UAV prototype for terrain dose-rate mapping

Eng. Diego García (CNEA-UTN) diegogarcia@cae.cnea.gov.ar

Eng. Lucio Martinez Garbino (CNEA-UTN) luciojmg@cae.cnea.gov.ar

Origins of the project

- ✓ AGE CNEA-CAE requires a surface dose rate map
- ✓ Large measuring area (8km²), requires automated process
- ✓ Requires periodic measurements
- ✓ Due to possible high dose levels prefer to reduce the exposure of people
- ✓ GIAR works on a project for multipurpose flying vector

Particular conditions

- ✓ Rough terrain
- √ Inaccessible areas and obstacles (perimeter fencings)
- ✓ Requires static measurements (depends on detector volume vs exposition time)

Objectives of the project

- Mechanicals
- ✓ Light
- ✓ Robust
- Measurement
- ✓ Count measurement with geospatial reference
- ✓ Detection efficiency
- ✓ Telemetry

Requirements of project

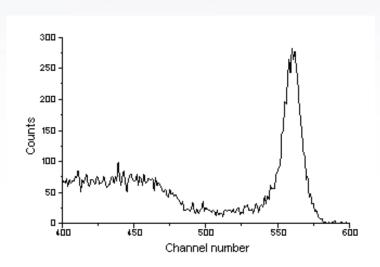
- Navigation
- ✓ Autonomy
- Controllability (altitude, full featured AP, secure mode, inertial NAV)
- ✓ Telecommand (power off of not used modules)
- > Auxiliar systems
- ✓ Real time Video Link

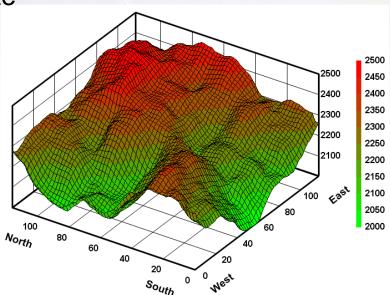
Our proposal

✓ We requires a flying vehicle (UAV). But what kind?

Feature	Plane	Helicopter	Drone	Balloon
Weather sensitivity	Medium	Medium	Medium	High
Autonomy	Medium	Low	Low	High
Sturdiness	Medium	Low	Medium	High
Maneuverability	Medium	High	High	Med-High
Speed	Med-High	Low	Med	Low-static
Landing requirements	Medium	Low	Low	Low
Design complexity	Medium	High	Medium	Low

Main Features


- ✓ Sonar obstacle avoidance system
- ✓ Sonar altimeter
- ✓ AHRS system (IMU)
- ✓ Video link
- ✓ Autopilot
- ✓ Real time telemetry and telecommand
- ✓ Entirely designed and build by us. All materials available off-the-shelf
- ✓ Up to 6 hours autonomy
- ✓ Easy scalability (more Helium, more payload)
- ✓ Very low cost (USD 600), without detector


Legal, regulatory and safety

- ✓ ANAC (National Civil Aviation Association) (UAV, Res. Nº527/2015)
- ✓ Helium (instead of heated air or Hidrogen)
- ✓ Negative floatability
- ✓ Secure mode Auto Pilot (3 modes)
 - ✓ Shut-off
 - ✓ Return to base
 - ✓ Secure landing

Other features

- √ 3D surface map
- ✓ Gamma Ray Spectrometry
- ✓ Microcontroller based for low count rate
- ✓ FPGA based for high count rates

Future Works

- ✓ Plastic detectors
- ✓ Silicon PMT
- ✓ High precision GNSS (Global Navigation Satellite System)
- Relation between measure time and weight of scintillator material and volume
- Background characterization

Calibration

- ✓ Measure counts by a Scintillator (NaI(TI))
 - > need to convert to dose rate

Navigation

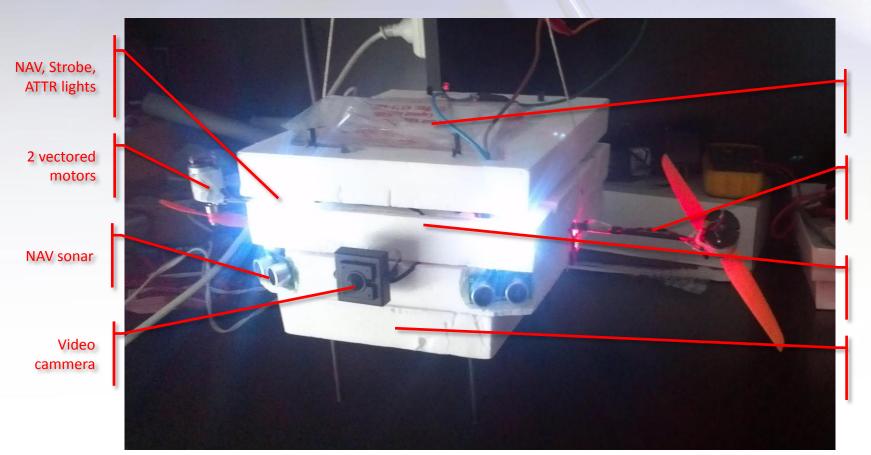
Map and WP display

ECAM panel (Electronic Centralised Aircraft Monitor)

Power control, battery state, ammeter, autonomy

Video with Head up display

AP panel


Nav sonar

Emergency settings

Count, spectrum and alarm

Log

Vehicle Prototype

Lipo battery pack and balancer

Carbon fiber structure

Electronics

Detector

UAV prototype for terrain dose-rate mapping

Eng. Diego García (CNEA-UTN) diegogarcia@cae.cnea.gov.ar

Eng. Lucio Martinez Garbino (CNEA-UTN) luciojmg@cae.cnea.gov.ar