
A Disruption Tolerant Architecture based on MQTT
for IoT Applications

Jorge E. Luzuriaga∗, Marco Zennaro†, Juan Carlos Cano∗, Carlos Calafate∗ and Pietro Manzoni∗
∗ Department of Computer Engineering

Universitat Politècnica de València, SPAIN
† International Centre for Theoretical Physics / ICT4D Lab., ITALY

Email: jorlu@upv.es, mzennaro@ictp.it, {jucano, calafate, pmanzoni}@disca.upv.es

Abstract—In the IoT world, establishing a strong mobile
network architecture will be critical for organizations to bring
together people, processes, data and things. Among the various
available protocols and standards to network IoT entities, the
Message Queue Telemetric Transport (MQTT) is already a refer-
ence solution. It provides a publish/subscribe messaging transport
specifically designed to be used in devices with limited resources
over constrained networks. MQTT’s main limitation is its low
resilience with respect to device mobility, so that the connections
could suffer frequent and long lasting disruptions or high bit
error rates that severely degrade normal communications. In
this work we propose an architecture to increase the robustness
of MQTT by integrating a Disruption Tolerant Network (DTN)
approach. The architecture has been evaluated through several
experiments using real devices to validate its feasibility, and to
derive some guidelines for its use.

I. INTRODUCTION

Nowadays, more and more smart objects are being incor-
porated into the Internet. Their management, the traffic that
they generate, as well as the effective use of these data are
challenges that developers, researchers and enthusiasts of the
Internet of Things and wireless sensor networks technologies
are facing.

MQTT (Message Queuing Telemetry Transport) is a light
publisher/subscriber protocol specifically designed for IoT
applications and machine-to-machine communications. It is
an open protocol optimized for communication over networks
with limited bandwidth [1]. It is also an appropriate choice
when dealing with simple, small, low-cost devices with limited
resources. Together with CoAP (Constrained Application Pro-
tocol) it is one of the most relevant IoT messaging protocols.
MQTT works on top of the TCP protocol stack but this stack
is too complex for wireless sensors and actuators [1] that
basically transfer small data pieces such as measurements,
remote commands, or user data. Thus in 2008, Stanford-Clark
A. and H. Linh Truong both from IBM published the MQTT
for Sensor Networks (MQTT-SN) specifications [2] where
TCP is replaced by UDP.

Anyway MQTT, does not behave well in mobile scenarios
when sensing devices face periods of disconnection followed
by a re-connection (possibly on a different sub-network). This
issue may be detrimental to the wide adoption of this standard.

Dealing with connections that suffer frequent and long
lasting disruptions and high bit error rates that may severely

degrade normal communications is anyway already an active
research area. To this end, the so called “Disruption Tolerant
Networks” (DTN) paradigm was introduced to provide a gen-
eral communication architecture in the presence of intermittent
connectivity over a wide range of networks [3]. The DTN
architecture defines the “Bundle Protocol” (BP) and a “Bundle
layer” which operate in-between application and transport
layers by exchanging blocks of data (the “bundles”) as the
basic information unit of variable length.

In this work we focused on these problems and proposed
and analyzed the behavior of an MQTT-based architecture that
relies on the Disruption Tolerant Network (DTN) paradigm.
The overall goal was to increase the flexibility of the system
with respect to connectivity. More precisely, we used MQTT
for Sensor Networks (MQTT-SN) combined with the IBR-
DTN1 implementation of DTN, and we validated our archi-
tecture using real devices in scenarios with multiple motes as
publishers and subscribers.

The results we obtained confirm that MQTT is one of the
best options in terms of resource use and ease of development
for IoT applications, and that, in conjunction with a DTN
approach, can be very robust and efficient even in scenarios
with unstable links or partitioned networks.

The rest of the article is organized as follows: A review
of related work in addition to a short overview of the used
technologies on our architecture. are offered in Section II. In
Section III we present the architecture and the performance
evaluation planning. The results and their statistical analysis
are presented in Section IV. Some concluding remarks are
available in Section V.

II. RELATED WORK

With the arise of the Internet of Things (IoT), several
specific protocols are being widely used by application devel-
opers. A basic performance comparison between well known
implementations of the DDS, MQTT, CoAP protocols and
an UDP program under network emulation using NetEm is
presented in [4]. They simulate constrained and low reliability
networks with the aim of measuring bandwidth, latency, and
packet loss. They experience packet loss with protocols based
on UDP and with protocols based on TCP when the link

1https://github.com/ibrdtn/ibrdtn

conditions imply over 25% of packet loss, and 400 ms of
latency.

Another comparison between IoT protocols is offered in [5]
where a distributed solution based on ZigBee and 6LoWPAN
is compared against a centralized solution based on Software
Defined Wireless Network (SDWN). The authors observe
performance metrics such as packet loss, RTT and overhead.
The obtained results show that the best solution for static or
semi-static smart homes and buildings is the SDWN due to
the optimal resources’ exploitation combined with reduced
overload. However in dynamic environments SDWN presents
limitations due to the large amount of time required to refresh
routes, where ZigBee and 6LoWPAN remain to be the best
options.

Also, through the NS2 simulator, authors in [6] evaluate
the performance of the MQTT-SN by changing the quality of
service levels. In addition, authors also propose a theoretical
probability of delivery delay as a function of other parameters
is modeled. The authors as future work propose to make the
measurements on a real implementation similar to what we
have done in this article.

The authors in [7] have experienced problems and diffi-
culties to link the world of internet and the world of things,
specially with proprietary solutions on gateways. They propose
the use of smartphones as gateways in conjunction with an
Android application running to discover and manage things
that collects and forwards their data. Through this solution,
interoperability of scenarios, interfaces and technology is
provided.

Another group of works focuses on handling disruptions
without data loss on scenarios with variable network topology
due to unstable network links, and based on the Bundle Pro-
tocol specifications, in [8] the authors describe an implemen-
tation of the bundle protocol for WSN specifically for Contiki
called µDTN, outlining the design architectural decisions. As
a convergence layer the authors directly use MAC Layer
802.15.4, thus bundles are send directly to 802.15.4 radio
frames, without going-through transport or network layers.

In [9] the authors propose the replacement of UDP as
the transport protocol used by CoAP in the Bundle Proto-
col offered by IBR-DTN. The bindings are made via TCP
sockets without regarding to the security features. In the
evaluation they compare their proposal against a standard
CoAP implementation. The results show a slower personal
behavior, but instead this proposal allows have no end-to-end
communications supporting long expected disconnections.

However all these works do not offer an architecture able to
combine these promising standards with a successfully proof
of concept that uses real devices.

III. EXPERIMENTAL SET-UP AND EVALUATION
METHODOLOGY

In this section we describe the experimental setup and the
evaluation methodology we used to analyze our proposed
architecture.

WSN infrastructure

Backbone network

MQTT client

MQTT-SN client

MQTT-SN
dtn recv

dtn send

Gateway

traffic
control

6loWPAN

IPv4/IPv6

Fig. 1. Diagram of the conceptual integrative architecture for data collection
applications.

A. Reference Scenario

Our experimental set-up included two Raspberry Pi 2 Model
B (RPi) devices and seven Zolertia Re-Mote Sensor Board
(motes) [10]. To simplify our study the scenario was separated
into two parts:

On one side we had the WSN infrastructure where the
motes (MQTT-SN clients) were wirelessly connected using
6LoWPAN. An intermediate RPi acts as a gateway translating
MQTT-SN to MQTT messages and vice versa [11]. We used
the Eclipse Paho MQTT-SN gateway implementation2 and
the Mosquitto broker implementation3 as MQTT message
broker to distribute the messages from the publisher to the
subscribers.

On the other side, we had the backbone IP-based network
where the RPis, acting as DTN nodes, where connected using
an Ethernet link. The bandwidth was fixed to 10 Mbps using
the Ethtool Linux utility. We used IBR-DTN version 1.0.1 as
the DTN implementation. For the bundle transmission we used
the dtnsend and dtnrecv [12] tools.

One of the two RPi devices was connected to one of the
seven motes to implemented a border router device [13]. This
border router interconnected both networks and routed the
generated data between them.

In Fig.1 we can see a graphical representation of the
scenario while the real set-up is depicted in Fig. 2.

All the source code collected, studied, developed
and adapted to our project is under open-source
license and can be download from the repository:
http://github.com/jluzuria2001/TS-IT.

B. Evaluation methodology

The evaluation methodology was based on separately con-
sidering the two main components of our proposed architec-
ture: the WSN infrastructure, and the backbone network.

2https://projects.eclipse.org/projects/iot.paho.
3http://mosquitto.org.

sink

RPi-gateway

Fig. 2. A picture of the testbed used in our experiments.

t1

t2

∆t=t2-t1

start-order
fwd msg

start-order

message

create msg

fwd msg
msg reply

time

RPi Gateway mote

mqtt-pub

mqtt-broker

mqtt-sn-gateway

mqtt-sub mqtt-sn-sub

mqtt-sn-pub

Fig. 3. Sequence Diagram of the Ping-Pong application, totally based on the
MQTT-SN protocol.

Regarding the WSN infrastructure, we measured the per-
formance of the connections by using a simple ping-pong
testing application we developed. Fig. 3 shows we can see
the interaction of the involved components as well as the
points on which the various time-stamps were measured. The
basic behavior of the ping-pong application is the following:
first, a message is sent from the MQTT publisher on the RPi-
gateway to the MQTT broker on the RPi-gateway; then, the
MQTT-SN gateway forwards it to the MQTT-SN subscriber
on a mote. When the subscriber on the mote receives the
message, it creates a new message with the received identifier
and publishes it to the MQTT-SN message broker, who then
forwards it to the MQTT subscriber at the RPi.

The micro-controllers computation delay and all the other
potential delays are considered to be part of the overall channel
latency. The obtained results are based on a total of 5000
messages sent at a frequency of 0,1 Hz, and using a message
size equal to 20 bytes.

The performance of the DTN-based backbone network was
measured configuring the message forwarding on IBR-DTN as
follows: 1) maximum lifetime of a bundle of 604800 seconds
(i.e., one week), 2) blocks size limit of 1.3Gb, and 3) the
non-persistent bundle storage, i.e., all bundles were kept in the

TABLE I
A SUMMARY OF THE PARAMETER’S DETAILS USED IN THE EVALUATION

OF EACH SCENARIO.

Parameter WSN infrastructure backbone network
Total msg. 5000/2000 2000

Msg. size (bytes) 20 40
Periodicity (seconds) 10 1

Repetitions 10 10

RAM memory. To emulate an intermittent channel we used the
Linux Traffic Control [14] tool. We modified the communica-
tions channel between the transmitter and the receiver varying
the percentage of error over the link, specifically 0%, 25%,
50%, and 75%. To ensure at least two connected cycles and
one disconnected cycle, and considering that the test length
that is around 33 minutes, we fixed the length of each cycle
to 12 minutes.

Each test was repeated 10 times, transmitting 2000 messages
with an inter-bundle frequency of 1 message/second. The
bundle size was 40 bytes (20 bytes of the mote message
plus the forwarding timestamps). We emulated the message
forwarding in a full connected network, and then in an
intermittently connected network where throughout the test,
the transmitter network interface was turned off and on with
cyclically prefixed time periods

Table I summarizes the configuration parameters used with
each scenario.

C. Analyzed Metrics

The data of the message transmissions obtained from the
log files were filtered by the ID of each mote. The metrics
used in the evaluation of our architecture were: the round-trip
times (RTT), the % of message losses, and the messages jitter.

1) Round-trip times: The round-trip times are used to
evaluate the channel latency. The ping-pong testing application
we developed was used specifically to this end. We basically
used two log files: one in the MQTT-client at the RPi, storing
the timestamp and the ID of each published message; the
second, storing the same fields (timestamp, and ID) of each
received message. These two logs were merged based on the
message ID, and then we computed the difference between the
reception and publication timestamp for each message. These
values form 10 vectors, one for each test, which are used as the
basis of our descriptive and probabilistic statistical analysis.

2) Message Loss: To calculate the message loss (loss msg)
we count all the received messages (rcv msg) and subtract
it to the total number of sent messages (fixed to 2000). The
average values were stored in a vector for each test, eventually
providing the following data matrix:

[avg vector] = (

n∑
i=1

ai1,

n∑
i=1

ai2, . . .

n∑
i=1

aim) (1)

where: akl are the received messages on a specific test; k is
the number of motes (1≤k≤n=6), and l is the number of test
(1≤l≤m=10). The total number of messages sent in each test
was 2000*n.

Fig. 4. Empirical and theoretical statistical distributions with the Round-trip
time results of the Ping-pong application.

3) Jitter behavior: The jitter of the received messages is
computed using the reception timestamps. The timestamps’
accuracy was down to milliseconds at the sending and receiv-
ing sites. We considered that relative clock drifts during the
experiment were negligible, and therefore we used the clock
values of the final end-point on the RPi. For every test we take
the difference of the arrival values, building a new matrix of
values whose ith row has the following elements:

Jitteri,rcv ts = (ai+1,rcv ts − ai,rcv ts) (2)

where: a correspond to the received messages on a specific
test, rcv ts represents the reception timestamp, and i is the
current message (1≤i≤2000).

IV. ANALYSIS OF THE RESULTS

In this section we present the results that allow evaluating
our architecture. In our evaluation we addressed round-trip
latency, % of message losses, and the order preservation of
the messages when delivered after a network disconnection.

A. Round-Trip Time (RTT)

The first critical metric is the round-trip latency in the WSN
infrastructure.

Fig. 4 shows the evaluation of the round-trip time (in
milliseconds) for a 6LoWPAN payload size of 20 bytes. We
can see that the data distribution of the RTT values does not
follow a normal distribution. The density curve within the
hump of the histogram is close to zero, with values between 75
and 90 ms. Based on quartiles information of the Q-Q plot we
can see that only a few values are greater than 1000 ms. The
regression line intercepts values between 0 and 1700 ms. In the
cumulative distribution function (CDF) of the distribution plot,
90% of the values are within a few milliseconds, specifically
between 75 and 90 ms, confirming that the data are not

●

●

●

0
2

4
6

8
10

12
14

Motes

Lo
st

 M
es

sa
ge

s
(%

)

1 2 3 4 5 6

●

●

●

86
88

90
92

94
96

98
10

0

Motes

R
ec

ei
ve

d
 M

es
sa

ge
s

(%
)

1 2 3 4 5 6

Fig. 5. Results of the Lost (left) and Received (right) Messages respectively,
when increasing the number of publisher motes.

normally distributed. Also, a few unusually high values of 1.7
seconds appear. The P-P plot presents a behavior quite similar
to the CDF plot; we can see that the measured values are not
aligned along a regression line.

B. Varying the number of Publisher and Subscribers

This study was implemented to see the impact of increasing
the number of publishers and subscribers, that is a context
where several devices are sending/receiving packets simulta-
neously. To avoid the overloading of the motes memory the
inter-message delay was fixed to 1 second, sending a total of
2000 messages. The message size during this test was set to
20 bytes, and each test was repeated 10 times.

We counted a successful transmission process when a
published message to the message broker is forwarded and
received by the subscribers on the motes or on the other RPi,
where they are kept in a log files for statistical analysis. In
the first part of the experiment, the publishers are the motes
(many-to-one), and in the second part it is the RPi (one-to-
many).

1) Message Loss: Fig. 5 on the left shows that message
loss goes up from 0 to 10% when we add up to six motes
to the scenario, due to the increasing number of collisions
in the network in addition to the constrained resources of
the motes. On the right part of Fig. 5 we can see how the
successful reception of messages drops progressively as the
number of motes increases. In all these simulations a message-
loss higher than 9% (180 messages) never occurred. The
general pattern showed either no packet-losses at all, or up
to 100 lost messages with 6 motes.

2) Jitter behavior: On the 6LoWPAN network, the jitter
values obtained when increasing the number of motes are
shown in Fig. 6. On the left we observed how most of the
maximum jitter values go from 3 to 9 seconds, while on the
right part most of the minimum jitter values range between 55
to 140 ms.

C. Inter-infrastructure Delay

We now present the results of the data delivery delay in the
backbone networks. From the set of graphs in Fig.7 we can

20
00

40
00

60
00

80
00

10
00

0
12

00
0

Motes

Ji
tte

r
M

ax
im

um
 (

m
s)

1 2 3 4 5 6

●

●

●

●

40
60

80
10

0
12

0
14

0

Motes

Ji
tte

r
M

in
im

um
 (

m
s)

1 2 3 4 5 6

Fig. 6. Obtained Maximum (left) and Minimum (right) Jitter values respec-
tively, when the number of publisher motes is increased.

Fig. 7. Processing time requirements at the DTN node with an Inter-Message
Sending interval of 1 second.

see that the range of values goes from 1040 and 1065 ms.
Considering that the bundle generation was fixed on 1000 ms,
this means that the needed time to handle a bundle with the
devices used on our test falls within the range from 40 to 65
ms in nearly all the cases. If we compare the density curve
hump with the hump of the histogram we can see that the
overall data is normally distributed. The data in the Q-Q plot
(on the right) also describes a normally distributed process.
The values above the line on left of this graph are telling us
that most of the values are lower than the medium value. By
plotting the cumulative distribution function (CDF), we can see
how the data are normally distributed like in the density plot.
Normal P-P plots were used to examine whether the residuals
are normally distributed. The pattern of the values grouped
shows that some values are common on the data distribution.

D. Inter-Message Receiving Delay

This section shows the inter-message gap in the reception of
messages in two evaluated cases: (a) without disconnections,

●●●●●●●●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●●●
●

●

●

●●
●●●●●●●

●●

●

●

●

●●

●

●

●

●

●●
●
●
●

●

●

●

●

●

●

●●

●

●

●●

●

●
●
●●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●
●
●●●●●●●●●●●●●●●●
●
●●
●●●
●

●●
●●
●

●●●●●
●●●●●
●●
●
●●
●

1e
+

00
1e

+
02

1e
+

04
1e

+
06

Without Disconnections

Error Percentage

Ji
tte

r
(m

s)

0 25 50 75

●

●

●●

●●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●●●●●●●

●

●

●

●●●

●

●●

●

●

●●

●

●

●●
●

●●

●

●●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●
●
●●
●
●●
●●●●●●
●●
●
●
●
●●●●

●
●●●●
●●●

●

●●●
●
●
●

●●●
●●
●
●
●●●●●●●●
●

1e
+

00
1e

+
02

1e
+

04
1e

+
06

12 mins of Disconnection

Error Percentage

Ji
tte

r
(m

s)

0 25 50 75

Fig. 8. Variation of the inter-message reception delay in a fully connected
scenario (left) and with cyclic connections/disconnections of 12 mins (right)
at the DTN node.

and (b) with cyclic disconnections with time intervals of 12
minutes in length. All the scenarios suffer from different
percentage of error on the communication channel.

Fig. 8 on the left shows the results achieved under optimal
conditions, i.e., with 0% of error over the link. We can see
that the values are bounded to a few milliseconds (between
1031 and 1078 ms). With a 25% of channel errors, most of
the messages are delivered with a few milliseconds around
the inter publishing rate with some outliers close to 10 ms.
When the error increases, most of the values are in tens and
hundreds of milliseconds with few outliers with very high
delays. Huge outliers behavior is common with 75% of error
over the link. However most of the messages are delivered in
presence of a minimum connection with an inter delay of tens
of milliseconds.

In the presence of disconnections from the network, we
can observe on the right part of Fig. 8 that messages are
delivered with a delay between 10 ms to 1 second. When
the error on the link surpasses 50% some outliers with big
values appears, while most of the messages are delivered
within a inter delay of tens of milliseconds. Basically, When
a minimum connection is established it is enough to support
the exchange of bundles.

We have observed that the average values of the time needed
to re-establish a connection after a period of disconnection,
subtracting the bundle generation time is close to 6 seconds
in the best conditions; while with a 75% of error in the
communication channel it requires about 200 seconds.

E. Order Delivery Analysis

The IBR-DTN module by default uses a non-persistent
bundle storage, which means that all bundles are kept in RAM
memory and so bundles will not be preserved if a power failure
or a service daemon restart takes place.

All the bundles have the same priority, and they are stored
and retrieved based on different parameters like their id, or
the destination, among others. In a full connected network on
the nodes’ outbound link the FIFO queuing policy is applied.
When the network has some constraints, limitations and the
nodes are not reachable, the read bundles out of the storage are

Without 12 mins 6 mins

0%
25%
50%
75%

0
20

40
60

80
10

0

error

Fig. 9. Percentage of the Delivery order with different scenarios with and
without disconnections in addition to the channel manipulation.

re-queued. In these cases the buffer management policy used
by IBR-DTN to flush the buffer and send out the buffered
bundles to the end node looks like a random policy.

In Fig. 9 we can see, that even in presence of errors on the
link up to 25% data delivery order follows a FIFO fashion
with a 100% of order in fully connected scenario, 65% in
a scenario with 12 minutes of disconnections, and 50% in a
scenario with more intermittent connections. When the errors
over the channel increase to 50%, the order goes down to 70%
in a full connected scenario, while with cyclic disconnections
the order goes down to 43%. In presence of a high error % over
the channel the delivery order in all the cases is completely
broken, being that none of the bundles arrive in the same
sequence in which they were sent.

V. CONCLUSIONS

We presented a DTN-based architecture to support MQTT
for the development of Data Collection IoT Applications. Our
proposal focused on offering data transmission in scenarios
characterized by link outages, unstable links, split networks,
or intermittent connectivity.

We have presented experimental results obtained from dif-
ferent configurations of network parameters and network size
to validate the feasibility and effectiveness of our proposal.
We showed that in the WSN infrastructure the round-trip
time is below 75 ms, and the message loss gets up to 5%
and 3% with 6 publishers or subscribers respectively. In the
backbone network, the time required to handle a bundle is
between 40 and 65 ms, while the inter-delivery message
delay is of few tens of milliseconds, slowly increasing as
the degradation of the communication channel grows. We
consider that these values can be acceptable for general IoT
applications, considering that with this new architecture end-
to-end applications do not have to worry about the possible
nodes’ disconnections periods.

As expected, the most critical parameter has to do with
the scalability of the network, considering that IoT systems
can easily have hundreds of motes. It is necessary to keep
in mind that a large number of motes degrades the network
performance as we have demonstrated along the paper. So, it is

crucial , when having high density networks to properly design
the data collection and distribution solution to generate a load
that the network is able to handle. We recommend to keep a
very simple data collection scheme, like avoiding simultaneous
collection and sending of data from large portions of the WSN
infrastructure.

ACKNOWLEDGMENTS

This work was partially supported by the Ministerio de
Economı́a y Competitividad, Programa Estatal de Investi-
gación, Desarrollo e Innovación Orientada a los Retos de
la Sociedad, Proyectos I+D+I 2014, Spain, under Grant
TEC2014-52690-R. In addition, we would like to express our
gratitude to the ICTP members for their assistance and support.

REFERENCES

[1] W.-J. Chen, R. Gupta, V. Lampkin, D. M. Robertson, and N. Subrah-
manyam, Responsive Mobile User Experience Using MQTT and IBM
MessageSight, IBM Corp., Ed., 2014.

[2] U. Hunkeler, H. L. Truong, and A. Stanford-Clark, “MQTT-S A
publish/subscribe protocol for Wireless Sensor Networks,” 2008 3rd
International Conference on Communication Systems Software and
Middleware and Workshops (COMSWARE ’08), pp. 791–798, 2008.

[3] V. Cerf, S. Burleigh, A. Hooke, and L. Torgerson, “Delay-tolerant
networking architecture,” in RFC4838, April, no. RFC 4838. IETF,
apr 2007. [Online]. Available: http://www.rfc-editor.org/rfc/rfc4838.txt

[4] Y. Chen and T. Kunz, “Performance Evaluation of IoT Protocols under
a Constrained Wireless Access Network,” in International Conference
on Selected Topics in Mobile Wireless Networking (MoWNeT), 2016.

[5] C. Buratti, A. Stajkic, G. Gardasevic, S. Milardo, M. D. Abrignani,
S. Mijovic, G. Morabito, and R. Verdone, “Testing protocols for the
internet of things on the EuWIn platform,” IEEE Internet of Things
Journal, vol. 3, no. 1, pp. 124–133, 2016.

[6] K. Govindan and A. P. Azad, “End-to-end service assurance in IoT
MQTT-SN,” 2015 12th Annual IEEE Consumer Communications and
Networking Conference, CCNC 2015, pp. 290–296, 2015.

[7] G. Aloi, G. Caliciuri, G. Fortino, R. Gravina, P. Pace, W. Russo,
and C. Savaglio, “A Mobile Multi-Technology Gateway to Enable IoT
Interoperability,” 2016 IEEE First International Conference on Internet-
of-Things Design and Implementation (IoTDI), pp. 259–264, 2016.

[8] G. V. Zengen, F. Büsching, W.-b. Pöttner, and L. Wolf, “An Overview
of DTN : Unifying DTNs and WSNs,” The 11th GI/ITG KuVS Fachge-
spräch ”Drahtlose Sensornetze”, no. September, 2012.

[9] M. Auzias, Y. Maheo, and F. Raimbault, “CoAP over BP for a Delay-
Tolerant Internet of Things,” Proceedings - 2015 International Confer-
ence on Future Internet of Things and Cloud, FiCloud 2015, pp. 118–
123, 2015.

[10] Zolertia , “Zolertia RE-Mote platform Datasheet,” vol. 001, no. Decem-
ber, pp. 1–2, 2015.

[11] Z. Shelby and C. Bormann, Using 6LoWPAN. John Wiley
& Sons, Ltd, 2009, pp. 149–161. [Online]. Available:
http://dx.doi.org/10.1002/9780470686218.ch6

[12] S. Schildt, J. Morgenroth, W.-B. Pöttner, and L. Wolf, “IBR-DTN: A
lightweight, modular and highly portable Bundle Protocol implementa-
tion,” Electronic Communications of the EASST, vol. 37, jan 2011.

[13] A. Linan Colina, A. Vives, M. Zennaro, A. Bagula, and E. Pietrosemoli,
“IoT in 5 days,” 2016.

[14] B. Hubert, T. Graf, and G. Maxwell, “Linux Advanced Routing &
Traffic Control HOWTO,” Ottawa Linux . . . , vol. 1.0.1, p. 631, 2012.
[Online]. Available: http://www.lartc.org/lartc.pdf

