean-square values.
 - When expressed in dB
 - is named also signal-to-noise-margin, or noise margin
 - is expressed as 20 times the logarithm of the amplitude ratio, or 10 times the logarithm of the power ratio.

Example: protection ratio

- Protection ratio is the minimum value of the wanted-to-unwanted signal(s) ratio at the receiver input, usually expressed in decibels
 - determined under specified conditions
 - such that a specified reception quality of the wanted signal is achieved at the receiver output
 - When expressed in dB
 - is named also protection margin
 - is expressed as 20 times the logarithm of the amplitude ratio, or 10 times the logarithm of the power ratio.

Example: PFD & Jansky

- PFD or Power Flux Density is radiated power passing through a given area expressed in W/m²
- SPFD or Spectral Power Flux Density is PFD per unit bandwidth. Its units are [W/ m²/Hz] or Jansky.

1 Jansky = 10^{-26} W/m²/Hz \rightarrow -260 dBWm⁻²Hz⁻¹

Example: antenna aperture

 Aperture of isotropic antenna (unity gain in all directions) at wavelength λ:

A_i = (λ²**)**/4π [m²]

(This is the area of a circle with a circumference of λ)

 Effective aperture of antenna with gain G_i:

$$A_e = G_i * A_i [m^2]$$

λ	A _i	
1 m	-11 dBm ²	
1 dm	-31 dBm ²	
1 cm	-51 dBm ²	
1 mm	-71 dBm ²	

Note: A change of λ by 10x responds to change of A_i by 20 dB

Outline

- What "dB" is and why is it used?
- A few examples
- Some calculations
- Summary

dB, voltages, currents

- Power ratios may be expressed in terms of

 voltage and impedance, *E* and *Z*: *P* = (*E*²)/*Z* current and impedance, *I* and *Z*: *P* = (*I*²)**Z*
- Thus
 - $X [dB] = 10*\log_{10} \{ (E_1)^2 / Z_1) / (E_2)^2 / Z_2 \}$ = 10*log₁₀ \{ (I_1)^2 X_1) / (I_2)^2 Z_2 \}

dB, voltages, currents (2)

$X [dB] = 20*\log_{10}(E_1/E_2) + 10*\log_{10}(Z_2/Z_1)$ = 20*log_{10}(I_1/I_2) + 10*log_{10}(Z_1/Z_2)

• If – and only if –
$$Z_1 = Z_2$$
, then
 $X [dB] = 20*log_{10}(E_1/E_2)$
 $= 20*log_{10}(I_1/I_2)$

Adding signals

- Let X1, X2, X3, ... [dBW] be the individual signals power levels.
- The signals add to each other at the receiver input.
- What is the level of the resultant signal?
- Can we add dB directly?

Adding signals (2)

- 1. Translate each signal from [dBW] to [W] $x_i = 10^{(X_i/10)}$ [W]
- 2. Add signal powers in [W] $x_{\Sigma} = \sum x_i$ [W]
- 3. Translate the result back to [dBW] $X_{\Sigma} = 10^* \log_{10}(x_{\Sigma})$

dB vs. N

- Neper (N) is another logarithmic measure used in telecommunications
- Differences:

–Decibel relates to power ratio whereas Neper deals with voltage or current ratio

–Neper uses natural logarithms (base e) whereas deciBel uses decimal logarithms (base 10)

1N = 8,685890 dB 1dB = 0,115129 N

Outline

- What "dB" is and why is it used?
- A few examples
- Some calculations
- Summary

Summary

- We learned
 - what is the logarithmic unit of dB and
- We saw few examples
 - how to use it

References

- Telecommunication Glossary 2000
- Davis M: "Units and Calculations"; presentation at the Summer School on Spectrum Management and Radio Astronomy, Green Bank, June 2002