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ABSTRACT

To this day, the technical challenges of accessing TV white
spaces through spectrum sensing can be summed up into its
inability to provide maximum protection to primary users
from interference. Yet, off-the-shelf spectrum sensing de-
vices, which are emerging on the market at low cost, and
the low computation and implementation complexities of the
sensing technique, make them more and more attractive to
the developing world. Building upon “WhiteNet”, a white
space network management platform for campus connectiv-
ity, this paper proposes design principles that can be incor-
porated in a spectrum sensing-based white space identifica-
tion system to minimise probability of causing interference to
primary users. The principles are designed around the coop-
erative spectrum sensing model to further reduce chances of
interference to primary users. Evaluation of the principles
was done using real-world indoor measurements and based
on a real TV transmitter-allocation at the University of the
Western Cape in Cape Town, South Africa. The results re-
veal the relevance of using these design principles in white
space networking using the emerging White-Fi protocol to
boost the capacity of current Wi-Fi campus networks.

Keywords— White-Fi, cooperative spectrum sensing, detec-
tion threshold, spectrum sensing principles

1. INTRODUCTION

It has been widely recognized that in many regions of the
developing world, poor Internet access in universities and re-
search institutions is one of the causes of the scientific divide
between developed and developing countries. In many of
these regions, Wi-Fi has played a key role to connect campus
communities by enabling inter-campus connectivity and ac-
cess to the Internet but at lower access bandwidth compared
to research institutions of the developed world. The transi-
tion from analog to digital television is a great opportunity
to address this bandwidth issue in campus networks by us-
ing emerging protocols such as IEEE 802.11af, also referred
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to as White-Fi or Super Wi-Fi [1] to boost the current ca-
pacity of Wi-Fi networks with bandwidth acquired through
secondary access to white space (WS) frequency. However,
technologies and protocols have yet to mature to provide the
proper WS equipment at affordable prices and WS identifi-
cation, quantification and allocation techniques have yet to
improved and move from the research boundaries to the im-
plementation arena.

Two main approaches of accessing unused spectrum in the
TV frequency band (white spaces) for secondary use have
been suggested in the literature; geo-location database and
spectrum sensing. At the moment, there is a trend towards
the use of only geo-location database approach in the US and
Europe [2] as it guarantees high protection of the spectrum
incumbents from the interference. The trend is supported by
the development of the protocols such as Protocol to Ac-
cess White Space (PAWS) [3] by the Internet Engineering
Task Force (IETF), the IEEE 802.11af standard [4] and the
IEEE 802.22 standard [5] to access spectrum database. How-
ever, in some regions of Africa, the use of a geo-location
database has been questioned as the best approach to ac-
cessing TV white spaces (TVWSs) [6] due to its limitations
and the abundance of TVWSs that nullify the need for strin-
gent constraints on primary user protection. In such regions,
therefore, spectrum sensing is expected to play a key role as
an alternative method of accessing TVWSs.

To this day, technical challenges of accessing TVWSs
through spectrum sensing without causing interference to
primary users have not been solved completely. In this pa-
per, some design principles are being proposed that can be
incorporated into a spectrum sensing-based WS identifica-
tion system to minimise probability of causing interference
to the primary users. These principles are designed around
the concept of cooperative spectrum sensing. The proposed
principles are: i) the use of different threshold values and
ii) the deployment of virtual WSs pricing. These principles
add an additional layer of protection to primary users after
the cooperative spectrum sensing layer. The block diagram
depicting the hierarchical flow of how the principles work is
depicted in Figure 1.

The rest of the paper is structured as follows: Section 2 gives
a background to some of the challenges of spectrum sensing



Figure 1. Hierarchical flow of how the principles work

as a method for identifying TVWSs; Section 3 introduces the
principles and discusses how they foster protection of pri-
mary users; Section 4 discusses some major existing princi-
ples that can be included in a spectrum sensing-based WS
identification system; Section 5 discusses how the proposed
principles can be implemented; Section 6 is a discussion of
the experimental evaluation of the principles and Section 7
concludes the paper.

2. BACKGROUND INFORMATION

There are several spectrum-sensing methodologies available
but the most commonly used in WS identification is the en-
ergy detector-based sensing. Energy detector-based sensing
works by measuring the energy contained in a spectrum band
and comparing it with a set threshold value [7, 8]. If the en-
ergy level is above the threshold value, then the signal is con-
sidered present otherwise the spectrum band is considered
vacant. This technique reigns superior over the other spec-
trum sensing techniques because of several factors: i) it is
simple as it has low computational and implementation com-
plexities [9, 8], ii) it has good performance [10, 11, 12] and
iii) it is more generic as receivers do not need any knowledge
on the primary users’ signals [7, 8].
Much as the energy detector-based sensing has these ad-
vantages over the other spectrum-sensing methodologies,
it has some inherent challenges that make it less desirable
as a means of accessing TVWSs, which can be summed
up into inability to provide maximum protection to primary
users from interference. One of its major challenge in rela-
tion to identifying TVWSs is that there is no standardized
way of selecting the signal detection threshold that gives
optimal performance, i.e. simultaneously giving low false
positives and low false negatives. The value chosen as the
detection threshold has a major impact on the performance
of the spectrum sensing equipment. If the value is too high,
the technique fails to detect the presence of a TV signal in
a channel thereby causing harmful interference, and if the
value is too low, it gives false detection when there is actually
no TV signal in a channel. Another challenge of this tech-
nique is that it suffers from multi-path fading or shadowing
that results into the hidden user problem [9]. In this scenario,
a WS device is unable to detect the presence of a primary
user service in a channel due to obstacles that block the pri-

mary user’s signal path as it propagates through the wireless
medium. This leads to misinterpretation of measured data by
the WS device where it thinks the channel is available and
start to transmit, causing interference to the primary user.

3. PROPOSED PRINCIPLES

Design paradigm underlying any suggested model based
on spectrum sensing aims at eliminating its technical chal-
lenges. This section discusses the proposed principles that
are being incorporated in the spectrum sensing-based WS
identification component of WhiteNet; a white space net-
working platform under development at the University of the
Western Cape (UWC) in South Africa with the expectation
of resolving some of the technical challenges associated with
this method of identifying WSs.

3.1. Using more than one detection threshold

Deciding on the threshold to be used in spectrum sensing is
a challenging issue that has been at the heart of debates con-
cerning an absolute value to be used. To get around this prob-
lem, we are proposing to use more than one threshold value
to compromise the two extremes, many false negatives or
many false positives, the likely results when a single thresh-
old is used.
Measurement studies have shown that the sensitivity thresh-
old of -114 dBm for Advanced Television Systems Commit-
tee (ATSC) TV signal detection as mandated by the Fed-
eral Communications Commission (FCC) is too conservative
[13, 14, 15, 16]. -114 dBm is said to be conservative because
it leads to significant loss of WSs [16]. Some studies have
confirmed that, for example, [13] found no TVWSs in all the
locations where the studies were done in China when a sens-
ing sensitivity threshold of -114 dBm was used. However,
relaying on the analog terrestrial television (ATT) database
as ground-truth data for the ATT channel occupancy situa-
tion in Beijing, setting the sensitivity threshold to -97 dBm
was enough to find WS ATT channels in indoor scenarios.
On the other hand, different signal detection thresholds have
been used by different studies to find WS. Therefore, using
more than one threshold in the range from -114 dBm to a
value that is dependent on a country’s TV broadcasting al-
location scheme for transmitting sites seems to be a logi-
cal solution and is being proposed here. The FCC’s man-
dated detection threshold of -114 dBm is being proposed as
the start threshold because it is conservative and also able to
find WSs in some environments although it ends up with no
WSs in others. Identifying WSs in this way helps to group
WSs based on the threshold values used to detect them. If
there is a request for WS use from WS devices, allocation
starts with WSs detected with the lowest detection thresh-
old and if they are not enough to satisfy the demand, then
the next slot of WSs identified using the next higher detec-
tion threshold is used and so on. Based on the assumption
that at each point in time, the demand for white space use
from white space devices is satisfied well before using white



spaces identified with higher threshold values, the approach
of identifying WSs using different thresholds and starting
the allocation with WSs identified with the lowest thresholds
minimizes the chances of interference to primary users due to
false negatives than using random or haphazard allocation of
WSs identified with a single threshold. WSs identified with
higher thresholds are the most likely thresholds that may re-
sult into interference. The approach also solved the prob-
lem of resulting with either too many false negatives or too
many false positives when one threshold is used to identify
the TVWSs.

3.2. Virtual pricing of white spaces

Another principle being proposed in this work to minimize
interference to primary users from WS devices is to virtual-
price WS channels within each group based on some com-
mon quantity associated with all WSs. For example, a virtual
price can be given to each WS channel based on the signal
strength detected in each channel with the highest price given
to a channel with strongest signal and the lowest price given
to a channel with the weakest signal within each group. As
mentioned in subsection 3.1, the groups of WSs are based on
the signal detection thresholds used to identify them. When
WS devices submit requests for WS use, the cheapest WS
channels within each group are allocated first. In this way,
the probability of a WS device causing interference to pri-
mary incumbents if there is any false negative within the
group is minimized since channels that may result into false
negatives have stronger signals than channels that are actu-
ally WSs, and as such, their virtual prices are higher than the
channels that are actually WSs. Consequently, they cannot
be allocated to any WS device unless all the channels that
are actually WSs in that WS channel group are exhausted.

4. EXISTING SPECTRUM SENSING DESIGN
METHODS

This section discusses existing spectrum sensing design
methods that this work considers relevant to the implementa-
tion of a spectrum sensing-based WS identification system.

4.1. Cooperative spectrum sensing

Cooperation among sensing equipment is vital for the opti-
mal performance of spectrum sensing when used as a method
of identifying white spaces because a network of spectrum
sensors sharing sensing information obtained from their in-
dividual locations with each other has a better chance of de-
tecting the primary user compared to local spectrum sens-
ing [9] by a single spectrum sensor. It is due to this rea-
son why cooperation between sensing equipment is proposed
in the literature as the solution to the hidden user problem
[14, 15, 17, 18, 19] that may arise due to multi-path fading
or shadowing. As mentioned in the introduction, our pro-
posed principles rely on the results generated from coopera-
tive spectrum sensing as the first step to minimising chances

of interference to primary users. If there is a hidden user
problem after cooperative spectrum sensing, then the pro-
posed principles help to protect further that hidden user from
interference.

4.2. Channel-clustering and location-clustering

As mentioned in [20] and [21], a spectrum sensing-based WS
identification system must also take spectrum sensor cost as
a major consideration in the design of the system as they can
be expensive. To avoid random placement of the energy de-
tectors, which could result into either waste of energy detec-
tors, i.e., many unnecessary detectors deployed or not guar-
antee coverage, i.e., insufficient detectors deployed [20], it
is vital to perform channel-clustering and location-clustering
as proposed in [20]. Once the channel clustering and loca-
tion clustering is done, the algorithm proposed in [20] can
be used to determine placement positions for the energy de-
tectors. Implementing these principles means WSs are cal-
culated according to location clusters. Therefore, secondary
users are required to identify their positions before sending a
request for white space use. For detailed discussion of these
principles and how they can be implemented, consult [20].

5. ALGORITHM IMPLEMENTATION

The proposed principles and the existing methods that have
been discussed in this paper are not environment specific.
They are general principles and methods that can be imple-
mented in a spectrum sensing-based WS identification sys-
tem meant for outdoor or indoor environment. This section
shows how the proposed principles can be implemented al-
gorithmically.

5.1. WS identification using different thresholds

The method for computing TVWSs using different signal
detection thresholds is presented in Algorithm 1. The al-
gorithm shows how cooperative spectrum sensing is imple-
mented with the principle of varying the detection threshold.
The inputs to the algorithm are signal strength values of all
the channels from the frequency spectrum sensors deployed
and the channels under consideration. The algorithm first
checks if a channel under consideration is an already identi-
fied WS using any of the previously used threshold values if
any. This is done in lines 4 to 6. This helps to make sure that
each channel is not identified as WS more than once as the
threshold values keep changing. Once it is found that a chan-
nel is not an already WS channel, the algorithm compares the
signal strength values for that channel from all the sensors
deployed from line 9 to 13 to find the representative signal
strength value, which is the strongest signal measured in that
channel from all the sensors deployed. The strongest signal is
used to calculate the relative signal strength for that channel
by subtracting the current threshold from it in line 14. Then
the algorithm checks if the channel is WS by checking if its
relative signal strength is less than or equal to zero in line 15.



If it is found to be WS, it is added to the set of WSs for that
detection threshold in line 16. The process is repeated for
all the channels using the current threshold value (lines 3 to
20). Once all the channels are considered using the current
threshold value, the next threshold value is considered (line
24) and the process is repeated from the beginning (from line
2). This process is repeated until all the threshold values have
been considered. The output from this algorithm is the set of
sets of WS channels SC identified using different thresholds
and the set of sets of signal strength values SS corresponding
to the set of sets of all WS channels SC.

Algorithm 1: Identify white space channels using different
thresholds
input : Two-dimensional matrix st of size m by n of signal

strength values, set
CH = {ch(1), ch(2), ch(3), ..., ch(m)} of
channels. {m is the number of channels under
consideration; n is the number of sensors deployed}

output: SC = {SC(1), SC(2), SC(3), ..., SC(x)}, where
x is less than or equal to number of threshold
values, SS = {SS(1), SS(2), SS(3), ..., SS(x)}.
{SC is a set of sets of white space channels; SS is a
corresponding set of sets of signal strength values
of the white space channels}

1 initialize t← startThreshold, x← 1;
2 repeat
3 for i← 1 to m do
4 if SC is not empty then
5 check if ch(i) is in any of SC subsets;
6 end
7 if ch(i) is not found in any SC subsets or SC is

empty then
8 strongestSignal← 0;
9 for j ← 1 to n do

10 if st[i][j] > strongestSignal then
11 strongestSignal← st[i][j];
12 end
13 end
14 rss(i)← strongestsignal − t // rss(i) is

representative relative
signal strength for channel i

15 if rss(i) <= 0 then
16 add ch(i) to SC(x);
17 add st[i][j] to SS(x)

18 end
19 end
20 end
21 if WS(x) is not empty then
22 add SC(x) to SC;
23 add SS(x) to SS;
24 end
25 t← t+ increment, x← x+ 1

26 until t is equal to endThreshold;
27 return SC, SS

5.2. Compute virtual prices of WS channels

Once WSs channels have been identified using the different
threshold values, Algorithm 2 follows to compute their vir-
tual prices based on signal strength recorded in each channel.

Algorithm 2: Compute virtual prices of white space chan-
nels identified
input : SS = {SS(1), SS(2), SS(3), ..., SS(x)}.
output: V P = {V P (1), V P (2), V P (3), ..., V P (x)}. {VP

is a corresponding set of sets of virtual prices of
white space channels}

1 initialize j ← 1, strongestSignal← 0;
2 for i← 1 to x do
3 while SS(i) has elements do
4 if strongestSignal < ss(i)(j) then
5 strongestSignal← ss(i)(j);
6 j ← j + 1;
7 end
8 end
9 for a← 1 to (j − 1) do

10 vp(i)(a) = |ss(i)(a)|/|strongestSignal|;
11 add vp(i)(a) to V P (i);
12 end
13 initialize j ← 1

14 end
15 return VP;

The input to the algorithm is SS, the output from Algorithm
1. The algorithm first searches through the set of signal
strength values SS(i) to find the strongest signal in that set
in lines 2 to 7. Then algorithm calculates the virtual price of
each WS channel by dividing its absolute signal strength with
the absolute strongest signal in lines 9 to 12. The process is
repeated for each WS channel group SS(i) using the strongest
signal in that group and the signal strengths of WS channels
in the group until all WS channel groups are considered. The
output of the algorithm is the set of sets of virtual prices VP
corresponding to the set of sets SS of signal strength values
for the WS channels.

6. EXPERIMENTAL EVALUATION

To have a better understanding of how the principles can
work in real spectrum sensing-based WS identification sys-
tem and evaluate their performance, we conducted short
time indoor measurements at the University of the Western
Cape in Cape Town, South Africa in the ultra-high frequency
(UHF) band used for TV broadcasting and used the measure-
ment data in the spectrum sensing-based WS identification
component of WhiteNet. The Department of Computer Sci-
ence, occupying the ground floor of Mathematical Sciences
Building, was used as the experimental site. It has a floor
area of approximately 560 m2. The layout of the ground
floor of the building and the measurement points are shown
in Figure 2. The environment for the measurement locations



Figure 2. Layout of the building and measurement points

was regarded the same since all the locations were on the
same floor of the building and the locations covered a small
area. We assumed that the spectrum sensors detected similar
signal strengths from all the locations such that the same WS
channels were identified from each location. That simplified
the experiment since WSs did not have to be calculated based
on location.
The hand-held RF Explorer model WSUB1G was used in the
measurement process, which has a measurement frequency
range of 240 MHz to 960 MHz. The complete technical spec-
ification of the model can be found in [22]. The model was
fitted with a Nagoya NA- 773 wideband telescopic antenna
with vertical polarization, which has wide band measurement
capability. The RF Explorer was connected to an Android
phone installed with an android code to measure spectrum
on the go using an OTG cable.

6.1. Detection thresholds used

No WSs were detected when -114 dBm was used. Therefore,
different threshold values were tried by incrementing the -
114 dBm sequentially with 0.5 dBm each time. The first WS
was detected with -103 dBm threshold and it was taken as the
start threshold. For the final detection threshold, an adequate
criterion had to be used to select it to ensure maximum pro-
tection of primary users. We looked at the Draft Terrestrial
Broadcasting Plan 2013 from the Independent Communica-
tions Authority of South Africa (ICASA) [23] to see how the
UHF TV channels are arranged in the band. According to
ICASA [23], UHF ATT frequency band (470 MHz and 854
MHz) contains 48 channels of each 8 MHz bandwidth. The
48 channels are arranged into 12 groups of 4 channels each,
which mean that 4 channels are available for assignments at
any transmitting site on a national basis. In areas of great
demand, 7 to 11 channels are assigned to a particular area
by either combining lattice node points or using both VHF
and UHF channels [23]. The measurement site is a typical
urban area, and as such, we considered it an area of great
demand. This was confirmed when we examined the Tyger-
berg transmitting site in [23], which is the closest ATT trans-
mitting site to UWC. There are 6 UHF channels being used
by different TV stations at the site with the first TV station
broadcasting from channel 22. A close examination of how
these channels are allocated in the band shows that each al-
located channel is spaced by at least 4 channels before the
next allocated channel. We believe this allocation scheme

was done to reduce interference coming from other transmit-
ters from the same transmitting site. Based on this alloca-
tion scheme, we concluded that at least the first 24 channels
could not be detected as WSs at the measurement site. That
was achieved with the maximum detection threshold of -102
dBm, and was considered the end detection threshold. Since
small variations in threshold values have a very big impact on
the amount of white spaces found [24], our detection thresh-
olds were spaced by an absolute value of 0.5 dBm difference,
resulting into the following detection thresholds; -103 dBm,
-102.5 dBm and -102 dBm.

6.2. Measurement results

Since we were interested with the temporal distribution of
WSs, the signal measurements were taken for only 120 sec-
onds at each location. The 120 seconds included the signal
amplitude stability time. Observation of the data showed that
after about 90 seconds into the measurement, the signal am-
plitude stabilised to within +/-5 dBm. Therefore, only the
data recorded in the last 30 seconds of the measurement at
each location was used for calculating the average received
signal strength, which was regarded as the temporal signal
strength for that channel at that location.
Figure 3 shows the temporal signal strengths recorded in
each channel from the 14 locations where the measurements
were taken. The standard deviation of the signal strength
for each channel recorded from the 14 locations is shown in
Table 1. It is easy to see from the table that the standard de-
viation of the signals for most of the channels was below 2
dBm. The largest standard deviation was 3.8 dBm from chan-
nel 27. The small standard deviations signify that the signals
collected in a particular channels from the 14 locations var-
ied very little from one location to another. The results con-
firm the validity of our assumption that the spectrum sensors
detect similar signal strengths for each channel under consid-
eration from the locations.
The temporal signal strength recorded in each channel from
each of the 14 locations was fed into the Algorithm 1 to cal-
culate the WSs. Table 2 shows the the WS channels that were

Figure 3. Signal strengths recorded from all locations



Table 1. Standard deviation of signal strengths collected from the 14 measurement locations (+/- dBm)
Channel 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
STDEV 2.6 3.0 2.2 2.2 1.8 3.4 3.8 3.4 3.2 2.2 1.9 2.9 2.7 2.7 2.0 1,6

Channel 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
STDEV 1.5 1.7 1.9 1.9 2.0 2.0 1.9 1.6 2.3 1.9 1.8 1.7 2.1 3.3 1.7 1.7

Channel 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
STDEV 1.9 1.9 1.7 1.9 1.7 1.8 1.7 1.7 1.7 1.6 1.4 1.5 1.4 1.5 1.6 1.8

Table 2. White spaces identified with different thresholds

Threshold(dBm) No of WSs
Identified Channel(s)

-103 1 67

-102.5 8 54, 57, 60, 61, 62,
65, 66, 68

-102 12
43, 46, 47, 48, 49,
52, 53, 56, 57, 58,

59, 64

Figure 4. Spectrum occupancy with -103 dBm threshold

found with the three thresholds. The relative spectrum occu-
pancy for all the channels for each of the three threshold is
shown from Figure 4 to Figure 6. The relative spectrum oc-
cupancy for each channel was defined by the following three
equations:

ORS(i) = 100 ∗RSS(i, Tj)/M(i, Tj) (1)

RSS(i, Tj) = SS(i)− Tj (2)

M(i, Tj) = max(RSS(i, Tj)) (3)

where ORS(i) is the relative spectrum occupancy
in channel i, RSS is the relative signal strength col-
lected in channel i using threshold Tj , SS(i) is the
representative signal strength in channel i, which is
equal to the strongest signal measured in channel i
out of the 14 locations and M(i,Tj) is the maximum
relative signal strength in the band collected in chan-
nel i using threshold Tj .

The WS channels groups and the corresponding signal
strengths of WS channels groups were fed into Algorithm 2
to calculate their virtual prices, which are shown in Table 3.

Figure 5. Spectrum occupancy with -102.5 dBm threshold

Figure 6. Spectrum occupancy with -102 dBm threshold

6.3. Discussion

The grouping of WS channels as show in Table 2 helps to
start allocating them to WS devices with the safest group,
which is the one detected with -103 dBm in this case. The
least safe group of WSs out of the three groups is the one
detected with -102 dBm threshold. WSs in this group is al-
located only if the demand for WS use is not satisfied after

Table 3. Prices for white space channels
WS Channel
Group WS Channels With Their Prices

-103 dBm 67:1.000

-102.5 dBm
54:0.997, 57:0.996, 60:0.998,
61:0.998, 62:0.997, 65:0.997,

66:0.998, 68:1.000

-102 dBm

43:0.998, 46:0.997, 47:1.000,
48:0996, 49:0.998, 52:0.995,
53:0.996, 56:0.999, 58:1.000,

59:0.997, 64:1.000



using the WSs in the first two groups. If there are any false
negatives in that group and the demand for WS use is met,
then the primary users in those channels are protected from
interference, as the channels are not allocated for secondary
usage by WS devices. It is different if the WS channels are
detected using one threshold and they are also allocated ran-
domly to WS devices.
An additional layer of security is provided within a group of
WSs if the channels are priced based on the signal strengths
in the channels. Channels with stronger signals are priced
higher than channels with weaker signals within each group
as shown in Table 2 because channels with stronger signals
are the ones that are more likely to have primary users in
them than channels with weaker signals. For example, WS
channel group detected with -102 dBm in Table 2, allocating
the cheapest channels such as 52, 53, 48 first to WS devices
adds some protection to the expensive channels such as 47,
58 and 64, which are the most likely channels to result into
false negatives in that group. In this case, allocating the chan-
nels sequentially based on the lowest prices, starting with
channel 52, protects primary users that may be broadcast-
ing in the expensive channels such as channel 47 or channel
58.

7. CONCLUSION AND FUTURE WORK

In this paper, we proposed two design principles that have
been included in a spectrum sensing-based white space iden-
tification system to reduce further chances of interference to
primary users due to false negatives after cooperative spec-
trum sensing has been done. The principles were experi-
mented in the white space network (WhiteNet) platform for
campus connectivity at the University of the Western Cape in
South Africa using real measurement data in the UHF band
used for ATT broadcasting. The results show that the appli-
cation of the principles can reduce the probability of interfer-
ence to primary users to some extent.
Spectrum sensing principles have been proposed and im-
plemented as a first design step of WhiteNet; a white space
network management platform for campus networking. For
our proposed principles to work efficiently, they will re-
quire redesigning existing network management techniques
to manage white spaces. Cost-based traffic engineering
techniques such as proposed in [25, 26] will also be re-
designed as primary user protection mechanisms using cost
metrics to reflect the white space availability under pri-
mary and secondary usage. The integration of parallel path
models [27, 28] in white space bonding deployments and
the use of white space for long distance wireless deploy-
ments [29, 30] are other avenues for future work. The design
of market pricing mechanisms to protect primary users while
managing white spaces to meet quality of service (QoS)
agreements between the offered traffic and the available
spectrum is another avenue for future research. The design
of low cost white space gateway devices building around the
emerging Raspberry pi hardware and the flexibility and ro-
bustness principles proposed in [31, 32] is another direction

for future research.
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Sveučilišta u Osijeku, vol. 17, no. 1, pp. 43–52, 2010.

[20] X. Ying, J. Zhang, L. Yan, G. Zhang, M. Chen,
and R. Chandra, “Exploring indoor white spaces in
metropolises,” in Proceedings of the 19th annual inter-
national conference on Mobile computing & network-
ing. 2013, pp. 255–266, ACM.

[21] D. Liu, Z. Wu, F. Wu, Y. Zhang, and G. Chen, “FI-
WEX: Compressive Sensing Based Cost-Efficient In-
door White Space Exploration,” 2015.

[22] Nuts About Nets, http://rfexplorer.com/
combo-specs/, RF Explorer: Handheld Spectrum
Analyser. RF Explorer Combo Devices Specification
Chart.

[23] ICASA, Draft Terestrial Broadcasting Frequency Plan
2013, Independent Communications Authority of
South Africa (ICASA), April 2013.

[24] M. Lopez-Benitez and F. Casadevall, “Spectrum usage
in cognitive radio networks: from field measurements
to empirical models,” IEICE Transactions on Commu-
nications, vol. 97, no. 2, pp. 242–250, 2014.

[25] A. B. Bagula, “Hybrid routing in next generation IP
networks,” Computer Communications, vol. 29, no. 7,
pp. 879–892, 2006.

[26] A. B. Bagula, “On Achieveing Bandwidth-aware
LSP//spl lambda/SP Multiplexing/Separation in Multi-
layer Networks,” Selected Areas in Communications,
IEEE Journal on, vol. 25, no. 5, pp. 987–1000, 2007.

[27] A. B. Bagula and A. E. Krzesinski, “Traffic engineering
label switched paths in IP networks using a pre-planned
flow optimization model,” in Modeling, Analysis and
Simulation of Computer and Telecommunication Sys-
tems, 2001. Proceedings. Ninth International Sympo-
sium on. IEEE, 2001, pp. 70–77.

[28] A. B. Bagula, “Modelling and implementation of QoS
in wireless sensor networks: a multiconstrained traf-
fic engineering model,” EURASIP Journal on Wire-
less Communications and Networking, vol. 2010, pp.
1, 2010.

[29] M. Zennaro, A. Bagula, D. Gascon, and A. B. Nov-
eleta, “Planning and deploying long distance wireless
sensor networks: The integration of simulation and ex-
perimentation,” in Ad-Hoc, Mobile and Wireless Net-
works, pp. 191–204. Springer, 2010.

[30] M. Zennaro, A. Bagula, D. Gascon, and A.B. Noveleta,
“Long distance wireless sensor networks: simulation
vs reality,” in Proceedings of the 4th ACM Workshop
on Networked Systems for Developing Regions. ACM,
2010, p. 12.

[31] M. Zennaro and A. B. Bagula, “Design of a flexible
and robust gateway to collect sensor data in intermittent
power environments,” International Journal of Sensor
Networks, vol. 8, no. 3-4, pp. 172–181, 2010.

[32] A. Arcia-Moret, E. Pietrosemoli, and M. Zennaro,
“Whisppi: White space monitoring with raspberry pi,”
in Global Information Infrastructure Symposium, 2013.
IEEE, 2013, pp. 1–6.


