
Delay Tolerant Network on smartphones: Applications for
communication challenged areas

Hervé Ntareme
Royal Institute of Technology, KTH

Forum 120, 164 40 Kista
Sweden

+46 8 790 4248

ntareme@kth.se

Marco Zennaro
ICTP – International Centre for

Theoretical Physics
Strada Costiera, 34151 Trieste, Italy

+39 328 1214733

mzennaro@ictp.it

Björn Pehrson
Royal Institute of Technology, KTH

Forum 120, 164 40 Kista
Sweden

+46 8 790 4284

bpehrson@kth.se

ABSTRACT
This paper discusses the Delay Tolerant Network (DTN) service
and protocol stack and presents an implementation of it on the
Android platform that is called "Bytewalla". It allows the use of
Android phones for the physical transport of data between
network nodes in areas where there are no other links available, or
where existing links need to be avoided for security reasons or in
case the Internet is shut down by a government authority like it
happened in some Arab countries during the spring of 2011.
The implementation of a store and forward messaging application
and a Sentinel Surveillance health-care application (SSA) that
runs on top of Bytewalla are presented together with a few usage
scenarios. Our conclusion is that the integration of DTN links in
the general IP-network architecture on mobile phone platform is
feasible and will make it easier to integrate DTN applications into
communication-challenged areas. To our knowledge our
implementation of the bundle protocol is the first on the Android
platform.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: – Store and
forward networks.

General Terms
Design, Reliability, Algorithms

Keywords
Delay Tolerant Networks, Android, Mobile phone

1. INTRODUCTION
A geographical area where there is a demand for communication
services but no adequate supply is sometimes called
“communication challenged area”. The most common challenges
include a lack of communication infrastructures in terms of wired
or wireless links and reliable power supply. Moreover, traditional
telecommunication operators hesitate to invest in such areas since
they only see low revenues, high costs, high risks, and no profit.
In this paper, we discuss the Delay Tolerant Networking (DTN)
approach [1] [2] [3] to deal with this challenge: To transfer data
via mobile devices that are physically transported between nodes

by extending the Internet Protocol suite with the Bundle Protocol
[4]. Specifically we implemented the Bundle Protocol (BP) on the
Android OS platform.
In some areas, it is cost effective, at least in the shorter term
perspective, to organize such physical transport of data rather than
to deploy a physical network infrastructure, such as optical fiber
cables or broadband wireless links. Moreover, this can provide
business opportunities that could attract local entrepreneurs.
Mobile phones are by far the most commonly available mobile
device, also in developing regions. According to the International
Telecommunication Union (ITU), the total number of mobile
phone subscriptions in 2011 is more than five billions [5].
Additionally, smartphones are currently experiencing accelerating
rates of adoption worldwide.
The Android platform was chosen to be used in our project due to
its openness for application developers and increasing popularity.
The applications we targeted are a general store-and-forward E-
mail service, and a Sentinel Surveillance Application (SSA) to be
used as a basis for health-care applications in our “ICT for Rural
Development programme” [6].
The idea of using physical transport links to forward data between
nodes in IP-networks is not new. In 2003, mobile Wi-Fi access
points and servers were mounted on buses in rural India to
transport emails between rural subscribers and the Internet [8].
Experiments with DTN in similar contexts has been explored in
the “Sámi Network Connectivity” project, 2004-2006 [9] and in
the “Networking for Communication Challenged Communities”
project 2008-2011 [10].
The rest of this paper is organized as follows: In section 2, we
discuss about the DTN protocols and services. In section 3, we
provide a description of relevant parts of our implementation. In
section 4, we briefly present the Bytewalla network setup. In
section 5, we discuss two DTN applications that run on top of
Bytewalla to be used as a proof of concept for developing extra
DTN applications in the future. In section 6, we present our
conclusions and future work.

2. DELAY TOLERANT SERVICES AND
PROTOCOLS
Several evolving wireless networks such as terrestrial civilian
networks connecting mobile wireless devices, including mobile
phones, PDAs, or wireless sensor networks (in water or land) or
space-networks, such as the InterPlaNetary (IPN) Internet Project
[11] do not conform to the Internet’s underlying assumptions
which are: Continuous, Bidirectional End-to-End connection,
short round trips and consistent symmetric data rates between
source and destination and low error rates on each link [12]. Such
networks are characterized with intermittent connectivity, long or
variable delay, asymmetric data rates, and high error rates.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ExtremeCom 2011, 26-30 September, 2011, Manaus, Brazil.
Copyright 2011

Therefore, connecting them to the Internet requires the
intervention of a service that can translate between incompatible
networks characteristics and which can provide a buffer for
mismatched network delays. The Delay-Tolerant Networking
(DTN) helps to address the above mentioned technical issues.

The DTN concept was first conceived within the Inter-Planetary
Network Research Group charter (IPNRG) of the Internet
Research Task Force (IRTF), to deal with the challenges in high
delay environments. The DTN architecture defines an overlay
layer on top of the TCP/IP architecture between the transport and
the application layer of the network on which it is hosted. This
layer forms an overlay that uses persistent storage to solve
network interruption related problems and provides functionalities
similar to the Internet layer described in the original
ARPANET/Internet designs.

The overlay network approach is represented by the Bundle
Protocol (BP) (RFC5050). The basic idea is that each packet
transmitted is called a “bundle” and contains all of the signaling
as well as the data required to transit the transport layer which is
referred to as the bundle convergence layer. Therefore, the bundle
architecture operates as an overlay network, whereby DTN nodes
are identified by Endpoint Identifiers (EIDs), which are the
bundling equivalent of addresses. Bundles are routed in a store
and forward manner between participating nodes over varied
network transport technologies (including both IP and non-IP
based transports).

Other DTN protocols include the Licklider Transmission Protocol
(LTP) which is a point-to-point protocol designed to be a potential
convergence layer to support the bundle protocol, though it can
also be used in other contexts. It is primarily designed for the true
high-latency case of deep space communications; to be usable as a
convergence layer for the bundle protocol. But it can also be used
above traditional connectionless transport layer like UDP in
terrestrial contexts, including sensor networks using data mules.
[13].
DTN are frequently used in disaster relief missions, peace-
keeping missions, and in vehicular networks. Moreover, NASA
has tested DTN technology for spacecraft communications.

3. IMPLEMENTATION
3.1 Bytewalla network architecture
The Bytewalla network architecture consists of two networks
which can be deployed to interoperate from two separate remote
locations.

Figure 1: Bytewalla Network Architecture

A practical scenario would be to deploy one network in a rural
village which lacks Internet connection and the other network in a
city where there is broadband Internet connection as illustrated in
Figure 1.

3.2 Software components overview
There are three software components in the implementation:
DTNService, DTNManager, and DTNApps. These components
interact with each other and with the Android TCP/IP stack. The
interactions are illustrated in figure 2.

DTNService is a backend transparent application serving DTN
communication. Therefore, even though the user decides to use
other applications such as to make a phone call or read text
messages, he can still send/receive DTN bundles. To be able to
run in backend in the Android platform, this component is
implemented as Android Service [14]. This component uses the
TCP/IP stack of the Android platform to achieve network
communication. Because DTNService is running in backend,
there is a need for a user interface to interact with the service. This
is the reason why the DTNManager module is needed. It is a front
end application for the user to configure, monitor, and manage the
DTNService module. This front end application is designed as an
Android Activity [15].

DTNApps are the applications running on top of the DTNService.
Two sample DTN applications developed are DTNSend and
DTNReceive. DTNSend is a DTN application allowing users to
send text messages over DTN. DTNReceive is a DTN application
allowing users to receive text messages over DTN. Because both
of them are front end applications similar to DTNManager, they
are mapped to the Android activity.

Figure 2: Software components overview

3.3 DTN internal design summary
The internal design of DTNService follows the design and
working principles of DTN2 [16], which is the DTN reference
implementation developed in C++ by the Delay Tolerant Network
Research Group (DTNRG). Therefore, the design has similar
characteristics as the reference implementation by which it
follows a modular design. This allows the system to be upgraded
easily by adding extra functionalities.

The design of DTNService is composed of nine modules which
are: Bundle Daemon, Contact Manager, TCP Convergence Layer,
Discovery, Persistent Storage, Registration, Bundle Router,
Fragmentation manager and APILib. DTNService is an event
driven system. There are several types of events, such as, bundle
receiving event, bundle transmitted event, or contact initiation
event. The system works according to the event handling
functions defined in event handling components including Bundle
Daemon, Bundle Router, and Contact Manager. The
communication among the different modules is illustrated in
figure 3. The arrows represent the communication between each
module

Figure 3: Internal design summary.

3.3.1 Bundle Daemon
Bundle daemon is the main event handler of the system. It is the
central processing unit and responsible for communicating with
other module for processing the bundle event. Every bundle event
is checked first by the daemon. If the Bundle Daemon determines
that other two event processing components including Bundle
Router and Contact Manager should process the event as well, it
forwards the event to these components. Otherwise, it removes it.

3.3.2 TCP Convergence layer
TCP Convergence Layer [17] is the transport mechanism over
TCP that the DTN application uses to transmit bundles to a next
hop.

3.3.3 Discovery
Discovery is the method by which other nodes can be aware of the
"existence” of other DTN participant nodes and their addresses
[18]. Discovery is based on the IP protocol; each node sends and
listens IP UDP announcements "to discover" remote neighbors.
Once a node is discovered, the Bundle Daemon together with the
Contact Manager creates a link for that node.

3.3.4 Contact Manager
Contact Manager is the service in charge of detecting new
opportunities of connections. Each opportunity of connection
("opportunistic link") with a neighbor ("contact") is under the
control of Contact Manager which also does the scheduling of the
links. One of the main tasks of this module is to manage the
availability of links and contact; this is made by posting events in
the Bundle Daemon. Other main tasks are to provide the contact
information to the Bundle Router and the linkage to the
underlying module “TCP Convergence Layer”.

3.3.5 Persistence storage
Persistent storage is the storage mechanism that stores data
objects on the disk. Persistent storage is a generic implementation
so that it can store different types of objects in the database.

3.3.6 Registration
This module handles the specified registration created from the
Bundle Daemon. Every bundle received by the daemon is checked
with this module and if it is matched, it is delivered to the
registration for further processing.

3.3.7 Bundle router
The Bundle router module is the main decision maker in regard to
forwarding the bundles to the destination. In this implementation

the routing is handled by the PRoPHET algorithm [19] which is
used to make the route decisions for the outgoing bundles.

3.3.8 Fragmentation Manager
The Fragmentation manager module task is to fragment large
bundles. It keeps the state of all the fragmented bundles and
partially received bundles. Then, it reconstructs the bundle from
the received fragments.

3.3.9 APILib
The APILib module provides an Application Programming
Interface (API) to develop a DTN application on the Android
platform. The API communicates with the bundle daemon module
to achieve the API call. This is the channel that is used by other
components such as DTNApps to access the DTNService module.
This component is implemented by the Android Binder class of
the Android APIs.

4. NETWORK SETUP
The network setup is accomplished in four steps which are:
a. Install the required software on the two remote servers:

o Ubuntu Linux and Oracle Berkeley DB
o OASYS software (Object-oriented Adaptors to SYStem

interfaces), DHCP server and The DTN2 software.
b. Install the Bytewalla application on the Android phone [20].
c. Install and configure WIFI access points on the two servers.
d. Configure the three nodes to send and receive DTN Bundles.

5. APPLICATIONS
5.1 The Android mobile phone application
The Bytewalla application has two applications to send and
receive data bundles from inside the mobile application. Figure 4
illustrates the GUI of the application.

Figure 4: Application example

The configuration part consists of four sections:

a. Storage section: In this section the user can define the type
of the service to be used for storing the bundles which could
be the SD card of the phone. Moreover, the amount of
memory to be used can be set.

b. Interfaces section: This section refers to the listener
interface of the application. It consists of three fields: ID,
type of convergence layer and local port. The type of
convergence layer used is TCP.

c. Link section: This section includes the information needed
to start a connection to the DTN servers.

d. Routing section: Bytewalla supports both static and
dynamic routing.

5.2 E-mail application
The E-Mail application is used to send E-mail messages from
users who are based in a remote village without Internet
connection

5.2.1 DTN E-mail integration
The servers receive emails from the clients and convert the emails
into bundles and vice versa. The bundles are forwarded to the
Android phones and transported physically from one location to
another. They are delivered on the DTN server when a phone
enters in contact with it.

Figure 5: Village protocol deployment

Figure 5 describes the village protocol deployment which consists
of a Sender/Receiver, a DTN Mail Proxy Server, and an Android
phone. The DTN Mail Proxy Server in the village protocol
contains a DTN mail Interface. The sender sends a mail through a
MUA which communicate with the MTA/MDA by the SMTP
protocol which in turn forwards the mail to the DTN mail
Interface. Then, the mail is transferred to DTN software. Then, the
DTN software sends the email to the Android phone’s DTN
software through the Bundle Protocol. The reverse procedure
happens when a user in the village receives an E-mail. The IMAP
server is used to deliver the Email to the village MUA. A DHCP
server allocates dynamic IP addresses to the sender/receiver
device and the Android phones.

Figure 6: City protocol deployment

The city protocol is similar to the village protocol except that the
MTA/MDA of both the DTN mail gateway server and target mail
system communicates through the SMTP protocol over Internet
both for sending and receiving emails. The communication
between the DTN Mail gateway server and the Android phones
are the same as in village protocol as it is described in figure 6.

5.3 Sentinel Surveillance Application (SSA)
The goal of the SSA is to provide a facility to report medical
related data such as the level of the stock of medical drugs or
number of patients in a village to a healthcare authority located in
another remote region such as a city by using the Bytewalla DTN
network. The SSA needs to reside on both sites; the city and the
village, as records are maintained in the databases. It provides

access to authenticated users to avoid illegal data manipulation at
both sending and receiving sites.
It is a server side web based application which uses a set of basic
open source services and software. The list below describes the
services and software required in order to run the SSA.
a. DTN Daemon: It is based on DTN2 software.
b. Database: MySQL is used to store patient’s records.
c. Web Server: Apache 2 web server
d. Cron: A Linux based scheduler
e. Domain Name Service: Bind9

Figure 7: Architecture of the SSA application

The SSA consists of “SSA send” and “SSA receive” applications
which are used to send and receive the records. The “SSA send” is
executed when a user enters a record in the application. “SSA
receive” is required to execute regularly in order to fetch the
records. The design of SSA send is illustrated in the figure 8 and
described below.

Figure 8: SSA sending process

a. A user interacts with the system using a web interface.
b. SSA sender collects data from the user and stores it in the

database.
c. SSA sender writes the same record in a text file with a time

stamp.
d. SSA sender transfers the text files to the DTN Daemon.
e. The DTN daemon builds the bundle out of the text file.
f. The bundles reside in a bundle data store and handed over to

an Android phone when it passes nearby the site.

The design of the “SSA receive” application follows almost a
similar process in receiving the records as described below and as
illustrated in figure 9.
a. The Android phone transfers the bundles to the DTN daemon

and the data is stored in DTN data store.
b. SSA receiver is invoked by Cron scheduler.
c. SSA receiver scans the DTN data store to fetch the records.
d. “SSA receiver” reads and stores the records in a database.
e. “SSA receiver” backs up the bundle received from the

Bytewalla Android phone.
f. “SSA receiver” logs all the performed activities.

Figure 9: SSA reception process.

6. PERFORMANCE MEASUREMENTS
The test environment consists of two Ubuntu desktop servers
which runs DTN2 and an HTC Tattoo Android phone as described
in figure 5.

105 DTN bundles were generated to be routed between the two
servers. 35 different sizes of bundles were generated with the
initial bundle size measuring 100KB. Each of the remaining
bundle size was incremented by 100KB. So the size of the last 3
bundles was 3.5MB.
6.1 Bandwidth analysis
The time for downloading 105 bundles is shown in figure 6. There
was 189013.1 KB of data in total. In this case the bundles were
downloaded from the server to the Android phone. The graph
shows a linear increase in download time with the increase of
bundle size.

Fig 6: Download bandwidth

This follows a linear equation of the general form y=mx+b. This
is expected because while downloading the bundles, there were no
other download activities running which can consume the
bandwidth. The average download bandwidth equals to the Total
Bundle Size / Total Download Time, which is 51.36 KB/s.

Fig 7: Upload bandwidth

The bandwidth analysis for upload time is shown in figure 7. The
bundles were sent from the Android phone to the other server. As
expected, the upload time increased linearly with the increase of
bundle size. An average value for the upload bandwidth is as
follows: The average upload bandwidth equals to the Total
Bundle Size / Total Upload Time which is 60.29 KB/S.
A comparative study between the download and upload
bandwidth is shown in figure 8. For small bundles of size 100 KB,
the download and upload times are identical. Up to the bundle size
of 1.5MB, there is a very small difference in upload and download
time. After that, the difference increases as the download time
increases. A significant observation made from this figure is that
the download time is always higher than the upload time.

Fig 8: Comparison between download and upload bandwidth
6.2 Power consumption analysis
The battery consumption was recorded with a fully charged
battery of HTC tattoo phone. The 105 bundles had a total size of
184.68 MB. Figure 9 shows the cumulative battery consumption
for downloading the bundles. No other applications were running
during the period the data were being recorded. This ensured the
battery power was consumed only by the DTN software.

Fig 9: Cumulative battery consumption for download
The battery consumption rate was high for first 22 MB of data.
But after that there was a drop in battery consumption till 75 MB
size of data. Then, there is a short sharp increase of power
consumption and a continued linear consumption. At the end 44%
of the total battery charge was consumed for downloading 184.68

MB of data. The average battery consumption rate was equal to
26.20 mAH/MB.

Fig 10: Cumulative battery consumption for upload

A comparative study is shown between the cumulative download
and upload battery consumption in figure 11. The battery
consumption for uploading data is always lower than the battery
consumption for downloading data.

Fig 11: Comparison between upload and download battery
consumption

7. CONCLUSIONS AND FUTURE WORK
Our approach allows the integration of DTN in the general mobile
IP-network architecture which make it easier to extend delay-
tolerant applications into communication-challenged areas. Our
implementation follows the Bundle Protocol Specification – RFC
5050.
The future work will include adding more tools and applications
on top of the Bytewalla network. Hence, we plan to integrate
popular social networking applications such as Twitter and
YouTube. A subscription service on top of which educational
materials can be exchanged between communication challenged
areas would be of great benefit to local communities. Moreover,
we plan to use Bytewalla to tap up and transport sensor data from
remotely located wireless sensor network for monitoring the
quality of drinking water [7]. Finally, a business model could be
elaborated to help local entrepreneurs to setup some businesses on
top of the Bytewalla system.

8. ACKNOWLEDGMENTS
Our thanks to the Bytewalla 1 and 3 teams and Dr. Avri Doria for
their great contributions.

9. REFERENCES
[1] K. Fall, S. Farrell, “DTN: An architectural retrospective”,

IEEE Journal on selected Areas in Common, Vol.26, no.5.
pp. 828-826, June 2008.

[2] A. MacMahon, S. Farrell. “Delay-And Disruption-Tolerant
Networking,” IEEE Internet Computing, vol. 13, no. 6, pp.
82-87, Nov/Dec. 2009.

[3] V. Cerf, A Hooke, L. Torgerson, R. Durst, K. Scott, K. Fall,
H Weiss “Delay-Tolerant Networking Architecture”, IETF
RFC 4838, Apr. 2007.

[4] K. Scott and S. Burleigh, “Bundle Protocol Specification”,
IETF RFC 5050, Nov. 2007.

[5] International Telecommunication Union, Press release.
http://www.itu.int/newsroom/press_releases/2010/06.html.
Barcelona, 15 February 2010, last accessed on 2011-03-22.

[6] ICT4RD project: http://www.ict4rd.ne.tz/, last accessed
2011-03-25.

[7] M. Zennaro, et all: Water Quality Wireless Sensor Network
(WQWSN): An Application to Water Quality Monitoring in
Malawi. ICPP Workshops, Vienna, Austria, Sept 2009.

[8] A. Pentland, R. Fletcher, A. Hasson. Daknet: Rethinking
Connectivity in Developing Nations. IEEE Computer Society
Press, Los Alamitos, CA, USA. 2004.

[9] Sami Network connectivity Project.
http://www.epractice.eu/cases/saminetwork, Last accessed
2011-03-24.

[10] N4C project, http://www.n4c.eu/. Last accessed 2011-03-22.

[11] InterPlanetary Internet Project,
http://www.ipnsig.org/home.htm , last accessed on 2011-03-
21.

[12] F. Warthman, Delay-Tolerant Networks (DTNs): A tutorial.
Available at http://www.dtnrg.org/docs/tutorials/warthman-
1.1.pdf, last accessed on 2011-03-25.

[13] Stephen F., Vinny C. Delay and Disruption-Tolerant
Networking. Artech House. Norwood, MA. 2006.

[14] Android Developers,”Android Service”,
http://developer.android.com/reference/android/app/Service.
html, last visited: 2011-03-25.

[15] Android Developers,”Android Activity”,
http://developer.android.com/reference/android/app/Activity.
html, last accessed 2011-03-25.

[16] DTN2 Documentation, DTNRG,
http://www.dtnrg.org/docs/code/DTN2/doc/manual/intro.htm
l, last checked on 2011-03-22.

[17] M. Demmer, “Delay Tolerant Networking TCP Convergence
Layer Protocol draft-irtfdtnrg-tcp-clayer-02.txt”,
http://tools.ietf.org/html/draft-irtf-dtnrg-tcp-clayer-02, last
visited on 2011-06-20.

[18] D. Ellard and D. Brown, "DTN IP Neighbor Discovery
(IPND)draft-irtf-dtnrg-ipnd-01",
http://tools.ietf.org/html//draft-irtf-dtnrg-ipnd-01, Last
accessed: 2011-06-20

[19] A. Lindgren, A. Doria, E. Davies, S. Grasic. Probabilistic
Routing Protocol for Intermittently Connected Networks
draft-irtf-dtnrg-prophet-09. http://tools.ietf.org/html/draft-
irtf-dtnrg-prophet-09. Last accessed 2011-06-20

[20] Bytewalla software installation guide.
http://www.tslab.ssvl.kth.se/csd/projects/092106/sites/default
/files/Bytewalla_Installation_Guide.pdf, Last accessed 2011-
06-20.

