Lab 1: Arduino Basics

Marco Zennaro and Antoine Bagula
ICTP and UWC
Italy and South Africa
Goals of this Lab

- Learn how the programming takes place

- Exercises about:
 - installing the IDE
 - setting the clock
 - measuring the temperature
 - timestamping the temperature reading
Installing the IDE

- IDE = Integrated development environment
- Arduino IDE is Open Source
Installing the IDE

Windows Installation Process

Go to the web address below to access the instructions for installations on a Windows-based computer.

Macintosh OS X Installation Process

Macs do not require you to install drivers. Enter the following URL if you have questions. Otherwise proceed to next page.

Linux: 32 bit / 64 bit, Installation Process

Go to the web address below to access the instructions for installations on a Linux-based computer.

http://www.arduino.cc/playground/Learning/Linux
Connect your Arduino

// Connect your Arduino Uno to your Computer
Use the USB cable provided in the SIK kit to connect the Arduino to one of your computer’s USB inputs.

Note: we will use a slightly different board, which you connect through one additional small board, the programmer
Connect your Seeduino

This is the USB-to-serial adapter - it will be between your computer and the Seeeduino board.

Connect the multi-colored cable so that the GND pins on the Seeduino and on the USB device have the same color (white, for example).
Connect your Seeduino

The other end of this USB cable goes to your computer.
The Arduino IDE

// Connection:
// * An Arduino Ethernet Shield
// * D0: The output pin of the Geiger counter (active low)
//
// Requirements:
// EthernetDHCP
// http://skanini.com/software/arduino-ethernet
//
// Reference:
// * http://www.sparkfun.com/products/9848

#include <SPI.h>
#include <Ethernet.h>
#include <avr/wire.h>
#include <avr/wiring.h>
#include <avr/wiring.h>
#include "ethernet.h"
#include "arashi_eth_bridge.h"
#include "src/chb_drvr.h"

#define DEBUG 0

#if (DEBUG == 0)
 define PRINT(x) f(x)
 define PRINTLN(x) f(x)
#else
 define PRINT(x) Serial.print(x)
 define PRINTLN(x) Serial.println(x)
#endif

Done uploading.

Binary sketch size: 27,758 bytes (of a 30,720 byte maximum)
1: Select serial port

Select the Serial Port: tty/USBx on Linux, COMx on Windows
Select Arduino model

Select Board:
Arduino Pro 3.3V, ATmega328
Programming an Arduino

From the File menu, choose Open and select the code you want to open.

The source code will appear in the IDE window.
Lab Examples

From the Workshop's webpage, download the zip file with all the examples for this Lab 1 Session.

Open the folder called Example_1 and open the Example_1.ino file
Programming workflow

1. Opening
2. Verifying
3. Uploading
Programming an Arduino

Click on the upload button and wait until the code has been compiled and uploaded.

At the end you will see in the bottom right corner:

Done uploading.
Programming an Arduino

This is the template of a basic Arduino program:

```cpp
void setup()
{
    Initialize variables, open USB, open WiFi, etc
}

void loop()
{
    Perform some action
    Wait for a certain number of msecs or wait for an alarm
}
```
This lab session will be like this:

For (i=1;i<=3;i++) {
 Simple example (me) // 2 min //
 Extended example (you) // 20 min //
}

Real-world exercise // 1 hour //
Start!
Example_1

Example_1 will blink a light (Hello World! in the WSN world) on the Seeduino.

```cpp
int led = 13;

void setup() {
    // initialize the digital pin as an output.
    pinMode(led, OUTPUT);
}

// the loop routine runs over and over again forever:
void loop() {
    digitalWrite(led, HIGH);   // turn the LED on (HIGH is the voltage level)
    delay(1000);               // wait for a second
    digitalWrite(led, LOW);    // turn the LED off by making the voltage LOW
    delay(1000);               // wait for a second
}
```
Example_1 output
Example_1 - extended

Get acquainted with the IDE

Make the LED blink for a different amount of time

Make the LED blink as fast as possible!
Seeeduino

Seeeduino is an Arduino board designed for WSN applications.

Special features:

- RTC (Real Time Clock) to timestamp the data
- microSD card to store data
- socket for Xbee modules
- solar charger on board
- very low deep sleep mode (1000uA)
Seeduino
Seeeduino RTC

Having a RTC is useful for two reasons:

1. to time stamp the collected data (for example: temperature is 27.4C at 10:02:30 of 6/7/2020)
2. to be able to set alarms to wake up the mote from sleeping mode (for example: wake up on Tuesday 15th of August at 10:30:00).

Insert the coin battery in the Seeeduino.
Example_2

Example_2 will set the time of the Seeduino using the RTC.

To program the RTC you need to download some libraries first. In the zip file you will find the DS3231 library and examples.
Place the files in folder labelled “ds3231_library” into your Arduino libraries folder.

Linux: /
Windows:

Restart the IDE!
Example_2

Example_2 will set the time of the Seeduino using the RTC.
Change the line:

```cpp
DateTime dt(2011, 11, 10, 15, 18, 0, 5);
```
to adjust to today's date and time.

Format is: year, month, date, hour, min, sec and week-day (starts from 0 (Sunday) and goes to 6 (Saturday))
How do you see the output of your code?

You need to check the output coming from the USB port.

Select Serial Monitor:

Your Serial Monitor needs to match that!
Example_2 output

```
2013/3/16 11:28:0
Sat
2013/3/16 11:28:1
Sat
2013/3/16 11:28:2
Sat
2013/3/16 11:28:3
Sat
2013/3/16 11:28:4
Sat
2013/3/16 11:28:0
Sat
2013/3/16 11:28:1
Sat
2013/3/16 11:28:2
Sat
2013/3/16 11:28:3
Sat
2013/3/16 11:28:4
Sat
2013/3/16 11:28:5
Sat
2013/3/16 11:28:6
Sat
2013/3/16 11:28:7
```
Example_2 - extended

Comment the line where you set the time. Is the time OK?

Disconnect the Seeduino from the USB. Connect it again. Are the dates and time OK?
Example_3

The RTC has a temperature sensor to keep the clock calibrated.

```cpp
void setup ()
{
    Serial.begin(57600);
    Wire.begin();
    RTC.begin();
}

void loop ()
{
    RTC.convertTemperature();
    Serial.print(RTC.getTemperature());
    Serial.println("deg C");
    delay(1000);
}
```
Example_3 output
Example_3 - extended

Put the Seeduino near the window / light: does the temperature change?

Convert the temperature to Fahrenheit and show values in both C and F.
Exercise

I own a chalet in Switzerland and want to monitor its temperature every 2 minutes. I want to visualize date, time and temperature.
Seeeduino Grove

The Grove system is a modular, safe and easy to use group of items that allow you to minimise the effort required to get started with microcontroller-based experimentation and learning.
Seeeduino Grove
Seeeduino Grove base shield
Seeeduino Grove base shield
Seeeduino Grove units: button
Seeeduino Grove units: LED
Seeeduino Grove units: Temperature
Seeeduino Grove units
Exercise

Feel free to take as many Grove units as you want and experiment with them!