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ABSTRACT

Cyber-healthcare has recently emerged as a new field of
medicine that builds on the advances made in sensor/actuator
and RFID technologies. It is aimed at expanding Cyber-
medicine beyond the sole consultation of virtual patients by
Cyber doctors through the Internet. It provides new opportuni-
ties for enhancing health care in the developing world through
low acquisition costs and flexible deployment, while improving
accuracy by replacing manual operations by fully digitized
processes. This paper proposes and evaluates the performance
of a Cyber-healthcare system which is aimed at providing
patient prioritization over the cloud as a public health ser-
vice for the rural and urban communities of the developing
world. We propose a deployment model for the proposed
Cyber-healthcare system, and describe a patient prioritization
process as part of its situation recognition component. The re-
sults obtained from a real experimental implementation reveal
the field readiness of the off-the-shelf bio-sensor technology
used by the system and the relative communication capabili-
ties provided by the IEEE802.11 and IEEE802.15.4 protocols
when deployed on the indoor and outdoor links of the im-
plemented system. The relative efficiency of using supervised
machine learning compared to unsupervised machine learn-
ing when performing patient prioritization, is also revealed
through two popular algorithms: support vector machine and
K-means clustering algorithms.

Index Terms— E-health, Cyber-healthcare, Internet-of-
Things, Patient prioritization, Situation recognition

1 Introduction

The recent advances in sensor/actuator and radio frequency
identification (RFID) technologies combined with a more
health conscious world population have revolutionized the
way health care is delivered in the developed world with posi-
tive impacts on patient care. However, the public health sector
in many countries of the developing world has been lagging
behind in this revolution. It is still plagued with many issues
such as the lack of proper medical equipment, untrained staff,
public hospital overcrowding, delayed response in emergency
services, and unreliable and error-prone laboratory diagnostics
resulting from manual clinical data capture processes.

1.1 Cyber-Helthcare

Cyber-medicine is a new field in medicine which builds around
the field of medical care and the advances made in the In-
ternet technologies to enable Cyber doctors/physicians consult
and treat virtual patients via the Internet. Cyber-heelthcare ex-
tends Cyber-medicine to provide a broader perspective where
the digitalization of all aspects of clinical work is used to bet-
ter health care management. It includes aspects related to the
technology, imaging, medications, surgery, rehabilitation, pre-
ventive measures, physical therapy, nursing homes, and med-
ical supplies. The public health sector in both rural and ur-
ban settings of the developing world can leverage the Cyber-
healthcare technology to improve health care management and
service delivery. Leapfrogging from poorly prepared to ade-
quately equipped communities, researchers of the developing
world can also take advantage of the tools provided by these
technologies, to advance research and thus reduce the scien-
tific divide in the medical field. Some of the issues associated
with Cyber-healthcare systems’ deployments includes

Bio-sensor field readiness. While not aimed at replacing
the medical practitioner, a Cyber-healthcare system is assumed
to provide medical decision support by providing accurate and
calibrated vital sign values. The field readiness of the bio-
sensor devices used by the system is an important parameter
upon which the accuracy of the system depends.

Sensor readings dissemination. In many deployment sce-
narios, the vital signs captured from patients are routed over
a network to a processing place where situation recognition is
achieved. The efficiency of the bio-sensor readings dissemina-
tion is another important parameter upon which service deliv-
ery depends.

Patient situation recognition. Besides using field-ready
and calibrated bio-sensor devices, the Cyber-healthcare system
is assumed to provide situation recognition and medical deci-
sion support to both patients and medical practitioners. Both
objectives can be reached only through the use of intelligent
software systems usually driven by machine learning algo-
rithms. The design of such algorithms is another issue upon
which successful situation recognition depends.

Many other important issues associated with digital health
systems include security, privacy, inter-operability when de-
ployed in a cloud-based infrastructure. These issues are beyond
the scope of this paper.
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1.2 Contribution and Outline

The main goal of this paper is to present and evaluate the
performance of a Cyber-healthcare system that combines
lightweight cloud computing and Internet-of-Things concepts
to achieve patient prioritization also known in the medical field
as the Triage system. This paper includes three contributions
which are aimed to provide answers to the issues associated
with Cyber-healthcare deployments. Firstly, we assess the field
readiness of the sensor devices used by the proposed Cyber-
helathcare system by benchmarking these sensors against the
world health organization (WHO) patient scoring standard.
Secondly, we evaluate the performance of the information dis-
semination protocols underlying the proposed system. Lastly,
machine learning techniques are compared to select the most
suitable algorithm for the proposed Cyber-healthcare system.
Paper-based systems have been proposed to perform patient
prioritization and a paper-based South African Triage Scale
(SATS) has been recently incorporated into a mobile appli-
cation called MTriage [1]. MTriage uses the existing South
African Triage scoring systems designed based on observa-
tions and general knowledge by the medical personnel. A
Cyber-healthcare model for patient prioritization based on su-
pervised machine learning algorithms was recently proposed
in [2] with the aim of providing an affordable, accurate, and
efficient health care tool that can help in the health care plan-
ning, information exchange and bio-medical research. While
differing from the paper-based MTriage system, our proposed
prioritization system expands the work done in [2] to con-
sider a hybrid communication model where both IEEE802.11
and IEEE802.15.4 protocols operating in the ISM frequency
band are used on different communication links of the Cyber-
healthcare system. Furthermore, this current work considers
the relevance of using unsupervised learning as an alternative
to the supervised learning model presented in [2] during the
patient prioritization process.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the Cyber-healthcare framework and reveals the
main components of the Triage system. The algorithmic solu-
tions to the prioritization problem are presented and discussed
in Section 3 while section 4 presents our conclusions.

2 The Cyber-healthcare system

A digital healthcare system is a platform that should empower
people with no or limited medical training to capture and store
clinical data into a digitized form, process, analyze this data
and share it over the cloud as a service to the public health
sector. It should also enable the capture of data in different
other forms including crowd sensed data on mobile phones
and on-body bio-sensed data. The cloud infrastructure will be
equipped with intelligent data analysis algorithms capable of
performing situation recognition in terms of patient and pro-
cess prioritization and decision support using an expert system
engine to help the concerned health professionals in the deci-
sion making. The medical health workers should periodically
take the readings of all the patients that have not been attended

to by the doctor. The system should also allow doctors to pe-
riodically monitor and access the patients data remotely from
their smart devices; tablets and smart phones with no real time
constraint. The information collected by the system should also
be shared by health care planners for evaluation and planning
and bio-medical researchers to achieve predictive patient ana-
lytics. When be deployed as an interconnected sets of med-
ical databases, Cyber-healthcare systems provide an unprece-
dented opportunity to advance the discovery and treatment of
new diseases and a better understanding of how the human
body works [3, 4]. Such advances are boosted by the use of
cloud computing technologies [5–8], [9,10] and infrastructures
as service to patients and the medical communities.

Fig. 1. The Cyber Health care System

2.1 Cyber-healthcare Deployment Scenario

The Cyber-healthcare deployment depicted by Figure 1 is built
around the idea of a cloud based Internet-of-Things (Cloud-
IoT) infrastructure where 1) body vital signs are captured by
nurses in clinics using e-Helath kits and/or crowd sensed by
body sensor networks (the cloudlets) 2) they are stored in the
nodes of the sensor network and aggregated at cluster heads
and 3) they are relayed to a sink node connected to a micro
cloud where data analytics are performed to achieve situation
management (patient prioritization, situation recognition and
prediction) and the information is shared among a number of
organizations or entities. The objective is to provide doctors,
institutions, emergency workers, public health planners and re-
searchers access to an integrated health care system for plan-
ning, utilization and advanced research. Some of the advan-
tages of such a deployment when applied to the developing
world context includes

• Time saving. When deployed in private or well-funded
hospitals, the system can spare the nurse from the duty
of going around taking readings since each patient could
have a e-Health kit of medical bio-sensors and a smart
device which should continuously take readings and up-
date the medical records over-the-cloud.

• System accuracy. Using a medical bio-sensors e-Health
kit provides a way of replacing the error-prone manual
patient vital signs capture process by more accurate dig-
itized procedures.
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Table 1. WHO standardized TEWS calculators
L3 L2 L1 Normal H1 H2 H3

Systolic (mmHg) 50-59 60-79 80-99 100-130 131-160 161-200 201-300
Diastolic (mmHg) 40-44 45-49 50-59 60-85 86-90 91-110 111-140
SpO2 (%) 65-79 80-91 92-94 95-100
Pulse (per minute) 40-44 45-49 50-59 60-100 101-120 121-180 181-250

• Cost saving. When deployed in a hospital or health care
centre, a simple e-health kit could be used by many pa-
tients or shared by a community to reduce cost.

• Data access. Using a cloud-based IoT infrastructure al-
lows easy storing and remote access to medical data or
data analytics as illustrated by Figure 1 where the doctor
or ambulance may access the situation awareness gate-
way via the Internet from anywhere and anytime.

• Data sharing. The cloud-based IoT infrastructure is
a shared infrastructure between authorized units that
can allow participatory consultation, medical diagnosis,
health care support and many other services that could
not be availed to citizens without its presence.

• Real-time updates. Using a cloud-based IoT infrastruc-
ture also enables real-time updates of patients’ medi-
cal history (consultations, prescriptions, hospitalization)
which are useful for future treatment validation.

As presented in figure 1, the Cyber-healthcare relies on a net-
worked digital health infrastructure where a) the bio-sensor de-
vices are equipped with different sensors aimed at capturing
different body vital signs b) communication between nodes of
the network is achieved indoor or outdoor depending on the lo-
calization of the vital signs capturing modules c) the routing
of the sensor readings over these links is achieved by differ-
ent protocols including WiFI and the 802.15.4 protocols and d)
the micro-cloud infrastructure is equipped with a patient pri-
oritization server and can be a component of a federated cloud
infrastructure shared by several hospitals in rural settings of the
developing world.

2.2 The Situation Recognition System

The aim of a situation recognition system based on the Triage
model is to determine a quantitative measure of patients medi-
cal conditions and then give priorities to the most urgent cases.
Some of the requirements to be met by the algorithm behind
such a system include: interpretability, speed, simplicity, scal-
ability and accuracy. The algorithm should be scalable because
it should be portable enough to run on small devices, e.g. smart
phones, tables, iPad, biomedical sensors and smart watches
without any problems. It should also be efficient because it
should be fast and accurate. A simple and easy to interpret
solution is preferred. As illustrated by Figure 2, the situation
recognition system proposed in this paper has four main com-
ponents: a) a database b) a scoring system c) a mobile visual-
ization application and d) a server application.

Fig. 2. High-level overview of the situation recognition.

Database: The database stores the medical record history
of the patients, time stamped patient physiological parame-
ter readings from the bio-medical sensors and also stores the
Triage results (or scores) for every patient record.

Scoring System: A scoring system resulting from this
WHO system depicted by Table 1 can use domain knowledge
to analyze the patient data in a database; which it retrieves from
the database. The scoring system will than use rule based data
analysis in order to perform situation recognition. It assigns
scores to every physiological parameter, and then calculates the
scores using probability scoring for a certain number of read-
ings, that is for some temporal state abstractions. The scoring
system communicates with the database through a middleware
MySQL-JDBC-Driver. A machine learning technique can be
used to perform intelligent data analysis in order to perform sit-
uation recognition and patient treatment prioritization. When
a knowledge based system is involved, it calculates the score
using weights provided by the experts (physicians): no learn-
ing is involved. The final Triage scores for every record are
then sent to the database. The Server-side scripting language
application communicates with MySQL database and converts
SQL data to JSON format. The visualization application is
an android based application and it understands JSON files,
therefore the mobile application retrieves the priority list in
JSON format.

Mobile Visualization: This application interfaces with the
server-side scripting application in the HTTP Server to retrieve
the patient records from the database. The application presents
the doctor with prioritized patient records and is also able to
visualize patterns discovered by a machine learning technique
based system in the form of graphical representations.

Serverside scripting application: The server-side scripting
application interfaces with the Database and the Mobile Visu-
alization application. The server-side scripting application in-
terfaces with a) the database to acquire results obtained by the
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Scoring System and 2) the Mobile Visualization application to
provide the prioritized patient records and graphical represen-
tations.

2.3 The Triage Scoring System

Prioritization of patients is based on a Triage system that as-
signs scores to vital signs used as Triage parameters to quan-
tify their severity level. Various Triage systems have been used
throughout the world: the Australian Triage Scale, the Manch-
ester Triage Scale, the Canadian Triage and Acuity Scale, and
the Emergency Severity Index (ESI). All four scales have been
validated for reliability and validity in adults. A standardized
South African Triage was found in 2004 by the Cape Triage
Group (CTG) assembled by the joint Division of Emergency
Medicine at the Universities of Cape Town and Stellenbosch
[11]. The South African Triage Scale was designed to work
for persons of all ages by defining different Triage Early Warn-
ing Scores (TEWS) calculators for infants, children and adults.
Nevertheless parameters used to Triage also differ from one
Triage system to another. Table 1 shows the World Health Or-
ganization (WHO) standardized table of vital parameter risk
zones used in our scoring system. It reveals values for three
different risk zones and a normal zone. The risk zones L1 and
H1 represent deviant or low-risk zones while L2 and H2 rep-
resent the mid-risk zones and L3 and H3 represent high-risk
zones.

3 Machine Learning algorithms

Artificial intelligence has been used in medicine for many dif-
ferent specialized applications. For example, a reliable epilep-
tic seizure detection model using an improved wavelet neural
network was proposed in [12] while an acute ischaemic stroke
prediction model from physiological time series patterns was
proposed in [13] and believed to be useful in optimizing stroke
recovery by manipulating physiological variables. Artificial
intelligence prediction was also proposed in [14] to improve
elective surgery scheduling. In this research, a general way to
classify all patients into different categories irrespective of the
different diseases is investigated by using machine learning al-
gorithms. Two machine learning algorithms were selected to
solve the patient prioritization problem. Their basic character-
istics are described below and their performance compared in
section 4.

3.1 Multivariate Linear Regression

The Matrix Algebra method has (MAM) been often used to
solve problems like ours. However, the multivariate linear re-
gression (MLR) by gradient descent was used in our work in-
stead of the Matrix Algebra method because as opposed to
the gradient descent method, MAM tends to run slow as the
amount of data increases.

Algorithm description. As illustrated by Figure 3, this al-
gorithm uses the knowledge based system to score the training

Fig. 3. Multivariate Linear Regression.

data before training. In other words, it is an improved expert
system knowledge based algorithm which learns from the data,
calculates the weights for each variable or generates a linear
hypothesis which it uses to score the vital parameters.

3.2 K-means Clustering Algorithm

The K-means clustering algorithm considered in this pa-
per partitions the n observations into k sets (k < n) S =

{S 1, S 2, . . . , S k} so as to minimize the within-cluster sum of
squares (WCSS), which is an error expressed by:

args min
k∑

i=1

∑
x j∈S i

|| x j − µi ||
2

where µi is the mean of points in S i.

Fig. 4. K-means clustering

Algorithm description. As described by Figure 4, the K-
means clustering algorithm considered in this paper partition
the data into clusters and uses the Gaussian estimator (Parzen
window estimator) algorithm to estimate a probability density
function p(x) which is then used to calculate a patient status in-
dex. The patient status index (PSI) is expressed by the equation
PS I = loge[1/p(x)].

4 System Development and Performance

The Cyber-healthcare system used in our work considered the
off-the-shelf e-Health kit from Libelium as a low cost device
that can be easily and quickly deployed in a rural environ-
ment. The development environment used in our experiments
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included: Ubuntu 13.10, Android SDK, Apache2 server (on
Ubuntu), MySQL server, MySQL -Java-Bridge (MySQL-J-
Connector). Different languages were used during our devel-
opment. These include Java, PHP, SQL, JSON, and XML.

4.1 Sensor Field Readiness

We conducted a first set of experiments to evaluate the field
readiness of the off-the-shelf e-health sensor technology with
the objective of making sure that the sensor readings fall in
acceptable ranges. To overcome the lengthy ethical clearance
procedures aimed at protecting patient privacy through confi-
dentiality, we used in this experiment two healthy users whose
vital signs were monitored for four days. The results presented
in tables 2 confirmed a normal healthy state for both individu-
als with 1) normal vital signs indication according to the WHO
norms during the four days and 2) very little daily variations
since the users did not fall sick during the experimentation.
These values were calibrated against those obtained from med-
ical equipment used by nurses in hospitals and benchmarked
against the WHO values in table 1. They revealed similar val-
ues and performance patterns for non-sick individuals.

4.2 Information Dissemination

Different frequency bands have been recently recommended
by the 802.15.6 standard to mitigate the interference in the
ISM band resulting from co-location of bio-sensors with other
devices. While this applies to urban settings of the develop-
ing world, the less crowded ISM band of the rural settings of
the developing world does not need complex mitigation pro-
cesses to overcome wireless interference. The focus of our
work thus lies on the IEEE802.11 and IEEE802.15.4 com-
munication standards, as they are most available and provide
a low probability of interference. We conducted a second
set of experiments to determine the signal strength at the re-
ceiver (RSSI) and throughput achieved by both protocols on
both indoor and outdoor links of the communication network
used by our Cyber-healthcare system. We used for this set
of experiments the XBee Series 1 (S1) and Series 2 (S2) of
the IEEE802.15.4 devices and lightweight versions of the
IEEE802.11 devices of the XBee Series 6 (S6) referred to as
XBee-WiFi. Assuming that multi-hop communication will be
a less probable deployment option in many rural hospitals of
the developing world, we considered only single hop com-
munication with potential walls between sender and receivers
for indoor communication links. For the indoor experiments,
one and two doors separation were considered between sender
and received of the bio-sensor information. As a worse case
deployment scenario for a rural hospital, we considered for
our experimentation an over-crowed building complex in Cape
Town where many tenants use WiFi devices (laptops, tablets
and phones) to access the Internet and communicate through
social media. The experimental results are depicted by Fig-
ures 5 and 6 for the RSSI and throughput respectively. 1. The
Received Signal Strength Indicator. The signal strength at
the receiver’s side for the IEEE802.11 communication is con-

Fig. 5. WIFI vs IEEE802.15.4 RSSI.

Fig. 6. WIFI vs IEEE802.15.4 Packets throughput.

stant over different distance ranges while the signal strength
in the IEEE802.15.4 links decreases with distance. This is in
line with the IEEE802.11 protocol which has been designed
for longer communication ranges than the IEEE802.15.4 pro-
tocol. Furthermore, the IEEE802.11 reveal similar reults for
both indoor and outdoor communication. This differs from
the IEEE802.15.4 which shows a difference between between
indoor and outdoor communication with a performance pattern
where outdoor links reach longer communication ranges than
indoor links and the the indoor RSSI strength reduces with the
number of walls.

1. The Wireless Communication throughput. To measure
the throughput achieved over indoor and outdoor communica-
tion links, we transmitted a number of packets configured to
contain the bio-sensor readings as payload and measured the
ratio of the number of packet successfully received and ac-
knowledged to the number of packets sent. Figure 6 reveals
a performance patter similar to the received signal strength
indicator (RSSI) where the throughput achieved indoor and
outdoor are the same for the IEEE802.11 protocol. The
IEEE802.15.4 reveals different performance patterns between
indoor and outdoor communication and for the indoor com-
munication with different number of walls. Similarly to the
RSSI, a constant percentage of packets was received for the
IEEE802.11 communication while the indoor IEEE802.15.4
links achieved a higher throughput for one wall compared to
two walls. The IEEE802.11 protocol achieved higher through-
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Table 2. Sensor Field Readiness: Subject One
Subject one Day 1 Day 2 Day 3 Day 4
Systolic blood pressure Max: 120mmHg Max: 137mmHg Max: 127mmHg Max: 131mmHg

Min: 111 mmHg Min: 117 mmHg Min: 121 mmHg Min: 127 mmHg
Av: 115.5 mmHg Av: 127 mmHg Av: 124 mmHg Av: 129 mmHg
Range:(111,120) mmHg Range:(117,137) mmHg Range:(121,127) mmHg Range:(127,131) mmHg

Diastolic blood pressure Max: 93mmHg Max: 86mmHg Max: 91mmHg Max: 78mmHg
Min: 77mmHg Min: 76mmHg Min: 83mmHg Min: 69mmHg
Av : 85mmHg Av: 81mmHg Av : 87mmHg Av : 73.5mmHg
Range: (77 -93)mmHg Range: (76-86) mmHg Range:(83-91) mmHg Range: (69 -78) mmHg

Pulse Max: 66 bpm Max: 86 bpm Max: 71 bpm Max: 70 bpm
Min: 61 bpm Min: 61 bpm Min: 65 bpm Min: 66 bpm
Av : 63.5 bpm Av : 73.5 bpm Av : 68 bpm Av : 78 bpm
Range: (61, 66) bpm Range: (61,86) bpm Range: (65, 71) bpm Range: (66,70) bpm

SPO2 Max: 99% Max: 90% Max: 95% Max: 99%
Min: 98 % Min: 88 % Min: 89 % Min: 93 %
Average: 98.5% Average: 89% Average: 92% Average: 96%
Range:(98-99) Range:(88-90) Range: (89-95) Range:(93-99)

Temp (oC) Max:37.00 Max:36.94 Max:36.98 Max:36.99
Min:36.98 Min:36.64 Min:36.90 Min:36.81
Average:36.49 Average:36.77 Average:36.94 Average:36.90
Range: 36.98 37.00 Range: 36.64 36.94 Range: 36.90 36.98 Range: 36.81 36.99

Subject two Day 1 Day 2 Day 3 Day 4
Systolic blood pressure Max: 134mmHg Max: 131mmHg Max: 134mmHg Max: 130mmHg

Min: 132 mmHg Min: 129 mmHg Min: 131 mmHg Min: 126 mmHg
Av: 133.5 mmHg Av: 130 mmHg Av: 132.5 mmHg Av: 128 mmHg
Range:(132,134) mmHg Range:(129,131) mmHg Range:(131,134) mmHg Range:(126,130) mmHg

Diastolic blood pressure Max: 79mmHg Max: 82mmHg Max: 81mmHg Max: 83mmHg
Min: 78mmHg Min: 76mmHg Min: 75mmHg Min: 63mmHg
Av : 78.5mmHg Av: 79mmHg Av : 78mmHg Av : 73mmHg
Range: (78 -79)mmHg Range: (76-89) mmHg Range:(75-81) mmHg Range: (63 -83) mmHg

Pulse Max: 88 bpm Max: 79 bpm Max: 73 bpm Max: 74 bpm
Min: 82 bpm Min: 67 bpm Min: 67 bpm Min: 66 bpm
Av : 85 bpm Av : 73 bpm Av : 70 bpm Av : 70 bpm
Range: (82, 88) bpm Range: (67,79) bpm Range: (67, 73) bpm Range: (66,74) bpm

SPO2 Max: 99% Max: 93% Max: 97% Max: 95%
Min: 95 % Min: 89 % Min: 95 % Min: 93 %
Average: 97% Average: 91% Average: 96% Average: 94%
Range:(95-99) Range:(89-93) Range: (95-97) Range:(93-95)

Temp (oC) Max:36.87 Max:37.06 Max:36.98 Max:36.99
Min:36.53 Min:36.64 Min:36.92 Min:36.91
Average:36.70 Average:36.85 Average:36.95 Average:36.95
Range: 36.5336.87 Range: 36.6437.06 Range: 36.9236.98 Range: 36.9136.99

put compared to the IEEE802.15.4 in both indoor and outdoor
communication. Note that although the IEEE 802.11 proto-
col outperformed the the IEEE802.15.4 on both performance
parameters, the IEEE802.15.4 deployment is still a cheaper
option compared to the IEEE802.11 and a more frugal op-
tion in terms of energy consumption even when using the
lightweight version of the IEEE802.11 protocol often refered
to as WiFi-lite.

4.3 Situation Recognition

We conducted another set of experiments to compare the two
machine learning algorithms in order to select one that will be
deployed as algorithm of choice for our Cyber-healthcare sys-
tem. Four different performance parameters were used to com-
pare the algorithms: Coefficient of determination, Accuracy,
Runtime and the Time Complexity. The Analysis of Variance
(ANOVA) method was used to evaluate the models in this pa-
per. The most important parameter in this method is the Coeffi-
cient of determination, denoted R2 or r2. It indicates how well
data fit a statistical model. This value ranges from 0 to 1; the

value one means the data perfectly fits the model. A value less
than 0.5 indicates that the data does not fit the model. Given
a matrix of features X1 . . . Xn, where n is the number of fea-
tures and N be the number of data points or records in a dataset
while ı ∈ 1 . . . n is the index of the ıth feature. Consider that Y
is the score value before training while Ŷ is its estimated value
after training and Ỹ is the mean of the scores before training.
This paper uses the following parameters to derive our perfor-
mance parameters: i) the Regression Sum of Squares S S R ii)
the Error Sum of Squares S S E iii) the Total Sum of Squares
TS S and the Error Mean Square MS E. They are defined by
the equations

S S R =
∑
ı=1N

(Ŷ − Ỹ)2 (1)

S S E =
∑
i=1N

(Y − Ŷ)2 (2)

TS S =
∑
i=1N

(Y − Ỹ)2 (3)

MS E = S S E/(N − d f ) (4)
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Table 3. Situation Recognition Results.
Parameters Multivariate Linear Regression K-means clustering
Coefficient of determination 0.903 n.a for unsupervised learning
Accuracy (%) 90.30 n.a for unsupervised learning
Runtime (seconds) 5.01 14.22 (for only 10 clusters exponen-

tially grows as the number of clusters
increases)

Time Complexity O(pn+kn) where p is the dimension of
each observation (input), k is the num-
ber of tasks (dimension of outputs) and
n is the number of observations

Big(O) for Kmeans + Big(O) for
Parzen Window O(knT )+O(n2), where
k is the number of clusters, ,n is the
number of points and T is the number
of iterations.

Recal / Detection 0.769231 n.a for unsupervised learning
Precision 0.833333 n.a for unsupervised learning
False Rate 0.6 n.a for unsupervised learning
hline

where d f is the degree of freedom; that is the number of in-
dependent variables. If the features X1 . . . Xn are independent
then d f = n and if they are all dependent then d f = 0. In
this paper, an assumption that all the variables are dependent
was made. Hence the Error Mean Square was set to MS E =

S S E/N.

The Coefficient of Determination R2, the Accuracy AC
and Run Time RT are defined by the expressions

R2 = (S S TO − S S E)/S S TO (5)
AC = 100 ∗ R2 (6)
RT = EET − ES T (7)

where EET and ES T are respectively the execution end time
and execution start time.

The Time Complexity (TC) quantifies the amount of time
taken by an algorithm to run as a function of the length of the
string representing the input. The time complexity of an al-
gorithm is commonly expressed using big(O) notation, which
excludes coefficients and lower order terms.

To avoid using healthy users as in our previous experi-
ment, we selected for this experimentation a real patients’
dataset found from an MIT website (http://www.physio.net).
This dataset was used and adapted to train and compare the
two different machine learning algorithms used in this paper:
Multi-linear Regression and K-means Clustering. The experi-
mental results presented in Table 4.2 reveal that the Multivari-
ate Linear Regression (MLR) algorithm takes approximately
5 seconds to compute the Triage priority score and has a very
high accuracy of approximately 90%. The K-means clustering
is an unsupervised learning algorithm which is not associated
with an accuracy value but has a run time of 14.22 seconds
which almost the triple of the MLR algorithm.

5 Conclusion and Future Work

A Cyber-healthcare system using off-the-shelf equipment for
patient prioritization was presented in this paper as a first step

towards the implementation of low cost healthcare systems for
the developing countries. The off-the-shelf e-Health kit used
in our experimentation was tested and found ready for field de-
ployment. Two machine learning algorithms to solving the pa-
tient prioritization problem were described and compared and
the best in terms of accuracy and processing speed was se-
lected as algorithm of choice for our system deployment. The
research made so far is satisfactory even though one patient
dataset was used. The research also provided enough proof that
patient vital signs follow certain patterns and more information
can be extracted from these patterns. It also confirmed that ma-
chine learning techniques improve the Triage Scale accuracy
by learning from the dataset and taking into consideration the
smallest difference between two patient records. The scoring
system can be personalized by having each individual’s score
calculated from their own history data. This will most likely
be an achievement since each individual’s vital signs vary. In-
creasing the number of parameters does not affect negatively
the performance of the prioritization algorithm but both exper-
imental observations and verification by medical professionals
are required to determine whether only vitals are enough to de-
termine the patients’ medical conditions.

The situation recognition system presented in this paper has
been built on top of a communication platform that considers
single hop routing to disseminate the healthcare information
from their points of collection to the micro-cloud server that
handles the Triage system. When considering a larger network
configuration with multi-hop routing paths, multipath routing
techniques such as presented in [15, 16] can be redesigned to
support QoS by having different forms of healthcare data prop-
agated over different paths form a source to a destination. The
cost-based traffic engineering techniques proposed in [17–19]
will also be redesigned to balance traffic over the Cyber-
healthcare communication platform to increase throughput
and reduce communication delays. Deploying a long distance
sensor network [20, 21] to support Cyber-healthcare network
deployment in the rural settings of the developing world is
another key issue that needs to be addressed as future research
work.

7



6 References

[1] “South african medical research council (mrc) mtriage:
Mobile triage application,” Electron, retrieved on 8–
01–16, South African Medical Research Council, http://
www.openmedicineproject.org/tag/mobile-apps-awards-
2015/, 2015.

[2] M. Mandava, C. Lubamba, A. Ismail, H. Bagula, and
A. Bagula, “Cyberhelathcare for public healthcare in
the developing world,” in Proceedings of the ISCC 2016
Conference, June 2016, pp. 14–19.

[3] E. Eskin, “Discovering genes involved in disease and the
mystery of missing heritability,” Communications of the
ACM, vol. 58, no. 10, pp. 80–87, 2015.

[4] IEEE Spectrum, “Hacking the human os: Special report,”
pp. 31–48, June 2015.

[5] M. Hassanalieragh, A. Page, T. Soyata, G. Sharma,
M. Aktas, G. Mateos, B. Kantarci, and S. Andreescu,
“Health monitoring and management using internet-of-
things (iot) sensing with cloud-based processing: Oppor-
tunities and challenges,” in Services Computing (SCC),
2015 IEEE International Conference on. IEEE, 2015, pp.
285–292.

[6] S. Earley, “The promise of healthcare analytics,” IT Pro-
fessional, vol. 17, no. 2, pp. 7–9, 2015.

[7] L. Wang and R. Ranjan, “Processing distributed internet
of things data in clouds.,” IEEE Cloud Computing, vol.
2, no. 1, pp. 76–80, 2015.

[8] A. Page, S. Hijazi, D. Askan, B. Kantarci, and T. Soyata,
“Research directions in cloud-based decision support sys-
tem for health monitoring using internet-of-things driven
data acquisition,” .

[9] A. Benharref and M.A. Serhani, “Novel cloud and soa-
based framework for e-health monitoring using wireless
biosensors,” IEEE journal of biomedical and health in-
formatics, vol. 18, no. 1, pp. 46–55, 2014.

[10] S. Babu, M. Chandini, P. Lavanya, K. Ganapathy, and
V. Vaidehi, “Cloud-enabled remote health monitor-
ing system,” in Recent Trends in Information Technol-
ogy (ICRTIT), 2013 International Conference on. IEEE,
2013, pp. 702–707.

[11] J. Augustyn, “The south african triage scale: a tool for
emergency nurses,” Professional Nursing Today, vol. 15,
no. 6, pp. 24–29, 2011.

[12] Z. Zainuddin, L.K. Huong, and O. Pauline, “Reliable
epileptic seizure detection using an improved wavelet
neural network,” The Australasian medical journal, vol.
6, no. 5, pp. 308–314, 2013.

[13] Q. Zhang, Y. Xie, P. Ye, and C. Pang, “Acute ischaemic
stroke prediction from physiological time series patterns,”
Australas Med J, vol. 6, no. 5, pp. 280–6, 2013.

[14] Z.S. Kargar, S. Khanna, and A. Sattar, “Using prediction
to improve elective surgery scheduling,” Australasia Med
J, vol. 6, pp. 287–289, 2013.

[15] a.B. Bagula, “Modelling and implementation of qos in
wireless sensor networks: A multiconstrained traffic en-
gineering model,” EURASIP Journal on Wireless Com-
munications and Networking, vol. 2010, no. 1, pp. 1,
2010.

[16] A.B. Bagula and A.E. Krzesinski, “Traffic engineering
label switched paths in ip networks using a pre-planned
flow optimization model,” in Modeling, Analysis and
Simulation of Computer and Telecommunication Systems,
2001. Proceedings. Ninth International Symposium on.
IEEE, 2001, pp. 70–77.

[17] A.B. Bagula, “Hybrid traffic engineering: the least path
interference algorithm,” in Proceedings of the 2004 an-
nual research conference of the South African institute of
computer scientists and information technologists on IT
research in developing countries. South African Institute
for Computer Scientists and Information Technologists,
2004, pp. 89–96.

[18] A.B. Bagula, “Hybrid routing in next generation ip net-
works,” Computer communications, vol. 29, no. 7, pp.
879–892, 2006.

[19] A.B. Bagula, “On achieving bandwidth-aware
lsp/lambdasp multiplexing/separation in multi-layer
networks,” IEEE Journal on Selected Areas in Commu-
nications (JSAC): Special issue on Traffic Engineering
for Multi-Layer Networks, vol. 25, no. 5, June 2007.

[20] M. Zennaro, A. Bagula, D. Gascon, and A.B. Noveleta,
“Long distance wireless sensor networks: simulation vs
reality,” in Proceedings of the 4th ACM Workshop on
Networked Systems for Developing Regions. ACM, 2010,
p. 12.

[21] A. Bagula, M. Zennaro, G. Inggs, S. Scott, and D. Gas-
con, “Ubiquitous sensor networking for development
(usn4d): An application to pollution monitoring,” Sen-
sors, vol. 12, no. 1, pp. 391–414, 2012.

8


