
1

Accelerating short transfers in 802.11 networks
Andrés Arcia-Moret , T/ICT4D Lab, International Centre for Theoretical Physics (ICTP), aarcia m@icpt.it

Nicolas Montavont , IMT/Telecom Bretagne, UEB, Irisa, nicolas.montavont@telecom-bretagne.eu
German Castignani , University of Luxembourg, german.castignani@uni.lu

Abstract—The legacy bandwidth discovery phase of TCP
spends an unnecessary number of RTTs for reaching the fair
share of the network. In this article we introduce a simple
modification at the receiver that splits the TCP ACKs in a
controlled manner. This mechanism allows to fast ramp-up the
TCP congestion window. Our experiments performed in a real
testbed show benefits not only in the increased data throughput
but also in a non-congested uplink (Acknowledgement) path in
an 802.11 access.

I. INTRODUCTION

The available bandwidth in the Internet has been constantly
growing. Yet the Transmission Control Protocol (TCP) has
kept the same conservative initial phase to discover the avail-
able bandwidth. The slow start phase makes TCP to spend
several RTTs to adapt the congestion window growth to the
available bandwidth. In particular small to medium transfer
make as many RTTs as log2 N , being N the number of
segments to transfer.

The Transmission Control Protocol (TCP) depends on both,
the uplink and the downlink, paths to effectively convey data.
When data packets are sent, the other end sends ACKs creating
a dynamic called the ACK-Clocking. The timely reception of
ACKs reflects the congestion conditions of the network. And
at other times, they simply reflect the nature of the media. For
example, in IEEE 802.11 networks, ACKs get spaced by the
distributed and random access to the media. And so do the
data packets, they get sometimes delayed because ACKs need
to be transfered.

Our focus is on the 802.11 networks which has reached an
amazing popularity. Billions of IEEE 802.11 client and access
devices are nowadays deployed world-wide. These devices
implement the Carrier Sense Multiple Access with Colli-
sion Avoidance (CSMA/CA) mechanism for Medium Access
Control (MAC). The shared nature of the MAC mechanism
may create an artificial limit to increase the data throughput
because of the regular TCP-ACK policy [1]. On the other hand,
the initial fast ramp-up of the TCP congestion window has
been the subject of several works, trying even to completely
eliminate the initial phase of TCP [2].

In this paper, we propose a novel end-to-end approach to
fast ramp-up a TCP connection by introducing a modification
to the TCP ACK-clocking algorithm from the receiver. By
sending an appropriate number of control packets, called
divacks (regular valid ACKs renamed for the purpose of the
work as in [1], [3]), during an initial time window of the
connection, we obtain an increased initial rate that favours
short transfers (living in slow start) and the recovery of the
connections after a disconnection or a handover in an 802.11
mobile scenario.

The reminder of this paper is organized as follows. In Sec-
tion II we introduce the related work. The divacks mechanism
and its configuration parameters is proposed in Section III.
Then in Section IV we evaluate the proposed mechanism
in a Linux-based implementation of divacks over different
scenarios. In Section V we analyse the potential of divacks
for fast recovery after handovers. Finally, in Section VI, we
conclude the paper.

II. PREVIOUS WORK

There has been a recent interest on accelerating the initial
ramp-up of the transfer for short lived flows, and even to elimi-
nate altogether the initial conservative bandwidth discovery on
TCP. In our particular interest, the initial ramp-up may also
be useful after a handover in 802.11 networks. In this case,
a faster ramp-up than legacy TCP, is intended to recover the
previous data rate.

As suggested by Liu et al. [2], there are three broad
categories classifying the different approaches for bandwidth
discovery. First, methods for predicting the available band-
width such as the well-known packet pair technique, in which
TCP Westwood relies on [4]. Second, mechanisms for sharing
the discovered capacity information among connections. For
example, by sharing the discovered capacity between parallel
connections living within a common path [5]. Third, mech-
anisms that relies on the network for obtaining a precise
information about the availability of buffer space to send large
bursts of data [6].

Alternatively, we approach the problem in a different per-
spective. There has been a recent evaluation of the perfor-
mance of a finer ack-clocking control called divacks. Although
the original report by Savage et al. [7] described it as a
potential threat as a possible security hole, recent evaluations
show that divacks effect is not straight forward to predict
[1], [3]. The increasing of the ACK flow if well tuned, can
derive the same benefits as other fast-start mechanisms with
the additional gain of pacing the data packets controlled from
the clients [8].

III. ACK RATE ADAPTATION

We propose to use the ACK rate adaptation to enhance
wireless station performance. By using multiple ACK (called
divack) per TCP segment a mobile station can strongly reduce
the time to discover the available bandwidth, and accelerate
short transfers over a wireless link. This mechanism is used
during the slow start period, i.e., when a mobile station is
initiating a file download, or when it performs a handover
between two access points while downloading a file. In the



2

case of a handover, the TCP connection is interrupted and
once the mobile station has connected to the new point of
attachment, it uses slow start again to discover the available
bandwidth. Divack will allow reaching the new capacity at the
new point of attachment as fast as possible.

In order to implement the divack mechanism and study the
trade-off between an appropriate divack rate and the admission
control imposed by the CSMA/CA, we modified the regular
ACK sending algorithm. These modifications only concern the
kernel that will be deployed in the client computer. We have
added just few lines of code to control the total number of
ACKs sent during the earlier RTTs of the slow start.

A. Fast ramp-up algorithms (using divacks)

We used an Ubuntu distribution (10.04) with the kernel
2.6.32.21 for our implementation. The legacy TCP, that we
used as a reference in the performance evaluation, proposes
a regular ACK policy which does not correspond exactly to
acknowledging every other packet, neither to one ACK-per-
packet, it falls in between. So an approximate number of 1.5
ACKs per data packet are regularly sent from the chosen Linux
kernel. This may be induced by the delayed ACK timer being
triggered when in presence of long RTTs.

In order to control the low-throughput effect produced by
a high number of divacks [9], [10], [3], we reduce the uplink
traffic by limiting the total number of divacks in the Controlled
divacks algorithm. This reduction is achieved by sending a
fixed amount of divacks at the beginning of the transfer. Two
parameters were defined. tcp divack count keeps track of the
number of divacks already sent and tcp divack max count
retains the maximum number of divacks. By sending a limited
number of divacks not only is the available bandwidth rapidly
discovered but also it liberates the wireless link to be competed
by divacks, allowing the data packets to be transferred with a
minimal uplink congestion.

IV. EXPERIMENTATION

A. Experimental Platform

In order to evaluate the impact of the proposed divacks
mechanisms (i.e., Brute-Force and Controlled), we have set up
an experimental platform as depicted in Fig. 1. This platform
consists of a (wired) TCP server A, a divacks-enabled client
C, the network emulator netem, named B and the IEEE 802.11
access point (AP). A is connected to B via an Ethernet cable,
and B is also connected to the AP via a second Ethernet
cable. The client connects via a wireless link to the AP. In
this testbed, the client C will be downloading data form A,
and therefore, it will acknowledge every packet received with
several divacks, speeding up the transfer. In our proposed
experimental platform the bottleneck of the transmission is
in the wireless link, that reaches a maximum throughput of
19.5Mbps while the wired connexion offers a maximum
throughput of 100 Mbps.

The ramp-up algorithms using divacks were implemented
in the client. For the server as it has been recently reported,
a significant share of the well-known servers react favourable
to divacks [11].

Fig. 1. Testbed platform

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0e
+

00
2e

+
05

4e
+

05
6e

+
05

8e
+

05
1e

+
06

Time (s)

D
ow

nl
oa

de
d 

D
at

a 
(B

yt
es

)

Legacy (n=0)
Brute Force (n=12)
Controlled (n=12)

Fig. 2. Controlled method shows an improved performance

B. Results

In Fig. 2, we show the effect of the Controlled divacks
algorithm in terms of the throughput. In particular, we consider
a number of divacks n = 12 (between 7 and 14) and
we compare legacy TCP (n = 0) with the Brute-Force
and the Controlled divack algorithm. We observed that the
Controlled algorithm corrects the misbehaviour showed by the
Brute-Force algorithm when the number of divacks exceeds
a threslhold (n = 12 in our particular case). Conversely,
the Controlled algorithm allows accelerating the congestion
window growth without exhibiting the known null-effect when
using divacks for long time periods [1]. Morover, in the short-
term there is a relevant throughput improvement compared to
the legacy TCP implementation.

Fig. 3 shows the uplink traffic in packets (ACKs) per time
unit. Observe that the controlled method of divacks noticeable
decrease the uplink traffic and better accelerate the increasing
of the congestion window. Another implicit benefit is that,
compared to the legacy TCP (the red curve in Fig. 3), the
Controlled divacks algorithm can use a slightly large amount
of divacks at the beginning of the connection but at the end,
the connection finishes first than Brute-Force and Legacy TCP,
releasing the channel sooner.



3

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
10

00
20

00
30

00
40

00
50

00
60

00

Time (s)

A
C

K
 R

at
e 

(A
C

K
/s

)

Legacy TCP
Brute Force Divacks
Controlled Divacks

Fig. 3. ACK rate for different approaches

C. The role of the reception window

The client reception buffer plays an important role in
the performance of the divacks mechanism. This buffer is
allocated for each TCP connection and stores all incoming
packets before delivering to the client. So, if the buffer size is
increased, the throughput of the transmission is also increased
due to a larger announced window, performing more relaxed
flow control.

We have also observed that the data packet bursting oscil-
lates when there is a need for a bigger buffer value. When
the reception window saturates (close to applying a flow
control), there is an increase of the announced window. This
is announcing in turn the scaling of the reception buffer.

V. USE OF DIVACKS FOR DEALING WITH HANDOVERS

In order to evaluate the performance of divacks in a
handover scenario, we have set up a testbed in which the
mobile device changes the point of attachment and recovers the
previously-established TCP connection. We have considered
three experiments: legacy TCP (n = 0, divacks disabled), brute
force divacks algorithm (n = 12) and the controlled divacks
algorithm (n = 12).

In Table I we show the throughput obtained before and
after the handover was executed. As expected, when the
divacks mechanism is executed in a controlled fashion, it over-
takes the default TCP behaviour not only before a handover
occurs (0.86Mbps versus 1.38Mbps) but also afterwards
(0.23Mbps versus 0.90Mbps).

VI. CONCLUSIONS

The discovery of the available bandwidth in a new con-
nection is handled by the slow start TCP algorithm. Even
if this process allows the congestion window to grow in an
exponential fashion, this is not enough after a handover has

Configuration Throughput before Throughput after
handover (Mbps) (Mbps)

Legacy (n=0) 0.86 0.23
Brute Force (n=12) 1.34 0.18
Controlled (n=12) 1.38 0.90

TABLE I
MEASURED THROUGHPUT IN A HANDOVER SCENARIO

taken place. Thus, we proposed a couple of algorithms using
divacks, i.e., sending multiple ACKs when a data packet has
been received. Moreover, we showed the gains obtained by
controlling the number of divacks.

In emulated handovers we showed that the divacks con-
trolled mechanism not only perform better than the TCP
default mechanism, but also after the transmission is re-
established, with a throughput up to four times larger. These
results make even clearer the need for limiting the number of
divacks sent per data packet to avoid the uplink congestion
when the Brute Force variation is executed. Finally, there is
a divacks limit that we empirically discovered for which the
maximum throughput is achieved. Over that limit the ACK
traffic impairs the TCP throughput.

REFERENCES

[1] A. Arcia-Moret, D. Ros, and N. Montavont, “Auto-protection of 802.11
networks from TCP ACK division,” in CONEXT ’08: Proceedings of
the 2008 ACM CoNEXT Conference. Madrid, Spain: ACM, 2008, pp.
1–2.

[2] D. Liu, M. Allman, S. Jin, and L. Wang, “Congestion control without
a startup phase,” Fifth International Workshop on Protocols for FAST
Long-Distance Networks (PFLDnet ’07), 2007.

[3] A. Arcia-Moret, O. Dı́az, and N. Montavont, “A Tunable Slow Start for
TCP,” in IEEE 4th Global Information Infrastructure and Networking
Symposium (GIIS), December 2012.

[4] L. A. Grieco and S. Mascolo, “End-to-end bandwidth estimation for
congestion control in packet networks,” in Proceedings of QoS-IP 2003,
no. 2601. Milano: Springer, Feb. 2003, pp. 645–658.

[5] H. Balakrishnan, H. S. Rahul, and S. Seshan, “An integrated
congestion management architecture for internet hosts,” in Proceedings
of the conference on Applications, technologies, architectures, and
protocols for computer communication, ser. SIGCOMM ’99. New
York, NY, USA: ACM, 1999, pp. 175–187. [Online]. Available in:
http://doi.acm.org/10.1145/316188.316220

[6] P. Sarolahti, M. Allman, and S. Floyd, “Determining an appropriate
sending rate over an underutilized network path,” Computer Networks,
vol. 51, no. 7, pp. 1815–1832, 2007.

[7] S. Savage, N. Cardwell, D. Wetherall, and T. Anderson,
“TCP congestion control with a misbehaving receiver,”
vol. 29, no. 5, Oct. 1999. [Online]. Available in:
http://www.acm.org/sigcomm/ccr/archive/1999/oct99/savage.pdf

[8] J. Aweya, M. Ouellette, and D. Y. Montuno, “A self-regulating TCP
acknowledgement (ACK) pacing scheme,” International Journal of
Network Management, vol. 12, no. 3, pp. 145–163, 2002.

[9] A. Arcia-Moret, “Modifying the TCP Acknowledgement Mechanism:
Evaluation and Appication to Wires and Wireless Networks,” Ph.D.
dissertation, Institut TELECOM/TELECOM Bretagne, Rennes, France,
December 2009.

[10] A. Arcia-Moret, N. Montavont, J.-M. Bonnin, and D. Ros, “TCP ACK
Division Revisited,” in 4th Ibero-american conference of electrical
engineering. CIBELEC, 2010.

[11] M. Welzl and R. Normann, “A client-side split-ACK tool for TCP Slow
Start investigation,” in Computing, Networking and Communications
(ICNC), 2012 International Conference on, 30 2012-feb. 2 2012, pp.
804–808.


